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We are concerned with the existence of rapidly decaying solutions
for the equation

−div
(

K (x)∇u
) = λK (x)|x|β |u|q−2u + K (x)|u|2∗−2u, x ∈ R

N ,

where N � 3, 2 � q < 2∗ := 2N/(N − 2), λ > 0 is a parameter,
K (x) := exp(|x|α/4), α � 2 and the number β is given by β :=
(α − 2)

(2∗−q)
(2∗−2)

. We obtain a positive solution if 2 < q < 2∗ and a
sign changing solution if q = 2. The existence results depend on
the values of the parameter λ. In the proofs we apply variational
methods.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

We consider the nonlinear equation

−div
(

K (x)∇u
) = λK (x)|x|β |u|q−2u + K (x)|u|2∗−2u, x ∈ R

N , (P )

where N � 3, 2 � q < 2∗ := 2N/(N − 2), λ > 0 is a parameter, K (x) := exp(|x|α/4), α � 2 and the
number β is given by
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β := (α − 2)
(2∗ − q)

(2∗ − 2)
.

As pointed out in [7], one of the motivations for studying the above equation relies on the fact that,
for α = q = 2 and λ = (N − 2)/(N + 2), it appears when one tries to find self-similar solutions

v(x, t) = t
2−N
N+2 u

(
xt

−1
2

)
to the parabolic equation

vt − �v = |v| 4
N−2 v, R

N × (0,+∞).

The radially symmetric case with α = q = 2 was considered in [1]. As far as we know, the first
variational approach was done by Escobedo and Kavian in [6]. In that article the authors have con-
sidered α = q = 2 and N � 3, and have proved that the existence of positive solutions is related with
the interaction of the parameter λ with the first positive eigenvalue of the associated linear problem

−div
(

K (x)∇u
) = λK (x)|x|α−2u, x ∈ R

N . (LP)

Among other results, they have noticed a dichotomy in the existence range of λ for N = 3, relative to
space dimensions N � 4. More precisely, for N � 4, there is a solution if and only if λ ∈ (N/4, N/2). If
N = 3, there is a positive solution for λ ∈ (1,3/2), and there is no solution for λ � 3/4 and λ � 3/2.

Later on, many authors considered the case α = q = 2 and addressed questions of existence,
symmetry and asymptotic behavior of solutions of (P ), of the associated parabolic equation and its
variants (see [8,10,12,9] and references therein). We also quote the paper of Ohya [11], where some
results for a p-Laplacian type operator can be found.

Recently, Catrina, Furtado and Montenegro [4] have obtained some results for α � 2 and q = 2.
After calculating the first eigenvalue of (LP) as λ1 = α(N − 2 + α)/4, they have proved that, if 2 �
α � N − 2, then the problem (P ) has a positive solution if, and only if, λ ∈ (λ1/2, λ1). If α > N − 2
and λ ∈ (α2/4, λ1) then the problem (P ) has a positive solution. Moreover, also in this last case, the
problem has no solution if λ � λ1/2 or λ � λ1. So, if α > 2, the critical dimension of the problem
depends on the value of α.

Due to the presence of the critical Sobolev exponent in (P ), it is natural to make a parallel with
the Brezis and Nirenberg problem

−�u = λ|u|q−2u + |u|2∗−2u, u ∈ H1
0(Ω), (BN)

where Ω ⊂ R
N is a bounded domain and N � 3. The aforementioned results of [6,4] can be viewed as

versions of those ones presented in [2] for the above problem when q = 2. The nonexistence results
for λ � λ1 are a consequence of a Pohozaev type identity. In the case that 2 < q < 2∗ , this identity
does not give any information. So, we can expect existence of solution for any λ > 0. A result in this
direction to the problem (BN) was presented in [2, Section 2]. In our first result we give an answer
for this question when we deal with the problem (P ). More specifically, we shall prove the following
result.

Theorem 1.1. The problem (P ) has a positive solution in each of the following cases

(i) N � α + 2, 2 < q < 2∗ , λ > 0;
(ii) 2 < N < α + 2, 2∗ − 4

α < q < 2∗ , λ > 0;

(iii) 2 < N < α + 2, 2 < q � 2∗ − 4
α , λ > 0 is sufficiently large.
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The restriction on λ > 0 in the last item above is of technical nature. However, we would like to
emphasize that, for α = 2, this item becomes N = 3, 2 < q � 4 and λ large. A similar condition have
already appeared in the paper of Brezis and Nirenberg (cf. [2, Example 2.4]) for the problem (BN). We
do not know if the statement (iii) holds for arbitrary values of λ.

In order to present our second result let us recall that, according to [4, Theorem 1.1], the problem
(P ) has no positive solution if q = 2 and λ � λ1. However, we can ask for the existence of sign
changing solutions. Actually, Capozzi, Fortunato and Palmieri have proved in [3, Theorem 0.1] that
(BN) has a sign changing solution whenever q = 2, N � 4 and λ is greater than or equal to the first
eigenvalue of (−�, H1

0(Ω)) (see also [5] for a previous weaker result). In our second theorem we
present a version of this last result to the problem (P ).

Theorem 1.2. If q = 2 and N � α + 2, then the problem (P ) has a sign changing solution for any λ � λ1 .

Our problem is variational in nature. Indeed, for any α � 2, let us denote by H(α) the Hilbert
space obtained as the completion of C∞

c (RN ) with respect to the norm

‖u‖K :=
( ∫

RN

K (x)|∇u|2 dx

) 1
2

which is induced by the inner product

(u, v)K :=
∫

RN

K (x)(∇u · ∇v)dx.

We shall look for solution belonging in H(α) and therefore our solution has a fast decay rate at
infinity.

Since it might happen q > 2, the minimization argument employed in [6,4] does not work here.
So, we shall use a different approach by considering the functional

I(u) :=
∫

RN

K (x)

(
1

2
|∇u|2 − λ

q
|x|β |u|q − 1

2∗ |u|2∗
)

dx

which is well defined, belongs to C1(H(α),R) and whose critical points are precisely the weak
solutions of Eq. (P ). By using the fast decay rate of the elements of H(α) we are able to obtain
compactness embeddings of this space in some weighted Lebesgue spaces. Hence, we can argue as in
[2] to prove a local compactness result for the functional I .

In the proof of Theorem 1.1 we shall apply the Mountain Pass Theorem. The main difficult is
to localize correctly the minimax level in the range where we have compactness. We achieve this
objective by adapting some estimates performed in [6,4]. However, since we have many degrees of
homogeneity in our equation, the calculations are more involved and the estimates will be done in
several distinct cases depending on the relation between α and the dimension N . For Theorem 1.2 we
use the Linking Theorem and an adaptation of the ideas contained in [3]. As in the first theorem, the
calculations are more difficult. Moreover, since the domain is unbounded, some estimates presented
in [3] do not apply here. We are able to overcome the difficulties by making fine estimates and
calculating the precise decay rate of the solutions of (LP).

The paper is organized as follows. In the next section we present the variational setting of problem
(P ) and we prove the local compactness result for I . Section 3 is devoted to the proof of Theorem 1.1.
The existence of sign changing solution is proved in the final Section 4.
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2. The variational setting

In this section we present the variational framework to deal with problem (P ). Throughout the
paper we write

∫
u instead of

∫
RN u(x)dx.

For each q ∈ [2,2∗] we denote by Lq(α) the following space

Lq(α) :=
{

u measurable in R
N : |u|q,K :=

(∫
K (x)|x|β |u|q

)1/q

< ∞
}
.

Let S be the best constant of the embedding D1,2(RN ) ↪→ L2∗
(RN ). It is proved in [4, Proposition 2.1]

that ∫
K (x)|x|α−2|u|2 � 8

α(N − 2 + α)

∫
K (x)|∇u|2 (2.1)

and

∫
K (x)|u|2∗ � S−2∗/2

(∫
K (x)|∇u|2

)2∗/2

. (2.2)

It follows that the space H1(α) is continuously embedded in the spaces L2(α) and L2∗
(α). Moreover,

the authors also proved that the first embedding is compact (see [4, Proposition 2.2]). By applying
interpolation we can obtain similar results for 2 < q < 2∗ , namely

Proposition 2.1. Let α � 2 be fixed. Then the embedding H(α) ↪→ Lq(α) is continuous for all q ∈ [2,2∗] and
it is compact for all q ∈ [2,2∗).

Proof. Let q ∈ (2,2∗) be fixed and τ = 2(2∗ −q)/q(2∗ − 2) ∈ (0,1). Hölder’s inequality with exponents
p = (2∗ − 2)/(2∗ − q) and p′ = (2∗ − 2)/(q − 2) provides∫

K (x)|x|β |u|q =
∫

K (x)|x|(α−2)(2∗−q)/(2∗−2)|u|q

=
∫

K (x)1/p|x|(α−2)(2∗−q)/(2∗−2)|u|qτ K (x)1/p′ |u|(1−τ )q

�
(∫

K (x)|x|α−2|u|2
)1/p(∫

K (x)|u|2∗
)1/p′

� Cq

(∫
K (x)|∇u|2

)1/p+2∗/(2p′)
= Cq

(∫
K (x)|∇u|2

)q/2

,

where Cq = 81/p(α(N − 2 + α))−1/p S−2∗/(2p′) and we have used (2.1), (2.2) and the definition of p.
From the above inequality we obtain the first statement of the lemma. In order to prove the second
one we take q ∈ (2,2∗), σ ∈ (0,1) such that 1/q = σ/2 + (1 − σ)/2∗ and argue as above to obtain

|u|q,K � |u|σ2,K |u|1−σ
2∗,K , for all u ∈ L2(α) ∩ L2∗

(α).

Since the embedding H1(α) ↪→ L2(α) is compact, it follows from the above inequality and (2.2) that
H1(α) is compactly embedded in Lq(α). This finishes the proof. �
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We consider in the sequel the linear problem

−div
(

K (x)∇u
) = λK (x)|x|α−2u, in R

N . (LP)

If we denote by (x, y) := ∑N
i=1 xi yi the scalar product of x, y ∈ R

N , we can easily check that (LP) is
equivalent to

−�u − α

4
(x,∇u)|x|α−2 = λu|x|α−2, in R

N . (2.3)

The compactness of the embedding H1(α) ↪→ L2(α) and standard spectral theory for compact opera-
tors provide a sequence of positive eigenvalues (λn)n∈N such that limn→∞ λn = +∞.

Lemma 2.2. If u ∈ H1(α) satisfies (LP), then u ∈ C2(RN ) and there exists C > 0 such that

∣∣u(x)
∣∣ � Ce− 1

8 |x|α , for each x ∈ R
N .

Proof. Let w := exp(|x|α/8)u = K (x)1/2u. Since u is a solution of (LP) we can use the Brezis–Kato
theorem and a standard boot-strap argument to conclude that u ∈ C2(RN ). Hence, w is also regular
and we can easily compute

�w = K (x)1/2
(

α2

64
|x|2α−2u + α

4
|x|α−2(x,∇u) + α

8
N|x|α−2u

+ α

8
(α − 2)|x|α−2u + �u

)
.

Recalling that u satisfies (2.3) and λ1 = α
4 (N + α − 2) we obtain

�w =
(

α2

64
|x|α − λ + λ1

2

)
|x|α−2 w. (2.4)

Since u ∈ H(α) we have that w ∈ L2(RN ). Moreover,∫
|∇w|2 � c1

∫
K (x)|x|2α−2u2 + c1

∫
K (x)|∇u|2. (2.5)

By setting θ(x) := 1
4 |x|α , we can proceed as in [4, Proposition 2.1] to get

∫
K (x)|∇u|2 � 1

2

∫
K (x)

(
�θ(x) + 1

2

∣∣∇θ(x)
∣∣2

)
u2 � α2

64

∫
K (x)|x|2α−2u2.

This, (2.5) and u ∈ H(α) imply that
∫ |∇w|2 is finite, and therefore we conclude that w ∈ H1(RN ).

We now choose R > 0 such that

α2

64
|x|α − λ + λ1

2
> 0, for each |x| � R.

Let M = M(R) := sup{w(x): x ∈ B R(0)} and suppose that M > 0. If we take ϕ = (w − M)+ as a test
function in the weak formulation of (2.4) we get
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∫
B R (0)c

|∇ϕ|2 = −
∫

B R (0)c

(
α2

64
|x|α − λ + λ1

2

)
|x|α−2 wϕ � 0,

from which it follows that ϕ ≡ 0, or equivalently, w(x) � M in R
N . If M � 0 for any R > 0 then w � 0,

and therefore we also obtain an upper bound to w .
Since −w also satisfies (2.4) we can proceed as above to obtain an upper bound for −w . Thus

∣∣w(x)
∣∣ � C := sup

x∈B R (0)

∣∣w(x)
∣∣,

for some large ball B R(0). The result follows from the definition of w . �
Remark 2.3. We can employ the same argument above to conclude that any solution of (P ) is of class

C2(RN ) and decay as e− 1
8 |x|α at infinity. More specifically, if u solves (P ), then u and its gradient ∇u

have this decay property (see [6] for details).

Since problem (P ) has a variational structure we shall consider the functional I : H(α) → R given
by

I(u) := 1

2

∫
K (x)|∇u|2 − λ

q

∫
K (x)|x|β |u|q − 1

2∗

∫
K (x)|u|2∗

.

Standard calculations and Proposition 2.1 show that I ∈ C1(H(α),R) and the derivative of I at the
point u is given by

I ′(u)v =
∫

K (x)∇u · ∇v − λ

∫
K (x)|x|β |u|q−2uv −

∫
K (x)|u|2∗−2uv,

for any v ∈ H(α). Hence, the critical points of I are precisely the weak solutions of Eq. (P ).

Lemma 2.4. Suppose that (un) ⊂ H(α) satisfies

lim
n→∞ I(un) = d <

1

N
S N/2 and lim

n→∞ I ′(un) = 0. (2.6)

Then (un) is bounded and, along a subsequence, (un) weakly converges to a nontrivial solution of the prob-
lem (P ).

Proof. In view of (2.6) we have that

d + o(1) + o(1)‖un‖K � I(un) − 1

q
I ′(un)un

�
(

1

2
− 1

q

)
‖un‖2

K + c1

(
1

q
− 1

2∗

)
‖un‖2∗

K ,

where o(1) denotes a quantity approaching zero as n → ∞. Hence (un) is bounded and, up to a sub-
sequence, we have that un ⇀ u weakly in H(α). Since K (x)|x|β ∈ L∞

loc(R
N ), we can use the Lebesgue

Theorem and standard arguments to conclude that I ′(u) = 0.
In order to prove that u �= 0 we suppose, by contradiction, that u = 0. Since the embedding

H1(α) ↪→ Lq(α) is compact we have that
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lim
n→∞

∫
K (x)|x|(α−2)(2∗−q)/(2∗−2)|un|q = 0. (2.7)

So, recalling that I(un) → d, we obtain

1

2

∫
K (x)|∇un|2 − 1

2∗

∫
K (x)|un|2∗ = d + o(1). (2.8)

Moreover, since (un) is bounded and I ′(un) → 0, we have that I ′(un)un → 0. This and (2.7) imply that∫
K (x)|∇un|2 −

∫
K (x)|un|2∗ = o(1).

If l � 0 is such that
∫

K (x)|∇un|2 → l, it follows from the above equation that
∫

K (x)|un|2∗ → l. Hence,
we infer from (2.8) that

d =
(

1

2
− 1

2∗

)
l = l

N
. (2.9)

On the other hand, the inequality (2.2) implies that

S

(∫
K (x)|un|2∗

)2/2∗

�
∫

K (x)|∇un|2.

Letting n → ∞, we obtain Sl2/2∗ � l. By combining this inequality with (2.9) we conclude that d �
1
N S N/2, which is a contradiction with the hypothesis. So, u �= 0 and the lemma is proved. �
3. Positive solution for 2 < q < 2∗

In this section we use the classical Mountain Pass Theorem to obtain a positive solution for (P )

when 2 < q < 2∗ . We start with an easy consequence of the embedding result of the previous section.

Lemma 3.1. There exists ρ,σ > 0 such that I|∂ Bρ (0) � σ . Moreover, there exists e ∈ H1(α) such that
‖e‖K � ρ and I(e) < 0.

Proof. By using Proposition 2.1 we get

I(u) = 1

2
‖u‖2

K − λ

q
|u|qq,K − 1

2∗ |u|2∗
2∗,K

� ‖u‖2
K

(
1

2
− c1‖u‖q−2

K − c2‖u‖2∗−2
K

)
� σ > 0,

for any u ∈ H(α) such that ‖u‖K = ρ , with ρ > 0 sufficiently small. Moreover, for any u ∈ H1(α) \ {0}
there holds limt→∞ I(tu) = −∞. Thus, it suffices to set e := tu, for t > 0 large enough, to obtain
‖e‖K � ρ and I(e) < 0. �

We now define

c := inf
γ ∈Γ

max
t∈[0,1] I

(
γ (t)

)
,
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where

Γ := {
γ ∈ C

([0,1], H(α)
)
: γ (0) = 0 and γ (1) = e

}
.

It follows from the Mountain Pass Theorem that there exits a Palais–Smale sequence for I at level c.
In view of Lemma 2.4 we can obtain a nontrivial solution of (P ) provided

c <
1

N
S N/2.

We devote the rest of this section to show that, under the hypothesis of Theorem 1.1, the above
inequality is satisfied.

We first notice that, arguing as in [13, Lemma 4.1], we can obtain the following characterization
for the minimax level

c = inf
u∈H(α)\{0} max

t�0
I(tu). (3.1)

Hence, it suffices to prove the following.

Proposition 3.2. Under the hypothesis of Theorem 1.1 there exists v ∈ H1(α) such that

sup
t�0

I(tv) <
1

N
S N/2.

Proof. We adapt the arguments and calculations performed in [4] (see also [2]). Let ϕ ∈ C∞(RN , [0,1])
be such that ϕ ≡ 1 on B1(0) and ϕ ≡ 0 outside B2(0). For any ε > 0, let us consider

uε := K (x)−1/2ϕ(x)

(
1

ε + |x|2
)(N−2)/2

and consider

vε := uε

|uε|2∗,K
.

The function h(t) := I(tvε), t � 0, has a unique maximum point tε > 0. By using h′(tε) = 0 and
λ > 0, we obtain

‖vε‖2
K = t2∗−2

ε + λtq−2
ε |vε|qq,K � t2∗−2

ε ,

or equivalently,

t̂ := ‖vε‖2/(2∗−2)
K � tε.

Since the function g(t) := (1/2)t2t̂2∗−2 − (1/2∗)t2∗
is increasing on [0, t̂] and |vε|2∗,K = 1 we get

I(tε vε) = g(tε) − tq
ε

q
λ|vε|qq,K

� g(t̂) − tq
ε
λ|vε|qq,K = 1 (‖vε‖2

K

)N/2 − tq
ε
λ|vε|qq,K . (3.2)
q N q
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In what follows we consider several cases depending on the values of N and α.

Case 1. N > α + 2.
In this case, according to [4], we have that

‖vε‖2
K =

⎧⎨⎩ S + O (εα/2) + O (εα) + O (εN/2−1), if N > 2α + 2,

S + O (εα/2) + O (εα| logε|) + O (εN/2−1), if N = 2α + 2,

S + O (εα/2) + O (εN/2−1), if α + 2 < N < 2α + 2,

where f (ε) = O (εδ) means that lim supε→0+ f (ε)/εδ is finite. Since N > α + 2 we have that α/2 <

N/2 − 1. Moreover, recalling that limε→0+ εα/2| logε| = 0, we infer from the above estimates that

‖vε‖2
K = S + O

(
εα/2). (3.3)

We claim that tq
ε � qC0 > 0 for some C0 > 0 and any ε > 0 small. Indeed, suppose by contradiction

that for some sequence εn → 0+ we have that tεn → 0. Then it follows from (3.3) that tεn vεn → 0 in
H1(α). Thus, we can use (3.1) and the continuity of I to obtain

0 < c � sup
t>0

I(tvεn ) = I(tεn vεn) → I(0) = 0,

which does not make sense.
We can now use (3.2), (3.3), the above claim and the Mean Value Theorem to get

I(tε vε) � 1

N

(
S + O

(
εα/2))N/2 − tq

ε

q
λ|vε|qq,K

� 1

N
S N/2 + O

(
εα/2) − C0λ|vε|qq,K

= 1

N
S N/2 + εα/2

(
O (1) − λC0

1

εα/2
|vε|qq,K

)
. (3.4)

In order to prove the lemma in this first case it suffices to show that

lim
ε→0+

1

εα/2
|vε|qq,K = +∞.

We are going to estimate |vε|q,K . We first recall that

∫ |x|β
(1 + |x|2)q(N−2)/2

=
( ∫

B1(0)

+
∫

B1(0)c

)

� c1 +
∫

B1(0)c

|x|β−q(N−2) dx < ∞ (3.5)

whenever q(N − 2) − β − N < 0. Let us consider the linear function

r(q) := q(N − 2) − β − N.

Since N − 2 − α = r(2) < r(2∗) it follows that
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∫ |x|β
(1 + |x|2)q(N−2)/2

< ∞ (for N � α + 2). (3.6)

Since q > 2, we have that 0 < c2 < K (x)1−q/2 for each |x| � 2. Hence, recalling that ϕ ≡ 0 on
B2(0)c , we get

|uε|qq,K =
∫

(K (x)1−q/2ϕq)|x|β
(ε + |x|2)q(N−2)/2

� c2

∫
ϕq|x|β

(ε + |x|2)q(N−2)/2
. (3.7)

On the other hand, by using the definition of ϕ again, we obtain∫
ϕq|x|β

(ε + |x|2)q(N−2)/2
=

∫
B2(0)

|x|β
(ε + |x|2)q(N−2)/2

+
∫

B2(0)

(ϕq − 1)|x|β
(ε + |x|2)q(N−2)/2

=
∫

B2(0)

|x|β
(ε + |x|2)q(N−2)/2

+ O (1).

Hence, we can use the change of variable x 
→ x/
√

ε to obtain∫
ϕq|x|β

(ε + |x|2)q(N−2)/2
= εβ/2+N/2−q(N−2)/2

∫
B2/

√
ε(0)

|x|β
(1 + |x|2)q(N−2)/2

dx + O (1).

By (3.6) and the Lebesgue Theorem we have that the integral on the right-hand side above is conver-
gent as ε → 0+ . Thus, we can use (3.7) to deduce that

|uε|qq,K � O
(
εβ/2+N/2−q(N−2)/2) + O (1). (3.8)

According to [4, p. 1165] we also have

|uε|2∗
2∗,K =

∫
K (x)|uε|2∗ = ε−N/2 A0 + O (1) (for N > 2), (3.9)

with

A0 :=
∫

1

(1 + |x|2)N
(for N > 2), (3.10)

from which it follows that

|uε|q2∗,K = O
(
ε−q(N−2)/4) + O (1) (for N > 2).

This and (3.8) imply that

|vε|qq,K = |uε|qq,K

|uε|q2∗,K

� O (εβ/2+N/2−q(N−2)/2) + O (1)

O (ε−q(N−2)/4) + O (1)

= O (εβ/2+N/2−q(N−2)/4) + O (εq(N−2)/4)

q(N−2)/4
(3.11)
O (1) + O (ε )
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and therefore

1

εα/2
|vε|qq,K � O (εs(q)) + O (εt(q))

O (1) + O (εq(N−2)/4)
, (3.12)

where s(q) and t(q) are the liner functions

s(q) := β

2
+ N

2
− q(N − 2)

4
− α

2
, t(q) := q(N − 2)

4
− α

2
. (3.13)

Since 0 = s(2) < s(2∗) = −α/2 and 2 < q < 2∗ we conclude that s(q) < 0. Moreover, if N � α + 2, we
have that 0 � (N − 2 − α)/2 = t(2) < t(q), and therefore t(q) > 0 for any 2 < q < 2∗ . Thus, we can
take the limit in (3.12) to conclude that

lim
ε→0

= 1

εα/2
|vε|qq,K = +∞ (for N � α + 2).

This establishes the statement of the lemma in Case 1.

Case 2. N = α + 2.
In this case, we shall present a few more details on the estimate of ‖vε‖2

K since it appears that its
presentation in [4] contains a misprint. According to [4, p. 1167, Case 4] we have that

‖uε‖2
K =

∫
K (x)|∇u|2 = ε1−N/2 A1 + c3| logε| + O (1),

with

A1 := (N − 2)2
∫ |x|2

(1 + |x|2)N
(for N > 2). (3.14)

Thus, we can use (3.9) and (3.10) to get

‖vε‖2
K = ‖uε‖2

K

|uε|22∗,K

= ε1−N/2 A1 + c1| logε| + O (1)

ε1−N/2 A1−2/N
0 + O (ε)

= A1 A−1+2/N
0 + c1ε

N/2−1| logε| + O (ε−1+N/2)

1 + O (εN/2)
. (3.15)

For any 0 < δ < α/2 we have that ε−1+N/2| logε| = ε−1+N/2−δεδ | logε| = O (ε−1+N/2−δ). Moreover, as
proved in [2], A1 A−1+2/N

0 = S . Thus, recalling that −1 + N/2 = α/2, we get

‖vε‖2
K = S + O

(
ε−1+N/2−δ

) = S + O
(
εα/2−δ

)
.

This provides a positive lower bound for the values tε and therefore we can argue as in (3.4) to obtain

I(tε vε) � 1

N
S N/2 + εα/2−δ

(
O (1) − λC0

1

εα/2−δ
|vε|qq,K

)
.

As in Case 1, we get
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1

εα/2−δ
|vε|qq,K � O (εs(q)+δ) + O (εt(q)+δ)

O (1) + O (εq(N−2)/4)
,

where s(q) and t(q) are given in (3.13). Since s(q) < 0 we can choose δ > 0 small enough in such a
way that s(q) + δ < 0. So, recalling that 0 = t(2) < t(q), we obtain

lim
ε→0

= 1

εα/2−δ
|vε|qq,K = +∞ (for N = α + 2),

from which it follows that I(tε vε) < 1
N S N/2 for ε > 0 sufficiently small.

Case 3. 2 < N < α + 2 and 2∗ − 4/α < q < 2∗ .
In this case, by using the calculations of [4, p. 1164] again, we have that

‖uε‖2
K = ε1−N/2 A1 + c4

∫
ϕ2|x|α

(ε + |x|2)N−1
+ c5

∫
ϕ2|x|2(α−1)

(ε + |x|2)N−2
+ O (1)

= ε1−N/2 A1 + O (1),

where A1 was defined in (3.14). Thus, we can proceed as in (3.15) to get

‖vε‖2
K = ‖uε‖2

K

|uε|22∗,K

= ε1−N/2 A1 + O (1)

ε1−N/2 A1−2/N
0 + O (ε)

= S + O
(
ε−1+N/2).

So, tε has a positive lower bound and we can argue as in (3.4) to obtain

I(tε vε) � 1

N
S N/2 + ε−1+N/2

(
O (1) − λC0

1

ε−1+N/2
|vε|qq,K

)
.

We now recall that (3.5) holds provided q(N − 2) − β − N < 0. By replacing the value of β in this
last inequality we can see that it occurs if, and only if,

q > q1 := 2∗(α − 2) + N(2∗ − 2)

(N − 2)(2∗ − 2) + (α − 2)
= 2∗α

α + 2
.

Straightforward calculations show that 2 < q1 < 2∗ if, and only if, N < α + 2. Hence, we are in the
setting of Case 3 and the expression in (3.11) also holds. Thus,

1

ε−1+N/2
|vε|qq,K � O (ε ŝ(q)) + O (εt̂(q))

O (1) + O (εq(N−2)/4)

where ŝ(q) and t̂(q) are the liner functions

ŝ(q) := β

2
− q(N − 2)

4
+ 1, t̂(q) := q(N − 2)

4
+ 1 − N

2
.

Since t̂(2) = 0 we have that t̂(q) > 0 for any q > 2. A direct calculation shows that ŝ(q) < 0 if, and
only if,

q > q2 := 2∗α − 4 = 2∗ − 4
.

α α



M.F. Furtado et al. / J. Differential Equations 249 (2010) 1035–1055 1047
Since N < α + 2 we have that q1 < q2. Thus, for any 2∗ − 4/α < q < 2∗ , we have that

lim
ε→0

= 1

ε1+N/2
|vε|qq,K = +∞

and the proposition follows as in Case 1.

Case 4. 2 < N < α + 2, 2 < q � 2∗ − 4/α and λ large.
In this case the proof is easier because we can take large values for λ. More specifically, let v ∈

H(α) satisfying |v|2∗,K = 1 and consider tλ > 0 such that Iλ(tλv) = supt�0 Iλ(tv), that is,

‖v‖2
K − λtq−2

λ |v|qq,K = t2∗−2
λ .

The above expression implies that (tλ)λ∈R+ is bounded. If lim supλ→∞ = t0 > 0, the above equality
would imply that v = 0, which does not make sense. Hence, limλ→∞ tλ = 0. Thus,

sup
t>0

Iλ(tv) =
(

1

2
− 1

q

)
t2
λ‖v‖2

K +
(

1

q
− 1

2∗

)
t2∗
λ ,

and therefore,

lim
λ→∞ sup

t>0
Iλ(tv) = 0.

Hence, there exists λ∗ > 0 such that, for any λ � λ∗ , the statement of the proposition holds. This
finishes the proof. �
4. Sign-changing solution for q = 2

In this section we prove Theorem 1.2 by applying the following variant of the Mountain Pass
Theorem.

Theorem 4.1. Let X be a real Banach space with X = Y ⊕ Z and dim Y < ∞. Suppose I ∈ C1(XR) satisfies

(I1) there exist ρ,σ > 0 such that I|∂ Bρ(0)∩Z � σ ;
(I2) there exist e ∈ ∂ B1(0) ∩ Z and R > ρ such that

I|∂ Q � 0,

with

Q := (
B R(0) ∩ Y

) ⊕ {te: 0 < t < R}.
If we define

c := inf
γ ∈Γ

max
u∈Q

I
(
γ (u)

)
where

Γ := {
γ ∈ C(Q , X): γ ≡ Id on ∂ Q

}
,

then there exists a sequence (un) ⊂ X such that I(un) → c and I ′(un) → 0.
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Let λ > 0 be such that λn � λ < λn+1 and set

Y = span{ϕ1, . . . ,ϕn}, Z = Y ⊥,

in such a way that H1(α) = Y ⊕ Z . The following result is the key stone in the proof of Theorem 1.2.

Proposition 4.2. If N � α + 2 and λn � λ < λn+1 , then there exists z ∈ Z \ {0} such that

max
u∈Y +Rz

I(u) <
1

N
S N/2.

The proof of this proposition is rather long and technique. Before presenting it, let us see how we
can use it to obtain a nodal solution for (P ).

Proof of Theorem 1.2. Let Y and Z be defined as above. For any u ∈ Z we have that

I(u) �
(

λn+1 − λ

2

)
‖u‖2

K − 1

2∗ |u|2∗
2∗,K ,

and therefore we can argue as in the proof of Lemma 3.1 to conclude that I satisfies the condition
(I1) of the previous abstract result.

We also have that

I(u) �
(

λn − λ

2

)
‖u‖2

K − 1

2∗ |u|2∗
2∗,K � 0, ∀u ∈ Y .

Moreover, if z ∈ Z \ {0} is given by Proposition 4.2, we can use the equivalence of norms in the finite
dimensional space Y ⊕ Rz, to get

I(u) → −∞ as ‖u‖K → ∞, u ∈ Y ⊕ Rz.

Thus, condition (I2) is satisfied for R > 0 sufficiently large.
By applying Theorem 4.1 and Proposition 4.2 we obtain (un) ⊂ H1(α) satisfying

lim
n→∞ I(un) = c <

1

N
S N/2 and lim

n→∞ I ′(un) = 0.

It follows from Lemma 2.4 that, along a subsequence, (un) weakly converges to a nontrivial solution
of (P ). Since this problem has no positive solution for λ � λ1, we conclude that this solution changes
sign in R

N . �
It remains to prove Proposition 4.2. We first introduce some notations which will be useful in the

sequel. For any u, v ∈ H1(α) we denote by

(u, v)K :=
∫

K (x)∇u · ∇v, (u, v)2,K :=
∫

K (x)|x|α−2uv,

the inner product in H1(α) and L2(α), respectively.
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We divide the proof in two distinct cases related with λ be or not to be an eigenvalue. We start
with the case λn < λ < λn+1. For any ε > 0 we set

wε := ε
N−2

4 uε = ε
N−2

4 K (x)−1/2ϕ(x)

(
1

ε + |x|2
)(N−2)/2

,

and

zε := wε −
n∑

i=1

(wε,ϕi)K ϕi,

where {ϕi}i∈N is the sequence of eigenfunctions of the linearized problem (LP).
We shall prove that Proposition 4.2 holds for z = zε , with ε > 0 small enough. Since Y ⊕ Rzε =

Y ⊕ Rwε and

max
t�0

I(tu) = 1

N

(‖u‖2
K − λ|u|22,K

|u|22∗,K

)N/2

, ∀u ∈ H1(α) \ {0},

it suffices to verify that

mε := max
u∈Σε

(‖u‖2
K − λ|u|22,K

)
< S, (4.1)

where

Σε := {
u = y + t wε: y ∈ Y , t ∈ R, |u|2∗,K = 1

}
.

Lemma 4.3. As ε → 0+ , the following estimates hold∫
K (x)|wε|2∗−1 = O

(
ε

N−2
4

)
, |wε|L1(RN ) = O

(
ε

N−2
4

)
, (4.2)

max
{
(y, wε)K , (y, wε)2,K

} = |y|2,K O
(
ε

N−2
4

)
, y ∈ Y . (4.3)

Proof. Since ϕ ≡ 0 outside B2(0), the definition of wε provides

∫
K (x)|wε|2∗−1 =

∫
K (x)

(
ε(N−2)/4 K (x)−1/2ϕ

(ε + |x|2)(N−2)/2

)(N+2)/(N−2)

� c1ε
(N+2)/4

∫
B2(0)

1

(ε + |x|2)(N+2)/2

= c1ε
(N+2)/4

∫
B2/

√
ε(0)

ε−1

(1 + |y|2)(N+2)/2
dy

= c1ε
(N−2)/4

∫
1
2 (N+2)/2

dy = O
(
ε

N−2
4

)
,

(1 + |y| )
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and therefore the first statement in (4.2) holds. For the second one it suffices to compute

|wε|L1(RN ) � c2ε
(N−2)/4

∫
B2(0)

1

(ε + |x|2)(N−2)/2

� c2ε
(N−2)/4

∫
B2(0)

|x|2−N = O
(
ε(N−2)/4).

If we take y = ∑n
i=1 βiϕi ∈ Y and recall that ϕi solves (LP), we obtain

∣∣(y, wε)K
∣∣ =

∣∣∣∣∣
n∑

i=1

λiβi(ϕi, wε)2,K

∣∣∣∣∣ � c3

(
n∑

i=1

|βi|
)∫

|x|α−2 wε, (4.4)

with c3 := λn max{|ϕ1|∞, . . . , |ϕn|∞}. Notice that∫
|x|α−2 wε � c4ε

(N−2)/4
∫

B2(0)

|x|α−2

(ε + |x|2)(N−2)/2

� c4ε
(N−2)/4

∫
B2(0)

|x|α−N = O
(
ε(N−2)/4).

Moreover, the equivalence of norms in Y , implies that
∑n

i=1 |βi | � c4|y|2,K . By replacing this and the
above inequality in (4.4), we obtain∣∣(y, wε)K

∣∣ = |y|2,K O
(
ε

N−2
4

)
.

The argument for (y, wε)2,K is analogous, and therefore (4.3) holds. The lemma is proved. �
Our next estimation is more involved.

Lemma 4.4. For any u = y + t wε ∈ Σε we have that t = O (1) as ε → 0+ .

Proof. Given u = y + t wε ∈ Σε , we set

A(u) := |u|2∗
2∗,K − |y|2∗

2∗,K − |t wε|2∗
2∗,K .

Since dim V < ∞ and the eigenfunctions of (LP) are regular, we conclude that u ∈ C2(RN ). Hence,

A(u) =
∫

RN

K (x)
(|y + t wε|2∗ − |y|2∗ − |t wε|2∗)

dx

= 2∗
∫

RN

( 1∫
0

K (x)
(|t wε + sy|2∗−2(t wε + sy) − |sy|2∗−2sy

)
y ds

)
dx

= 2∗(2∗ − 1
) ∫

N

( 1∫
0

K (x)|sy + t wεθ |2∗−2t wε y ds

)
dx,
R
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where 0 � θ(x) � 1 is a measurable function. Recalling that the support of wε is contained in B2(0),
we can use the above estimate, (4.2), (4.3) and the equivalence of norms in Y , to obtain

∣∣A(u)
∣∣ � c1

{
|y|2∗−1∞ |t||wε|L1(RN ) + |y|∞|t|2∗−1

∫
K (x)|wε|2∗−1

}
�

{|y|2∗−1
2∗,K |t|O (

ε
N−2

4
) + |y|2∗,K |t|2∗−1 O

(
ε

N−2
4

)}
. (4.5)

Given δ > 0, we can apply Young’s inequality with exponent s = 2∗/(2∗ − 1), s′ = 2∗ , to obtain
c3 = c3(δ) such that

|y|2∗−1
2∗,K |t|O (

ε
N−2

4
)
� δ|y|2∗

2∗,K + c3|t|2∗
O

(
ε

N−2
4

) 2N
N−2 .

Analogously, there exists c4 = c4(δ) satisfying

|y|2∗,K |t|2∗−1 O
(
ε

N−2
4

)
� δ|y|2∗

2∗,K + c4|t|2∗
O

(
ε

N−2
4

) 2N
N+2 .

By choosing δ > 0 in such a way that 2δc1 < 1/2, we can replace the last two inequalities in (4.5)
to get

∣∣A(u)
∣∣ � 1

2
|y|2∗

2∗,K + |t|2∗{
O

(
εN/2) + O

(
ε

N−2
N+2

N
2
)}

.

It follows from the definition of A(u) and (3.9) that

1 = |u|2∗
2∗,K � |t wε|2∗

2∗,K + |t|2∗
O

(
ε

N−2
N+2 · N

2
) + 1

2
|y|2∗

2∗,K

= |t|2∗{
A0 + O

(
ε

N
2
) + O

(
ε

N−2
N+2 · N

2
)}

,

and therefore we cannot have t → ∞ as ε → 0+ . The lemma is proved. �
We are now able to prove that (4.1) holds in the first case.

Proof of Proposition 4.2 (Case λn < λ < λn+1). As quoted before, it suffices to verify (4.1). With this
aim we take u = y + t wε ∈ Σε and use (4.3) to get

‖u‖2
K = ‖y‖2

K + 2t(y, wε)K + ‖t wε‖2
K

= ‖y‖2
K + |y|2,K O

(
ε

N−2
4

) + ‖t wε‖2
K .

Since an analogous estimate holds for |u|22,K and ‖y‖2
K � λn|y|22,K , we obtain

‖u‖2
K − λ|u|22,K � (λn − λ)|y|22,K + |y|2,K O

(
ε

N−2
4

) + ‖t wε‖2
K − λ|t wε|22,K . (4.6)

We now recall that −as2 + bs � −b2

4a whenever a > 0 and s ∈ R. Thus, the above expression implies
that

‖u‖2
K − λ|u|22,K � 1

O
(
ε

N−2
2

) + Q λ(t wε)|t wε|2∗
2∗,K , (4.7)
4(λ − λn)
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where

Q λ(v) := ‖v‖2
K − λ|v|22,K

|v|2∗
2∗,K

,

for any v ∈ H1(α) \ {0}.
Since Q λ(wε) = Q λ(uε) and λ > λ1/2, we can use the calculations performed in [4, pp. 1166–

1167] to get

Q λ(wε) =

⎧⎪⎪⎨⎪⎪⎩
S + εα/2d + O (εα), if N > 2α + 2,

S + εα/2d + O (εα| logε|) + O (ε
N−2

2 ), if N = 2α + 2,

S + εα/2d + O (ε
N−2

2 ), if α + 2 < N < 2α + 2,

S + εα/2| logε|d + O (ε
N−2

2 ), if N = α + 2,

with d < 0 being a negative number. Hence, for μ > 0 small, N � α + 2 and γ given by

γ := min

{
α − μ,

N − 2

2

}
> 0, (4.8)

we have that

Q λ(t wε) = Q λ(wε) � S + dεα/2−μ + O
(
εγ

)
. (4.9)

On the other hand, by using the Mean Value Theorem we obtain θ = θ(x) ∈ (0,1) such that

1 =
∫

K (x)|t wε + y|2∗ =
∫

K (x)
{|t wε|2∗ + 2∗|t wε + θ y|2∗−2(t wε + θ y)y

}
.

Thus, we can use the equivalence of norms in Y , Lemma 4.4 and (4.2), to get

1 � |t wε|2∗
2∗,K + 2∗

∫
K (x)|t wε|2∗−1|y| � |t wε|2∗

2∗,K − |y|2,K O
(
ε

N−2
4

)
,

from which it follows that

|t wε|2∗
2∗,K � 1 + |y|2,K O

(
ε

N−2
4

)
.

By replacing the above estimate and (4.9) in (4.7), we conclude that

‖u‖2
K − λ|u|22,K � 1

4(λ − λn)
O

(
ε

N−2
2

) + S + dεα/2−μ + O
(
εγ

)
= S + εα/2−μ

(
d + O

(
εγ − α

2 +μ
) + O

(
ε

N−2−α
2 +μ

))
.

Recalling that N − α − 2 � 0 and using the definition of γ , we conclude that min{γ − α/2 + μ, (N −
2 − α)/2 + μ} > 0. Since d < 0, it follows from the above expression that, for any ε > 0 small, there
hods

‖u‖2
K − λ|u|22,K < S, ∀u ∈ Σε.

This concludes the proof in this first case. �
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We now consider the case where λ = λn is an eigenvalue. Notice that, in this setting, estimation
(4.6) does not hold and therefore we need slightly change the argument. So, for any ε > 0 we define

w̃ε := wε − (wε,ϕn)K ϕn.

The next lemma shows that this new function has the same properties of wε .

Lemma 4.5. The following estimates hold as ε → 0+

∫
K (x)|w̃ε|2∗−1 = O

(
ε

N−2
4

)
, |w̃ε|L1(RN ) = O

(
ε

N−2
4

)
,

max
{
(y, w̃ε)K , (y, w̃ε)2,K

} = |y|2,K O
(
ε

N−2
4

)
,

and

Q λ(t wε) = Q λ(wε) � S + dεα/2−μ + O
(
εγ

)
, (4.10)

where d < 0, μ > 0 is small and γ is given by (4.8).

Proof. We have that∫
K (x)|w̃ε|2∗−1 � c1

∫
K (x)|wε|2∗−1 + c1

∣∣(wε,ϕn)K
∣∣2∗−1

∫
K (x)|ϕn|2∗−1.

The exponential decay of ϕn implies that the last integral is finite. Since 2∗ − 1 > 1, it follows from
the above inequality, (4.2) and (4.3) that

∫
K (x)|w̃ε|2∗−1 = O

(
ε

N−2
4

)
,

and therefore the first statement holds. By using the exponential decay of ϕn and Lemma 4.3 we can
prove the second and the third statement in a similar way. We omit the details.

It remains to check the last assertion. Notice that, in view of the definition of w̃ε and Lemma 4.3,
we have that

‖w̃ε‖2
K = ‖wε‖2

K + (wε,ϕn)
2
K ‖ϕn‖2

K − 2(wε,ϕn)2
K

� ‖wε‖2
K + O

(
ε

N−2
2

)
and

|w̃ε|22,K = |wε|22,K + O
(
ε

N−2
2

)
.

In order to estimate |w̃ε|22∗,K in terms of |wε|22∗,K , we write
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|w̃ε|2∗
2∗,K − |wε|2∗

2∗,K =
∫

RN

1∫
0

d

ds

∣∣wε − s(wε,ϕn)K ϕn
∣∣2∗

ds dx

� c2
∣∣(wε,ϕn)K

∣∣ ∫
RN

K (x)|wε|2∗−1 dx

+ c3
∣∣(wε,ϕn)K

∣∣2∗ ∫
RN

K (x)|ϕn|2∗
dx

= O
(
ε

N−2
4

)
O

(
ε

N−2
4

) + O
(
ε

N−2
4

)2∗ = O
(
ε

N−2
2

)
,

where we have used the exponential decay of ϕn and Lemma 4.3. It follows from the above expression
that, for some θ ∈ (0,1), there holds

|w̃ε|22∗,K = (|w̃ε|2∗
2∗,K

)2/2∗ = (|wε|2∗
2∗,K + O

(
ε

N−2
2

))2/2∗

= (|wε|2∗
2∗,K

)2/2∗ + 2

2∗
(|wε|2∗

2∗,K + θ O
(
ε

N−2
2

)) 2
2∗ −1

O
(
ε

N−2
2

)
.

If follows from (3.9) that 0 < limε→0+ |wε|2∗
2∗,K < ∞. Thus, we conclude that

|w̃ε|22∗,K = |wε|22∗,K + O
(
ε

N−2
2

)
.

All together, the above estimates provide

Q λ(w̃ε) �
‖wε‖2

K − λ|wε|22,K + O (ε
N−2

2 )

|wε|22∗,K + O (ε
N−2

2 )
= Q λ(wε) + O (ε

N−2
2 )

|wε|22∗,K + O (ε
N−2

2 )
.

The statement (4.10) is now a consequence of the above inequality and (4.9). This finishes the
proof. �

Let us now prove Proposition 4.2 in the resonant case λ = λn .

Proof of Proposition 4.2 (Case λ = λn). As in the first case, it suffices to show that

m̃ε := max
u∈Σ̃ε

(‖u‖2
K − λn|u|22,K

)
< S,

where

Σ̃ε := {
u = y + t w̃ε: y ∈ Y , t ∈ R, |u|2∗,K = 1

}
.

Let u = y + t w̃ε ∈ Σ̃ε and notice that the function y ∈ Y can be written as

y = ỹ + (y,ϕn)K ϕn.

Since (ϕn, w̃ε)K = (ϕn, w̃ε)2,K = 0 and ‖ϕn‖2
K = λn|ϕn|22,K , we have that
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‖u‖2
K − λn|u|22,K = ‖ ỹ‖2

K − λn‖ ỹn‖2
2,K + 2(̃y, t w̃ε)K − 2λn (̃y, t w̃ε)2,K

+ Q λ(t w̃ε)|t w̃ε|22∗,K .

Lemma 4.5 and the same argument employed in the proof of Lemma 4.4 show that t = O (1) as
ε → 0+ . Thus, we can use the above inequality, ỹ ∈ span{ϕ1, . . . , ϕn−1} and Lemma 4.4 to get

‖u‖2
K − λn|u|22,K � 1

4(λn−1 − λn)
O

(
ε

N−2
2

) + Q λ(t w̃ε)|t w̃ε|22∗,K .

It follows from the boundedness of t , (4.10) and the same argument used in the first case that, for
ε > 0 small enough, there holds

‖u‖2
K − λ|u|22,K < S, ∀u ∈ Σ̃ε.

The proposition is proved. �
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