
Multiplicity of solutions for homogeneous

elliptic systems with critical growth

Marcelo F. Furtado
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Belém-PA, Brazil

Abstract

In this paper we are concerned with the number of nonnegative solutions of the
elliptic system

(P )


−∆u = Qu(u, v) + 1

2∗Hu(u, v), in Ω,

−∆v = Qv(u, v) + 1
2∗Hv(u, v), in Ω,

u = v = 0, on ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, N ≥ 4, 2∗ := 2N/(N − 2) and
Qu, Hu and Qv, Hv are the partial derivatives of the homogeneous functions Q, H ∈
C1(R2
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1 Introduction

In this paper we are concerned with the number of nonnegative solutions of
the elliptic system

(P )



−∆u = Qu(u, v) + 1
2∗
Hu(u, v), in Ω,

−∆v = Qv(u, v) + 1
2∗
Hv(u, v), in Ω,

u = v = 0, on ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, N ≥ 4, 2∗ := 2N/(N − 2) and
Qu, Hu and Qv, Hv are the partial derivatives of the homogeneous functions
Q, H ∈ C1(R2

+,R), where R2
+ := [0,∞)× [0,∞).

We are interested in the case that H has critical growth. More specifically, the
assumptions on H = H(s, t) are the following.

(H0) H is 2∗-homogeneous, that is,

H(θs, θt) = θ2∗H(s, t) for each θ > 0, (s, t) ∈ R2
+;

(H1) Hs(0, 1) = 0, Ht(1, 0) = 0;
(H2) H(s, t) > 0 for each s, t > 0;
(H3) Hs(s, t) ≥ 0, Ht(s, t) ≥ 0 for each (s, t) ∈ R2

+;
(H4) the 1-homogeneous function (s, t) 7→ H(s1/2∗ , t1/2

∗
) is concave in R2

+;

The function Q = Q(s, t) is a lower order perturbation term satisfying

(Q0) Q is q-homogeneous for some 2 ≤ q < 2∗;
(Q1) Qs(0, 1) = 0, Qt(1, 0) = 0.

In order to present our results we introduce the following numbers

µ := min {Q(s, t) : sq + tq = 1, s, t ≥ 0} (1.1)

and

λ := max {Q(s, t) : sq + tq = 1, s, t ≥ 0} . (1.2)

We say that a weak solution z = (u, v) ∈ H1
0 (Ω) × H1

0 (Ω) of problem (P ) is
nonnegative if u, v ≥ 0 in Ω. If Y is a closed set of a topological space Z, we
denote by catZ(Y ) the Ljusternik-Schnirelmann category of Y in Z, namely
the least number of closed and contractible sets in Z which cover Y . We are
now ready to state our first result.
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Theorem 1.1 Suppose that H satisfies (H0) − (H4) and Q satisfies (Q0) −
(Q1). Then there exists Λ > 0 such that the problem (P ) has at least catΩ(Ω)
nonzero nonnegative solutions provided λ, µ ∈ (0,Λ).

In the proof we apply variational methods, Ljusternik-Schnirelmann theory
and a technique introduced by Benci and Cerami [3]. It consists in making
precise comparisons between the category of some sublevel sets of the associ-
ated functional with the category of the set Ω. In order to overcame the lack
of compactness due to the critical growth of H we use the ideas of Brezis and
Nirenberg [4], besides the paper of Morais Filho and Souto [15], where it is
proved that the number

SH := inf


∫
RN

(|∇u|2 + |∇v|2)dx : u, v ∈ H1(RN),
∫
RN

H(u+, v+)dx = 1


(1.3)

plays an important role when dealing with critical systems like (P ). Actually,
we use the above constant and adapt some calculations performed in Myia-
gaki [16] to localize the energy levels where the Palais-Smale condition fails.
We would like to mention that, as a byproduct of our arguments, we extend
the existence result of [15] for any subcritical degree of homogeneity of the
perturbation Q (see Theorems 2.4 and 2.5).

Notice that condition (Q1) discard examples like Q(s, t) = sq+tq+stq−1 since,
in this case, Qs(0, 1) = 1. However, we can also consider this situation if the
subcritical perturbation satisfies q > 2. More specifically, the following holds

Theorem 1.2 Suppose that H satisfies (H0) − (H4), Q satisfies (Q0) with
q > 2 and

(Q̂1) Qs(0, 1) > 0 and Qt(1, 0) > 0.

If we set

λ̂ := max{Qs(0, 1), Qt(1, 0)} (1.4)

then there exists Λ > 0 such that the problem (P ) has at least catΩ(Ω) nonzero
nonnegative solutions provided λ, µ, λ̂ ∈ (0,Λ).

The difference when dealing with (Q1) or (Q̂1) is just in the way we extend
the function Q to the whole R2. Since we want to apply minimax methods
this extension needs to be made in a smooth way. We refer to the beginning
of the next section for more details about the possible extensions.

Concerning the class of nonlinearities we are considering, we present in Sec-
tion 5 some examples of functions satisfying our hypothesis. There, we also
make some comments about the possibility of proving that the solutions are
positive in Ω and we state other settings in which our results hold, including
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the possibility of having a sum of subcritical terms with different degrees of
homogeneity. As a final remark, we would like to mention that the theorems
remain valid for N = 3 if the degree of homogeneity of Q satisfies 4 < q < 6
(see Remark 4.5).

The starting point on the study of the system (P ) is its scalar version

−∆u = θ|u|q−2u+ |u|2∗−2u in Ω, u ∈ H1
0 (Ω), (1.5)

with 2 ≤ q < 2∗. In a pioneer work Brezis and Nirenberg [4] showed that, for
q = 2, the existence of positive solutions is related with the interaction between
the parameter θ with the first eigenvalue θ1(Ω) of the operator (−∆, H1

0 (Ω)).
Among other results they showed that, if q = 2, the problem has at least one
positive solution provided N ≥ 4 and 0 < θ < θ1(Ω). They also obtained some
results for the case 2 < q < 2∗.

After the paper of Brezis and Nirenberg, a lot of works dealing with critical
nonlinearities have been appeared. Concerning the question of multiplicity, we
recall that Rey [17] and Lazzo [13] proved that, for q = 2, the problem (1.5)
has at least catΩ(Ω) positive solutions (see also the well known paper of Benci
and Cerami [3] where the subcritical case was considered) provided θ > 0 is
small. This result was extended for the p-Laplacian operator and p ≤ q < p∗

by Alves and Ding [1]. The results presented here can be viewed as versions
of the papers [17,13,1] for the case of systems.

As far we know, the first results for homogeneous system like (P ) are due to
Morais Filho and Souto [15] (see also [2]). After this work many results have
been appeared (see [7–9,18,12,10,11] and references therein). Among then, the
most related with our paper if the work of Han [9], where the author con-
sidered the case Q(s, t) = α1s

2 + α2t
2 and H(s, t) = sαtβ with α + β = 2∗.

His results was complemented by Ishiwata in [11,12], with different classes
of homogeneous nonlinearities being considered. Our paper extends and/or
complements the results found in [15,2,9,11,12]. Although there are some mul-
tiplicity results for systems like (P ) via Ljusternik-Schnirelmann theory, we
do not know any article that relates the topology of Ω with the number of so-
lutions and contains a general class of nonlinearities such as those considered
here.

The paper is organized as follows. In Section 2 we present the abstract frame-
work of the problem, we prove a local compactness result and obtain the
existence of one nonnegative solution for (P ). Section 3 is devoted to the
proof of some technical results concerned the properties of sequences which
minimize SH and the asymptotic behavior of the minimax levels associated to
the problem. Theorems 1.1 and 1.2 are proved in Section 4 and we devote the
last section for some further remarks about examples and possible extensions
of the results.
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2 The PS condition and an existence result

We start this section fixing some notation. We denote BR(0) := {x ∈ RN :
‖x‖ < R} and by C∞0 (A) the set of all functions f : A→ R of class C∞ with
compact support contained in the open set A ⊂ RN . We denote by ‖f‖p the
Lp-norm of f ∈ Lp(A). In order to simplify the notation, we write

∫
A f instead

of
∫
A f(x)dx. We also omit the set A whenever A = Ω.

We remark for future reference that, if p ≥ 1 and F is a p-homogeneous
C1-function, then the following holds

(i) if we set MF := max{F (s, t) : s, t ∈ R, |s|p + |t|p = 1} then, for each
(s, t) ∈ R2, we have that

|F (s, t)| ≤MF (|s|p + |t|p) ; (2.1)

(ii) ∇F is a (p − 1)-homogeneous function and, for each (s, t) ∈ R2, we have
that

sFs(s, t) + tFt(s, t) = pF (s, t). (2.2)

Throughout the paper we suppose that H satisfies (H0) − (H4). In view of
(H1), we can extend the function H to the whole R2 by considering

H̃(s, t) := H(s+, t+), (2.3)

where s+ := max{s, 0}. It is easy to check that H̃ is of class C1 and its
restriction to [0,∞)×[0,∞) coincides with H. In order to simplify the notating
we shall write, from now on, only H to denote the above extension.

The extension of the function Q is more delicate. We first consider the case
that (Q1) is assumed. In this setting we can extend as above, that is,

Q̃(s, t) := Q(s+, t+). (2.4)

However, if we suppose that Q satisfies (Q̂1) instead of (Q1), it can be proved
that the above extension is not differentiable. Thus, with this other condition
we extend Q in the following way

Q̃(s, t) := Q(s+, t+)−∇Q(s+, t+) · (s−, t−), (2.5)

where s− = max{−s, 0}. We can check that this extension is of classe C1.

Remark 2.1 Since ∇Q is (q − 1)-homogeneous we can use (2.4) to get

−s−Qs(s
+, t+) =

−sQs(0, t
+) = −s(t+)q−1Qs(0, 1), if s < 0,

0, if s ≥ 0,
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for each (s, t) ∈ R2. Hence

| − s−Qs(s
+, t+)| ≤ Qs(0, 1)(|s|q + |t|q).

Analogously,

| − t−Qt(s
+, t+)| ≤ Qt(1, 0)(|s|q + |t|q)

and therefore it follows from (2.4) that the extension Q̃ satisfies

|Q̃(s, t)| ≤ |Q(s+, t+)|+ |(s−, t−) · ∇Q(s+, t+)|

≤ (λ+ λ̂)(|s|q + |t|q),
(2.6)

for each (s, t) ∈ R2, whenever Q satisfies (Q̂1).

As before, we shall write only Q to denote the C1-extension Q̃.

By using (2.1) and well know arguments, we see that the weak solutions of
(P ) are precisely the critical points of the C1-functional Iλ,µ : X → R given
by

Iλ,µ(z) :=
1

2
‖z‖2 −

∫
Qλ,µ(z)− 1

2∗

∫
H(z), z ∈ X,

where X is the Sobolev space H1
0 (Ω)×H1

0 (Ω) endowed with the norm

‖(u, v)‖2 :=
∫ (
|∇u|2 + |∇v|2

)
.

We notice that, in the definition of Iλ,µ, we are denoting Qλ,µ(z) := Q(z) for
z ∈ R2. We shall write Qλ,µ instead of Q just to emphasize that the smallness
condition in the statement of the main theorems depends on the value of the
parameters µ and λ defined in (1.1)-(1.2).

We introduce the Nehari manifold of Iλ,µ by setting

Nλ,µ :=
{
z ∈ X \ {(0, 0)} : I ′λ,µ(z)z = 0

}
and define the minimax cλ,µ as

cλ,µ := inf
z∈Nλ,µ

Iλ,µ(z).

In what follows, we present some properties of cλ,µ and Nλ,µ. Its proofs can be
done as in [19, Chapter 4]. First of all, we note that there exists r = rλ,µ > 0,
such that

‖z‖ ≥ r > 0 for each z ∈ Nλ,µ. (2.7)

It is standard to check that Iλ,µ satisfies Mountain Pass geometry. So, we
can use the homogeneity of Q and H to prove that cλ,µ can be alternatively
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characterized by

cλ,µ = inf
γ∈Γλ,µ

max
t∈[0,1]

Iλ,µ(γ(t)) = inf
z∈X\{0}

max
t≥0

Iλ,µ(tz) > 0, (2.8)

where Γλ,µ := {γ ∈ C([0, 1], X) : γ(0) = 0, Iλ,µ(γ(1)) < 0}. Moreover, for
each z ∈ X \ {0}, there exists a unique tz > 0 such that tzz ∈ Nλ,µ. The
maximum of the function t 7→ Iλ,µ(tz), for t ≥ 0, is achieved at t = tz.

Let E be a Banach space and J ∈ C1(E,R). We say that (zn) ⊂ E is a
Palais-Smale sequence at level c ((PS)c sequence for short) if J(zn) → c and
J ′(zn) → 0. We say that J satisfies (PS)c if any (PS)c sequence possesses a
convergent subsequence.

Lemma 2.2 If Q satisfies (Q0) then the functional Iλ,µ satisfies the (PS)c
condition for all c < 1

N
S
N/2
H , provide one of the conditions below holds

(i) 2 < q < 2∗ and Q satisfies (Q1) or (Q̂1);
(ii) q = 2, Q satisfies (Q1) and the parameter λ defined in (1.2) belongs to

(0, θ1(Ω)/2), where θ1(Ω) > 0 denotes the first eigenvalue of (−∆, H1
0 (Ω)).

Proof. Let (zn) = ((un, vn)) ⊂ X be such that I ′λ,µ(zn) → 0 and Iλ,µ(zn) →
c < 1

N
S
N/2
H . We start by proving that (zn) is bounded in X. If the item (i)

above is true it suffices to use the definition of Iλ,µ to obtain c1 > 0 such that

c+ c1‖zn‖+ on(1) ≥ Iλ,µ(zn)− 1

q
I ′λ,µ(zn)zn

=

(
1

2
− 1

q

)
‖zn‖2 +

(
2∗ − q

2∗q

)∫
H(zn)

≥
(
q − 2

2q

)
‖zn‖2,

where hereafter on(1) denotes a quantity approaching zero as n → ∞. The
above expression implies that (zn) ⊂ X is bounded. In the case that (ii) occurs,
it follows from (2.4) that∫

Q(zn) =
∫
Q(u+

n , v
+
n ) ≤ λ

∫
|zn|2 ≤

λ

θ1(Ω)
‖zn‖2,

and therefore we get

c+ c1‖zn‖+ on(1) ≥ Iλ,µ(zn)− 1

2∗
I ′λ,µ(zn)zn

=
1

N
‖zn‖2 − 2

N

∫
Q(zn) ≥ 1

N

(
1− 2λ

θ1(Ω)

)
‖zn‖2.

Since 2λ < θ1(Ω) the boundedness of (zn) follows as in the first case.
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In view of the above remarks we may suppose that zn ⇀ z := (u, v) weakly
in X and zn → z strongly in Lq(Ω)× Lq(Ω). Moreover, a standard argument
shows that I ′λ,µ(z) = 0.

By setting z̃n := (ũn, ṽn) = (un−u, vn− v) we can use the strong convergence
in Lq(Ω)× Lq(Ω) and [15, Lemma 5] to conclude that∫

Qλ,µ(zn) =
∫
Qλ,µ(z)+on(1),

∫
H(zn) =

∫
H(z)+

∫
H(z̃n)+on(1). (2.9)

This and the weak convergence of (zn) provide

c+ on(1) = Iλ,µ(z) +
1

2
‖z̃n‖2 − 1

2∗

∫
H(z̃n) ≥ 1

2
‖z̃n‖2 − 1

2∗

∫
H(z̃n), (2.10)

where we have used Iλ,µ(z) ≥ 0.

By using I ′λ,µ(zn)→ 0 and (2.9) again, we get

on(1) = I ′λ,µ(zn)zn = ‖zn‖2 − q
∫
Qλ,µ(zn)−

∫
H(zn)

= I ′λ,µ(z)z + ‖z̃n‖2 −
∫
H(z̃n).

Recalling that I ′λ,µ(z) = 0, we can use the above equality and (2.10) to obtain

lim
n→∞

‖z̃n‖2 = b = lim
n →∞

∫
H(z̃n),

1

N
b =

(
1

2
− 1

2∗

)
b ≤ c,

for some b ≥ 0.

In view of the definition of SH , we have that

‖z̃n‖2 ≥ SH

(∫
H(z̃n)

)2/2∗

.

Taking the limit we get b ≥ SHb
2/2∗ . So, if b > 0, we conclude that b ≥ S

N/2
H

and therefore
1

N
S
N/2
H ≤ 1

N
b ≤ c <

1

N
S
N/2
H ,

which is a contradiction. Hence b = 0 and therefore zn → z strongly in X. 2

Before presenting our next result we recall that, for each ε > 0, the function

Φε(x) :=
CNε

(N−2)/4

(ε+ |x|2)(N−2)/2
, x ∈ RN , (2.11)

where CN := N(N − 2)(N−2)/4, satisfies ‖∇Φε‖2
2 = ‖Φε‖2∗

2∗ = SN/2, where S
is the best constant of the Sobolev embedding D1,2(RN) ↪→ L2∗(RN). Thus,
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using [15, Lemma 1] and the homogeneity of H, we obtain A, B > 0 such that

SH =
||(AΦε, BΦε)||2(∫

RN
H(AΦε, BΦε)

)2/2∗ =
(A2 +B2)

H(A,B)2/2∗

SN/2

‖Φε‖2
2∗
,

from which it follows that

SH =
(A2 +B2)

H(A,B)2/2∗
S. (2.12)

The above equality and the ideas introduced by Brezis and Nirenberg [4] are
the keystone of the following result.

Lemma 2.3 Suppose that Q satisfies (Q0), with 2 < q < 2∗, and λ, µ defined
in (1.1)-(1.2) are positive. Then,

cλ,µ <
1

N
S
N/2
H .

The same result holds if q = 2 and and λ, µ ∈ (0, θ1(Ω)/2).

Proof. We consider a nonnegative function φ ∈ C∞0 (RN) such that φ ≡ 1 in
BR(0) ⊂ Ω, φ ≡ 0 in RN \B2R(0) and define

wε(x) :=
φ(x)Φε(x)

‖φΦε‖2∗
.

where Φε was defined in (2.11). Since ‖wε‖2∗ = 1, we can use the homogeneity
of Q and H to get, for any t ≥ 0,

Iλ,µ(tAwε, tBwε) =
t2

2
(A2 +B2)‖wε‖2 − tqQλ,µ(A,B)‖wε‖qq −

t2
∗

2∗
H(A,B).

We shall denote by hε(t) the right-hand side of the above equality and consider
two distinct cases.

Case 1. 2 < q < 2∗.

In this case there exists tε > 0 such that

hε(tε) = max
t≥0

hε(t). (2.13)

Let

gε(t) :=
t2

2
(A2 +B2)‖wε‖2 − t2

∗

2∗
H(A,B), t ≥ 0,
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and notice that the maximum value of gε occurs at the point

t̃ε :=

{
(A2 +B2)‖wε‖2

H(A,B)

}1/(2∗−2)

.

So, for each t ≥ 0,

gε(t) ≤ gε(t̃ε) =
1

N

(
(A2 +B2)‖wε‖2

H(A,B)2/2∗

)N/2
,

and therefore

hε(tε) ≤
1

N

(
(A2 +B2)‖wε‖2

H(A,B)2/2∗

)N/2
− tqεQλ,µ(A,B)‖wε‖qq. (2.14)

We claim that, for some c2 > 0, there holds

tqεQλ,µ(A,B) ≥ c2.

Indeed, if this is not the case, we have that tεn → 0 for some sequence εn → 0+.
But it is proved in [4, (1.11) and (1.12)] that

‖wε‖2 = S +O(ε(N−2)/2). (2.15)

Thus,

0 < cλ,µ ≤ sup
t≥0

Iλ,µ(tAwεn , tBwεn) = Iλ,µ(tεnAwεn , tεnBwεn)→ 0,

which is a contradiction. So, the claim holds and we infer from (2.14) and
(2.15) that

hε(tε) ≤
1

N

(
(A2 +B2)

H(A,B)2/2∗
S +O(ε(N−2)/2)

)N/2
− c2‖wε‖qq

≤ 1

N
S
N/2
H +O(ε(N−2)/2)− c2‖wε‖qq.

It is proved in [16, Claim 2, p. 778] that limε→0+ ε
(2−N)/2‖wε‖qq = +∞. Thus,

we conclude from the above inequality that, for each ε > 0 small, there holds

cλ,µ ≤ sup
t≥0

Iλ,µ(tAwε, BAwε) = hε(tε) <
1

N
S
N/2
H .

Case 2. q = 2.
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In this case we have that h
′
ε(t) = 0 if, and only if,

(A2 +B2)‖wε‖2 − 2Qλ,µ(A,B)‖wε‖2
2 = t2

∗−2H(A,B).

Since we are supposing λ < θ1(Ω)/2, we can use Poincaré’s Inequality to
obtain

2Qλ,µ(A,B)‖wε‖2
2 ≤ 2λ(A2 +B2)‖wε‖2

2

< θ1(Ω)(A2 +B2)‖wε‖2
2 ≤ (A2 +B2)‖wε‖2.

Thus, there exists tε > 0 satisfying (2.13). By using the definition of wε and
[4, (1.12) and (1.13)] we get

‖wε‖2
2 =


ε(N−2)/4 +O(ε(N−2)/2) if N ≥ 5,

ε(N−2)/2| log ε|+O(ε(N−2)/2) if N = 4.

(2.16)

Arguing as in the first case we conclude that, for ε > 0 small, there holds

hε(tε) ≤
1

N
S
N/2
H +O(ε(N−2)/2)− c2‖wε‖2

2 <
1

N
S
N/2
H ,

where we have used (2.16) in the last inequality. This concludes the proof. 2

As a byproduct of Lemmas 2.2 and 2.3 we obtain the following generalizations
of [15, Theorem 1].

Theorem 2.4 Suppose H satisfies (H0)− (H4) and Q satisfies (Q0)− (Q1).
Then the problem (P ) possesses a nonzero nonnegative solution whenever 2 <
q < 2∗ and λ, µ > 0, or q = 2 and λ, µ ∈ (0, θ1(Ω)/2).

Proof. Since Iλ,µ satisfies the geometric conditions of the Mountain Pass The-
orem, there exists (zn) ⊂ X such that

Iλ,µ(zn)→ cλ,µ, I ′λ,µ(zn)→ 0.

It follows from Lemma 2.2 and Lemma 2.3 (with Remark 4.5 in the case
N = 3) that (zn) converges, along a subsequence, to a nonzero critical point
z = (u, v) ∈ X of Iλ,µ. According to (2.3), (2.4) and (2.2), we have that

I ′λ,µ(z)z− = −‖z−‖2 −
∫ (
∇Q(u+v+) · (u−v−) +

1

2∗
∇H(u+v+) · (u−v−)

)
.

Since z is a critical point and the integral above vanishes, it follows that
z− = 0. Hence, u, v ≥ 0 in Ω and the theorem is proved. 2
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Theorem 2.5 Suppose H satisfies (H0)−(H4) and Q satisfies (Q0) and (Q̂1).
Then the problem (P ) possesses a nonzero nonnegative solution whenever
λ, µ > 0.

Proof. As before, we obtain a nonzero critical point z of Iλ,µ. A simple cal-
culation shows that the extension given in (2.5) is such that Qs(s, t) ≥ 0 for
s ≤ 0, and Qt(s, t) ≥ 0 for t ≤ 0. Hence, using the extension of H and arguing
as in the previous theorem we obtain

0 = I ′λ,µ(z)z− = −‖z−‖2 −
∫ (

Qu(u, v)u− +Qv(u, v)v−
)
≤ −‖z−‖2,

and the result follows. 2

Remark 2.6 The two above theorems remains valid if we suppose that N = 3
and 4 < q < 6. Indeed, it suffices to notice that in this case, according to [16,
p. 779], the function wε defined at the beginning of the proof of Lemma 2.3
satisfies limε→0+ ε

(2−N)/2‖wε‖qq = +∞. So, the same arguments of Case 1 in
that lemma hold.

3 Some technical results

In this section we denote by M(RN) the Banach space of finite Radon mea-
sures over RN equipped with the norm

σ = sup
ϕ∈C0(RN ),‖ϕ‖∞≤1

|σ(ϕ)|.

A sequence (σn) ⊂M(RN) is said to converge weakly to σ ∈M(RN) provided
σn(ϕ) → σ(ϕ) for all ϕ ∈ C0(RN). By the Banach-Alaoglu theorem, every
bounded sequence (σn) ⊂M(RN) contains a weakly convergent subsequence.

The next result is a version of the Second Concentration-Compactness Lemma
of P.L.Lions [14, Lemma I.1]. It is also inspired by some previous lemmas due
to Chabrowski [5] and Bianchi, Chabrowski and Szulkin [6], where the terms
which measure the loss of mass of weakly convergente subsequence have firstly
appeared.
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Lemma 3.1 Suppose that the sequence (wn) ⊂ D1,2(RN)×D1,2(RN) satisfies

wn ⇀ w weakly in D1,2(RN)×D1,2(RN),

wn(x)→ w(x) for a.e. x ∈ RN ,

|∇(wn − w)|2 ⇀ σ weakly in M(RN),

H(wn − w) ⇀ ν weakly in M(RN)

and define

σ∞ := lim
R→∞

lim sup
n→∞

∫
|x|>R

|∇wn|2dx, ν∞ := lim
R→∞

lim sup
n→∞

∫
|x|>R

H(wn)dx.

(3.1)
Then

lim sup
n→∞

∫
RN
|∇wn|2dx = σ + σ∞ +

∫
RN
|∇w|2dx, (3.2)

lim sup
n→∞

∫
RN
H(wn)dx = ν + ν∞ +

∫
RN
H(w)dx, (3.3)

ν 2/2∗ ≤ S−1
H σ and ν2/2∗

∞ ≤ S−1
H σ∞. (3.4)

Moreover, if w = 0 and ν 2/2∗ = S−1
H σ , then there exists x0, x1 ∈ RN such

that ν = δx0 and σ = δx1.

Proof. We first recall that, in view of the definition of SH , for each nonnegative
function ϕ ∈ C∞0 (RN) we have that

(∫
RN
ϕ2∗(x)H(wn)dx

)2/2∗

=
(∫

RN
H(ϕ(x)wn)dx

)2/2∗

≤ S−1
H ‖ϕ(x)wn‖2.

Moreover, arguing as in [15, Lemma 5], we have that∫
RN
ψ(x)H(wn − w)dx =

∫
RN
ψ(x)H(wn)dx−

∫
RN
ψ(x)H(w)dx+ on(1),

for each ψ ∈ C∞0 (RN). Since H is 2∗-homogeneous, we can use the two above
expressions and argue along the same lines of the proof of [19, Lemma 1.40]
(see also [9, Lemma 2.2]) to conclude that (3.2)-(3.4) hold. If w = 0 and
ν 2/2∗ = S−1

H σ the same argument of [19, step 3 of the proof of Lemma
1.40] implies that the measures ν and σ are concentrated at single points
x0, x1 ∈ RN , respectively. 2

Remark 3.2 For future reference we notice that the last conclusion of the
above result holds even if w 6≡ 0. Indeed, in this case we can define w̃n :=
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wn − w and notice that

w̃n ⇀ w̃ = 0 weakly in D1,2(RN)×D1,2(RN),

w̃n(x)→ 0 for a.e. x ∈ RN ,

|∇(w̃n − w̃)|2 ⇀ σ̃ weakly in M(RN),

H(w̃n − w̃) ⇀ ν̃ weakly in M(RN).

But w̃n − w̃ = wn − w and therefore σ̃ = σ and ν̃ = ν, where σ and ν are as
in Lemma 3.1. Thus, if ν 2/2∗ = S−1

H σ we also have that ν̃ 2/2∗ = S−1
H σ̃

and the result follows from the last part of Lemma 3.1.

Before stating one of the main results of this section we introduce the following
notation. Given r > 0, y ∈ RN and a function z ∈ X, we extend z to the whole
RN by setting z(x) := 0 if x ∈ RN \Ω and define zy,r ∈ H1(RN)×H1(RN) as

zy,r(x) := r(N−2)/2z(rx+ y), x ∈ RN .

Proposition 3.3 Suppose (zn) ⊂ X is such that∫
H(zn) = 1 and lim

n→∞
‖zn‖2 = SH .

Then there exist (rn) ⊂ (0,∞) and (yn) ⊂ RN such that the sequence (zyn,rnn )
strongly converges to z 6= 0 in D1,2(RN)×D1,2(RN). Moreover, as n→∞, we
have that rn → 0 and yn → y ∈ Ω.

Proof. We first extend zn by setting zn(x) := 0 if x ∈ RN \ Ω. For each r > 0
we consider

Fn(r) := sup
y∈RN

∫
Br(y)

H(zn).

Since limr→0 Fn(r) = 0 and limr→∞ Fn(r) = 1, there exist rn > 0 and a
sequence (ykn)k∈N ⊂ RN satisfying

1

2
= Fn(rn) = lim

k→∞

∫
Brn (ykn)

H(zn).

Recalling that lim|y|→∞
∫
Brn (y) H(zn) = 0 we conclude that (ykn) is bounded.

Hence, up to a subsequence, limk→∞ y
k
n = yn ∈ RN and we obtain

1

2
=
∫
Brn (yn)

H(zn).

We shall prove that the sequences (rn) and (yn) above satisfy the statements

14



of the lemma. First notice that

1

2
=
∫
Brn (yn)

H(zn) =
∫
B1(0)

H(zyn,rnn ) = sup
y∈RN

∫
B1(y)

H(zyn,rnn ). (3.5)

If we denote wn := zyn,rnn , a straightforward calculation provides

lim
n→∞

‖wn‖2 = lim
n→∞

‖zn‖2 = SH ,
∫
RN
H(wn) = 1.

Hence, we can apply Lemma 3.1 to obtain w ∈ H1(RN)×H1(RN) satisfying

SH = σ + σ∞ + ‖w‖2, 1 = ν + ν∞ +
∫
RN
H(w), (3.6)

ν 2/2∗ ≤ S−1
H σ and ν2/2∗

∞ ≤ S−1
H σ∞. (3.7)

The second equality above implies that
∫
RN H(w), ν , ν∞ ∈ [0, 1]. If one of

these values belongs to the open interval (0, 1), we can use (3.6), 2/2∗ < 1,
(
∫
RN H(w))2/2∗ ≤ S−1

H ‖w‖2 and (3.7) to get

SH = SH

(
ν + ν∞ +

∫
RN
H(w)

)

< SH

(
ν 2/2∗ + ν2/2∗

∞ +
(∫

RN
H(w)

)2/2∗
)
≤ SH ,

which is a contradiction. Thus
∫
RN H(w), ν , ν∞ ∈ {0, 1}. Actually, it follows

from (3.5) that
∫
|x|>RH(wn) ≤ 1/2 for any R > 1. Thus, we conclude that

ν∞ = 0.

Let us prove that ν = 0. Suppose, by contradiction, that ν = 1. It follows
from the first equality in (3.7) that SH ≤ σ . On the other hand, the first
inequality in (3.6) provides σ ≤ SH . Hence, we conclude that σ = SH .
Since we are supposing that ν = 1 we obtain ν 2/2∗ = S−1

H σ . It follows
from Remark 3.2 that ν = δx0 for some x0 ∈ RN . Thus, from (3.5), we get

1

2
≥ lim

n→∞

∫
B1(x0)

H(wn) =
∫
B1(x0)

dν = ν = 1.

This contradiction proves that ν = 0.

Since ν = ν∞ = 0 we have that
∫
RN H(w) = 1. This and (3.6) provide

lim
n→∞

‖wn‖2 = SH ≥ ‖w‖2 ≥ SH

(∫
RN
H(w)

)2/2∗

= SH .

So, ‖w‖2 = SH and therefore wn → w 6≡ 0 strongly in D1,2(RN) × D1,2(RN)
and wn(x)→ w(x) for a.e. x ∈ RN .
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In order to conclude the proof we notice that

‖wn‖L2(RN )×L2(RN ) =
1

r2
n

‖zn‖L2(Ω)×L2(Ω).

Since (zn) is bounded and w 6≡ 0, we infer from the above equality that, up to
a subsequence, rn → r0 ≥ 0. If |yn| → ∞ we have that, for each fixed x ∈ RN ,
there exists nx ∈ N such that rnx+yn /∈ Ω for n ≥ nx. For such values of n we
have that wn(x) = 0. Taking the limit and recalling that x ∈ R is arbitrary, we
conclude that w ≡ 0, which is absurd. So, along a subsequence, yn → y ∈ RN .

We claim that r0 = 0. Indeed, suppose by contradiction that r0 > 0. Then, as
n becomes large, the set Ωn := (Ω−yn)/rn approaches Ω0 := (Ω−y)/r0 6= RN .
This implies that w has compact support in RN . On the other hand, since w
achieves the infimum in (1.3) and H is homogeneous, we can use the Lagrange
Multiplier Theorem to conclude that w = (u, v) satisfies

−∆u = λHu(u, v), −∆v = λHv(u, v), x ∈ RN ,

for λ = SH/2
∗ > 0. It follows from (H3) and the Maximum Principle that at

least one the functions u, v is positive in RN . But this contradicts suppw ⊂ Ω0.
Hence, we conclude that r0 = 0. Finally, if y 6∈ Ω we obtain rnx + yn 6∈ Ω for
large values of n, and therefore we should have w ≡ 0 again. Thus, y ∈ Ω and
the proof is finished. 2

We finalize this section with the study of the asymptotic behavior of the
minimax level cλ,µ as both the parameters approach zero.

Lemma 3.4 We have that

lim
λ, µ→0+

cλ,µ = c0,0 =
1

N
S
N/2
H .

Proof. We first prove the second equality. It follows from λ = µ = 0 that
Q0,0 ≡ 0. If A, B, wε, gε and tε are as in the proof of Lemma 2.3, we have
that (tεAwε, tεBwε) ∈ N0,0. Thus

c0,0 ≤ I0,0(tεAwε, tεBwε) =
1

N

{
(A2 +B2)

H(A,B)2/2∗
‖wε‖2

}N/2

=
1

N

{
(A2 +B2)

H(A,B)2/2∗
(S +O(ε(N−2)/2))

}N/2
.

Taking the limit as ε→ 0+ and using (2.12), we conclude that c0,0 ≤ 1
N
S
N/2
H .

In order to obtain the reverse inequality we consider (zn) ⊂ X such that
I0,0(zn) → c0,0 and I ′0,0(zn) → 0. The sequence (zn) is bounded and therefore
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I ′0,0(zn)zn = ‖zn‖2 −
∫
H(zn) = on(1). It follows that

lim
n→∞

‖zn‖2 = b = lim
n →∞

∫
H(zn).

Taking the limit in the inequality SH (
∫
H(zn))2/2∗ ≤ ‖zn‖2 we conclude, as in

the proof of Lemma 2.2, that Nc0,0 = b ≥ S
N/2
H . Hence,

c0,0 = lim
n→∞

I0,0(zn) = lim
n→∞

(
1

2
‖zn‖2 − 1

2∗

∫
H(zn)

)
=

1

N
b ≥ 1

N
S
N/2
H ,

and therefore c0,0 = 1
N
S
N/2
H .

We proceed now with the calculation of limλ, µ→0+ cλ,µ. Let (λn), (µn) ⊂ R+

be such that λn, µn → 0+. Since µn defined in (1.1) is positive, we have that
Qλn,µn(z) ≥ 0 whenever z is nonnegative. Thus, for this kind of function, we
have that Iλn,µn(z) ≤ I0,0(z). It follows that

cλn,µn = inf
z 6=(0,0)

max
t≥0

Iλn,µn(tz)

≤ inf
z 6=(0,0), z≥0

max
t≥0

Iλn,µn(tz)

≤ inf
z 6=(0,0), z≥0

max
t≥0

I0,0(tz) = c0,0,

where we have used, in the last equality, that the infimum c0,0 is attained at
a nonnegative solution. The above inequality implies that

lim sup
n→∞

cλn,µn ≤ c0,0. (3.8)

On the other hand, it follows from Theorem 2.4 that there exists (zn) =
(un, vn) ⊂ X such that

Iλn,µn(zn) = cλn,µn , I ′λn,µn(zn) = 0.

Since cλn,µn is bounded, the same argument performed in the proof of Lemma
2.2 implies that (zn) is bounded inX. Since zn ≥ 0 we obtain 0 ≤

∫
Qλn,µn(zn) ≤

λn
∫

(|un|q + |vn|q), from which it follows that

lim
n→∞

∫
Qλn,µn(zn) = 0. (3.9)
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Let tn > 0 be such that tnzn ∈ N0,0. Since zn ∈ Nλn,µn , we have that

c0,0 ≤ I0,0(tnzn) = Iλn,µn(tnzn) + tqn

∫
Qλn,µn(zn)

≤ Iλn,µn(zn) + tqn

∫
Qλn,µn(zn)

= cλn,µn + tqn

∫
Qλn,µn(zn).

If (tn) is bounded, we can use the above estimate and (3.9) to get

c0,0 ≤ lim inf
n→∞

cλn,µn .

This and (3.8) proves the lemma.

It remains to check that (tn) is bounded. A straightforward calculation shows
that

tn =

(
‖zn‖2∫
H(zn)

)1/(2∗−2)

. (3.10)

Since zn ∈ Nλn,µn we obtain

‖zn‖2 = q
∫
Qλn,µn(zn) +

∫
H(zn) ≤ on(1) + S

−2∗/2
H ‖zn‖2∗ .

Hence ‖zn‖2 ≥ c1 > 0, and therefore it follows from the above expression that∫
H(zn) ≥ c2 > 0. This, the boundedness of (zn) and (3.10) imply that (tn) is

bounded. The lemma is proved. 2

4 Proof of the main theorems

From now on we fix r > 0 such that the sets

Ω+
r := {x ∈ RN : dist(x,Ω) < r}, Ω−r := {x ∈ Ω : dist(x, ∂Ω) > r}

are homotopic equivalents to Ω. We define the functional

Jλ,µ(z) :=
1

2
‖z‖2 −

∫
Qλ,µ(z)− 1

2∗

∫
H(z), z ∈ Xr,rad,

where Xr,rad := {(u, v) : u, v ∈ H1
0 (Br(0)) and u, v are radial functions}.

We denote by Mλ,µ its associated Nehari manifold and set

mλ,µ := inf
z∈Mλ,µ

Jλ,µ(z).
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According to [15, Lemma 1] the infimum SH can be attained by functions
belonging to D1,2

rad(RN)×D1,2
rad(RN). So, arguing as in the proof of Lemma 3.4

and Theorems 2.4 and 2.5 , we obtain the following result.

Lemma 4.1 Suppose H satisfies (H0) − (H4) and Q satisfies (Q0) − (Q1).
Then the infimum mλ,µ is attained by a positive radial function zλ,µ ∈ Xr,rad

whenever 2 < q < 2∗ and λ, µ > 0, or q = 2 and λ, µ ∈ (0, θ1,rad/2), where
θ1,rad > 0 is the first eigenvalue of the operator (−∆, H1

0,rad(Br(0))). Moreover

mλ,µ <
1

N
S
N/2
H and lim

λ, µ→0+
mλ,µ =

1

N
S
N/2
H .

The same result hold if Q satisfies (̂Q1) instead of (Q1) and λ, µ > 0.

We introduce the barycenter map βλ,µ : Nλ,µ → RN as follows

βλ,µ(z) :=
1

S
N/2
H

∫
H(z)x dx.

This maps has the following property.

Lemma 4.2 If Q satisfies (Q0) and (Q1) then there exists λ∗ > 0 such that
βλ,µ(z) ∈ Ω+

r/2 whenever z ∈ Nλ,µ, λ, µ ∈ (0, λ∗) and Iλ,µ(z) ≤ mλ,µ. The

same result holds if we replace (Q1) by (Q̂1) and the parameter λ∗ defined in
(1.4) also belongs to (0, λ∗).

Proof. We first assume that Q satisfies (Q0) and (Q1). Arguing by contradic-
tion, we suppose that there exist (λn), (µn) ⊂ R+ and (wn) ⊂ Nλn,µn such
that λn, µn → 0+ as n→∞, Iλn,µn(wn) ≤ mλn,µn but βλm,µn(wn) 6∈ Ω+

r/2.

Standard calculations show that (wn) = (un, vn) is bounded in X. Moreover

0 = I ′λn,µn(wn)wn = ‖wn‖2 − q
∫
Qλn,µn(wn)−

∫
H(wn).

Since λn → 0, we can use the boundedness of (wn) to get

0 ≤
∫
Qλn,µn(wn) ≤ λn

∫
(|un|q + |vn|q)→ 0,

from which it follows that limn→∞ ‖wn‖2 = limn→∞
∫
H(wn) = b ≥ 0. Notice

that

cλn,µn ≤ Iλn,µn(wn) =
1

2
‖wn‖2 −

∫
Qλn,µn(wn)− 1

2∗

∫
H(wn) ≤ mλn,µn .

Recalling that cλn,µn and mλn,µn both converge to 1
N
S
N/2
H , we can use the above
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expression and
∫
Qλn,µn(wn)→ 0 again to conclude that b = S

N/2
H , that is,

lim
n→∞

‖wn‖2 = S
N/2
H = lim

n→∞

∫
H(wn). (4.1)

Let tn := (
∫
H(wn))−1/2∗ > 0 and notice that zn := tnwn satisfies the hypothe-

ses of Proposition 3.3. Thus, for some sequences (rn) ⊂ (0,∞) and (yn) ⊂ RN

satisfying rn → 0, yn → y ∈ Ω we have that zyn,rnn → z in D1,2(RN)×D1,2(RN).

The definition of zn, (4.1), the strong convergence of (zyn,rnn ) and the Lebesgue’s
Theorem provide

βλn,µn(wn) =
t−2∗
n

S
N/2
H

∫
H(zn)x dx = (1 + on(1))

∫
H(zn)x dx

= (1 + on(1))
∫
H(zyn,rnn )(rnx+ yn) dx

= (1 + on(1))
(∫

H(z)y dx+ on(1)
)
.

Since y ∈ Ω and
∫
H(z) = 1, the above expression implies that

lim
n→∞

dist(βλn,µn(wn),Ω) = 0,

which contradicts βλn,µn(wn) 6∈ Ω+
r/2.

We now suppose that Q satisfies (Q̂1). Arguing by contradiction again we
suppose that there exist (λn), (µn), (λ̂n) ⊂ R+ and (wn) ⊂ Nλn,µn such

that λn, µn, λ̂n → 0+ as n → ∞, Iλn,µn(wn) ≤ mλn,µn but βλm,µn(wn) 6∈
Ω+
r/2. The same argument of the first case holds provide we can prove that∫
Qλn,µn(wn) → 0. Notice that, in this new setting, we do not know that the

extension of Q is nonnegative. However, we can use (2.6) to get∣∣∣∣∫ Qλn,µn(wn)
∣∣∣∣ ≤ ∫ |Qλn,µn(wn)| ≤ (λn + λ̂n)

∫
(|un|q + |vn|q)→ 0,

and the lemma is proved. 2

According to Lemma 4.1, for each λ, µ > 0 small the infimum mλ,µ is attained
by a nonnegative radial function zλ,µ. We consider

I
mλ,µ
λ,µ := {z ∈ X : Iλ,µ(z) ≤ mλ,µ}

and define the function γλ,µ : Ω−r → I
mλ,µ
λ,µ by setting, for each y ∈ Ω−r ,

γλ,µ(y)(x) :=


zλ,µ(x− y) if x ∈ Br(y),

0 otherwise.
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A change of variables and straightforward calculations show that the map γλ,µ
is well defined. Since zλ,µ is radial, we have that

∫
Br(0)H(zλ,µ)x dx = 0. Hence,

for each y ∈ Ω−r , we obtain

βλ,µ(γλ,µ(y)) = α(λ, µ)y,

where

α(λ, µ) :=
1

S
N/2
H

∫
H(zλ,µ).

If we define Fλ,µ : [0, 1]× (Nλ,µ ∩ I
mλ,µ
λ,µ )→ RN by

Fλ,µ(t, z) :=

(
t+

1− t
α(λ, µ)

)
βλ,µ(z),

we have the following.

Lemma 4.3 If Q satisfies (Q0) and (Q1) then there exists λ∗∗ > 0 such that,

Fλ,µ
(
[0, 1]×

(
Nλ,µ ∩ I

mλ,µ
λ,µ

))
⊂ Ω+

r ,

whenever λ, µ ∈ (0, λ∗∗). The same result holds if we replace (Q1) by (Q̂1) and
suppose that λ̂ also belongs to (0, λ∗∗).

Proof. Arguing by contradiction, we suppose that there exist sequences (λn), (µn) ⊂
R+ and (tn, zn) ∈ [0, 1] × (Nλn,µn ∩ I

mλn,µn
λn,µn

) such that λn, µn → 0+, as
n → ∞, and Fλn,µn(tn, zn) 6∈ Ω+

r . Up to a subsequence tn → t0 ∈ [0, 1].
Moreover, the compactness of Ω and Lemma 4.2 imply that, up to a subse-
quence, βλn,µn(zn) → y ∈ Ω+

r/2 ⊂ Ω+
r . We claim that α(λn, µn) → 1. If this is

true, we can use the definition of F to conclude that Fλn,µn(tn, zn)→ y ∈ Ω+
r ,

which is a contradiction.

It remains to check the above claim. It follows from Lemma 4.1 that

mλn,µn =
1

2
‖zλn,µn‖2 −

∫
Br(0)

Qλn,µn(zλn,µn)− 1

2∗

∫
Br(0)

H(zλn,µn) <
1

N
S
N/2
H .

As before
∫
Br(0)Qλn,µn(zλn,µn)→ 0. This, J ′λn,µn(zλn,µn) = 0, the above expres-

sion and the same arguments used in the proof of Lemma 4.1 imply that

lim
n→∞

∫
H(zλn,µn) = S

N/2
H .

The equality above and the definition of α(λ, µ) imply that α(λn, µn) → 1.
The lemma is proved. 2

Corollary 4.4 Let Λ := min{λ∗, λ∗∗} > 0, with λ∗ and λ∗∗ given by Lemmas
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4.2 and 4.3, respectively. If Q satisfies (Q0) and (Q1) with λ, µ ∈ (0,Λ) then

cat
I
mλ,µ
λ,µ

(I
mλ,µ
λ,µ ) ≥ catΩ(Ω).

The same result holds if we replace (Q1) by (Q̂1) and suppose that λ̂ also
belongs to (0,Λ).

Proof. It suffices to use Lemmas 4.2 and 4.3 and argue as in [1, Lemma 4.3].
We omit the details. 2

We are now ready to prove our main results.

Proof of Theorems 1.1 and 1.2. Let Λ > 0 be given by Corollary 4.4 and
suppose that Q satisfies (Q1) with λ, µ ∈ (0,Λ), or it satisfies (Q̂1) with
λ, µ, λ̂ ∈ (0,Λ). Using Lemma 2.2 and arguing as in [1, Lemma 4.2] we can
prove that the functional Iλ,µ restricted to Nλ,µ satisfies the (PS)c condition

for all c < 1
N
S
N/2
H . Since mλ,µ <

1
N
S
N/2
H , standard Ljusternik-Schnirelmann

theory provides cat
I
mλ,µ
λ,µ

(I
mλ,µ
λ,µ ) critical points of the constrained functional.

If z ∈ Nλ,µ is one of these critical points, the same argument of [1, Lemma
4.1] shows that z is also a critical point of the unconstrained functional, and
therefore a nontrivial solution of (P ). As before, the obtained solutions are
nonnegative in Ω. The results follow from Corollary 4.4. 2

Remark 4.5 Theorems 1.1 and 1.2 remain valid if we suppose that N = 3
and 4 < q < 6. Indeed, it suffices to argue as in the case N ≥ 4 and recall
that, by Remark 2.6, the existence results of Theorems 2.4 and 2.5 hold in this
case.

5 Some further remarks

We start this last section presenting some functions which satisfy our hypothe-
ses. We have the following example from [15]. Let 2 ≤ q < 2∗ and

Pq(s, t) := a1s
q + a2t

q +
k∑
i=1

bis
αitβi , s, t ≥ 0,

where a1, a2, bi ∈ R, αi+βi = q, and αi, βi > 1 if q > 2 and αi = βi = 1 other-
wise. The following functions and its possible combinations, with appropriated
choices of the coefficients a1, a2, bi, satisfy our hypotheses on Q

Q(s, t) = Pq(s, t), Q(s, t) = r

√
Prq(s, t) and Q(s, t) =

Pq+l(s, t)

Pl(s, t)
,
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with l > 0. Hence, we see that our subcritical term is more general than those
of [9,11,12].

The form of H is more restricted due to (H4). This technical condition has
already appeared in [15] and it is important to guarantee that the constant
SH defined in (1.3) does not depend on Ω. As quoted in [15], the concavity
condition (H4) is satisfied if H ∈ C2(R2

+,R) is such that Hst(s, t) ≥ 0 for each
(s, t) ∈ R2

+.

Although we have more restrictions on the shape of H, it can have the poly-
nomial form

H(s, t) = P2∗(s, t).

Thus, differently from [9,11,12], we can deal here with functions H which
possesses coupled and no coupled terms. For example, the function

H(s, t) = a1s
2∗ + a2t

2∗ + a3s
αtβ,

with ai ∈ R, α, β > 1, α + β = 2∗ satisfies the hypotheses (H0) − (H4) for
appropriated choices of the coefficients ai. We also mention that the positivity
condition in (H2) can holds even if some of the coefficients ai are negative. As
a simple example, suppose that H is as above with a1, a2 ≥ 0 and a3 < 0.
Since sαvβ ≤ s2∗ + t2

∗
, the condition (H2) holds for a3 > max{−a1,−a2}.

Another interesting remark is that we can obtain versions of our theorems by
interchanging conditions like (Q1) and (Q̂1) for both the functions Q and H.
More specifically, let us consider the following assumption

(Ĥ1) Hs(0, 1) > 0 and Ht(1, 0) > 0.

A simple inspection of our proofs shows that Theorem 1.1 is valid if we suppose
(Ĥ1) and (Q1). The same is true for Theorem 1.2. This last theorem is also
true if we suppose (Ĥ1) and (Q̂1). The difference among these various settings
relies in the form of the possible coupled terms.

A simple inspection of our proofs show that, instead of just one subcritical
term, we can consider in (P ) a subcritical nonlinear term of the form

Q̃(s, t) =
k∑
i=1

Qi(s, t),

with each function Qi being qi-homogeneous, 2 ≤ qi < 2∗, and satisfying the
same kind of hypotheses of Q. In this case, for each i = 1, . . . , k, we define
the numbers µi, λi as in (1.1)-(1.2), and the results hold if maxi=1,...,k{µi, λi}
is small enough.

With some additional conditions we can assure that the solutions obtained in
this paper are positive. Indeed, if we suppose that
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(Q2) Qs(s, t) ≥ 0, Qt(s, t) ≥ 0 for each (s, t) ∈ R2
+,

we can apply the Maximum Principle in each equation of (P ). Thus, if (u, v)
is a nonnegative solution, then u ≡ 0 or u > 0 in Ω, the same holding for
v. We need only to discard solutions of the type (u, 0) or (0, v). This can be
done if we guarantee some kind of strongly coupling for the system. In what
follows, we present some situations where this can be done.

If we are under the conditions of Theorem 1.1 we assume a stronger form of
(Q1) and (H1), namely that ∇Q(1, 0) = ∇Q(0, 1) = ∇H(1, 0) = ∇H(0, 1) =
(0, 0). In this way, if (u, 0) is a solution then

0 = I ′λ,µ(u, 0)(u, 0) = −‖u‖2 −
∫ (

Qu(u, 0)u+
1

2∗
Hu(u, 0)u

)
= −‖u‖2.

and therefore u ≡ 0. Analogously, if (0, v) is a solution then v ≡ 0. In the
setting of Theorem 1.2 and considering the solution (u, 0) we obtain, from the
second equation, that

0 = Qv(u, 0) +Hv(u, 0) = uq−1Qv(1, 0).

Since from (Q̂1) we have that Qv(1, 0) > 0, it follows that u ≡ 0. The argument
for (0, v) is analogous.
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