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Abstract

We establish the existence of two nontrivial solution for some elliptic systems. In the proofs we apply
variational methods and Morse theory.
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1. Introduction

We consider the gradient system−1u = Fu(x, u, v) in �,
−1v = Fv(x, u, v) in �,
u = v = 0 on ∂�,

(P)

where �⊂ RN is a bounded smooth domain, N ≥ 3 and F ∈ C2(�× R2, R) satisfies
the subcritical growth condition

there exist c1 > 0 and 2< p < 2N/(N − 2) such that

|∇F(x, z)| ≤ c1(1+ |z|p−1) for (x, z) ∈ RN
× R2.

(F)

In order to state the other assumptions on F , let M2(�) denote the set of all
continuous, cooperative and symmetric matrices of order two. More specifically,
A ∈M2(�) if it has the form

A(x)=

(
a(x) b(x)
b(x) c(x)

)
, (1.1)
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with a, b, c ∈ C(�, R) and b(x)≥ 0 for all x ∈�. Given A ∈M2(�), we shall
consider the interaction between the nonlinearity F and the eigenvalues of the
weighted linear problem−1

(
u
v

)
= λA(x)

(
u
v

)
in �,

u = v = 0 in ∂�.
(LP)

In what follows, λk(A) denotes the kth positive eigenvalue of (LP) (see Section 2 for
more details). For simplicity of the statements we set λ0(A)=−∞.

We first notice that, if ∇F(x, 0, 0)≡ 0, the problem (P) possesses the trivial
solution (u, v)= (0, 0). In this case the key point is to assure the existence of
nontrivial solutions and therefore we need to introduce a condition that gives us
information about the behaviour of F near the origin. We denote by z = (u, v) an
arbitrary vector of R2 and suppose that:

there exists A0 ∈M2(�) such that

lim
|z|→0

2F(x, z)− 〈A0(x)z, z〉

|z|2
= 0 uniformly for x ∈�.

(F0)

Concerning the behaviour of F at infinity we assume the following condition.

there exists A∞ ∈M2(�) such that
lim
|z|→∞

2F(x, z)− 〈A∞(x)z, z〉 =∞ uniformly for x ∈�. (F+∞)

In our first result we consider the resonance at the kth eigenvalue. We shall prove
the following theorem.

THEOREM 1.1. Suppose that ∇F(x, 0, 0)≡ 0 and (F), (F0), (F+∞) hold. Suppose
also that λm(A0) < 1< λm+1(A0) for some m ∈ N ∪ {0} and 1= λk(A∞) <
λk+1(A∞) for some k 6= m. Then there exists ε0 > 0 such that problem (P) has two
nontrivial solutions whenever

〈∇F(x, z)−∇F(x, z̄)− A∞(x)(z − z̄), z − z̄〉 ≤ ε‖z − z̄‖2, (1.2)

for any (x, z, z̄) ∈�× R2
× R2 and for some ε < ε0.

In our second result we consider resonance at the first eigenvalue. In this case we are
able to consider only a local condition at infinity. Instead of the global condition (F+∞),
we suppose that:
there exist A∞ ∈M2(�), an open nonempty set �0 ⊂� and M ∈ L1(�) such that:

(i) lim|z|→∞ 2F(x, z)− 〈A∞(x)z, z〉 = −∞, uniformly for x ∈�0;

(ii) 2F(x, z)− 〈A∞(x)z, z〉 ≤ M(x), for all (x, z) ∈�× R2.
(F−∞)

In this case our result can be stated as follows.
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THEOREM 1.2. Suppose that ∇F(x, 0, 0)≡ 0 and (F), (F0), (F−∞) hold. Suppose
also that λ1(A∞)= 1 and λm(A0) < 1< λm+1(A0), for some m ∈ N. Then
problem (P) has two nontrivial solutions.

In the proofs, we apply variational methods and Morse theory. The assumption
(F+∞) has appeared in the paper of Liu [13], where the scalar autonomous problem

−1u = p(u), u ∈ H1
0 (�)

was considered. In that paper, the technical condition (1.2) is replaced by the
assumption that p′(s)≤ γ < λk+1. This kind of hypothesis is related to the Lyapunov–
Schmidt reduction method (see [2, 3]). The condition (1.2) can be translated to the
scalar framework as p′(s)≤ λk + ε for some ε > 0 small. We need this stronger
condition because the mean value technique applied in [3] does not work in higher
dimensions.

Theorem 1.1 is closely related to the result of [13] but are more general in several
senses: first, we consider a system of equations; second, in [13] it was assumed
that p′(0) < λ1 and here the condition λm(A0) < 1< λm+1(A0) allows the derivative
at the origin to belong to any consecutive eigenvalues; finally, instead of imposing
restrictions on the asymptotic limits of the function F , we use the more general idea
of analyzing the position of the number 1 in the spectrum of the associated weighted
eigenvalue problem. Hence, our approach can be used to extend the result of [13] also
for the scalar case.

Since condition (F−∞) implies that the associated functional is coercive,
Theorem 1.2 is related to that proved in [11, Theorem 1.4] where the scalar equation
is considered with some different hypotheses. Our results also complement those
of [10], where the system (P) is studied under a different condition at infinity and
the nonquadratic condition introduced by Costa and Magalhães [7, 8] was assumed.
This last condition is related to the conditions (F±∞) used here.

The paper is organized as follows: in the forthcoming section we present the
abstract framework as well as some abstract results. The last two sections are devoted
to the proofs of the theorems.

2. Preliminaries

Let X be a real Hilbert space and I ∈ C1(X, R). Let z0 ∈ X be an isolated critical
point of I , c = I (z0) and j be a nonnegative integer. We define the j th critical group
of I at z0 as being

Cj (I, z0)= Hj (I
c, I c
\{z0}),

where I c
= {u ∈ X : I (u)≤ c} and H∗(·, ·) denotes the relative singular homology

group with coefficients in Z.
We say that I satisfies the Palais–Smale condition ((PS) for short) if any sequence

(un)⊂ X such that I ′(un)→ 0 and (|I (un)|)⊂ R is bounded possesses a convergent
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subsequence. If I has no critical values less than α ∈ R and satisfies (PS), we can
define the Betti numbers

β j = rank Hj (X, I α).

The (PS) condition implies that the definition of Betti numbers does not depend
on α. Moreover, there is a relation between the critical groups and the Betti numbers
(see [4, Theorem I.4.3]). It reads

∞∑
j=0

M j (−1) j
=

∞∑
j=0

β j (−1) j (2.1)

where M j =
∑

I ′(u)=0 rank Cj (I, u).
Under assumption (F+∞), the associated functional may not satisfy the (PS)

condition. Hence, we shall apply the Lyapunov–Schmidt reduction method developed
in [2] (see [13, Lemma 2.3] for the proof of the third item).

THEOREM 2.1. Let Y and W be closed subspaces of a separable Hilbert space
X = Y ⊕W and I ∈ C1(X, R). If there exists β > 0 such that, for any y ∈ Y and
w1, w2 ∈W , there holds

〈∇I (y + w1)−∇I (y + w2), w1 − w2〉 ≥ β‖w1 − w2‖
2,

then:
(i) there exists a continuous map ψ : Y →W such that

I (y + ψ(y))= min
w∈W

I (y + w).

Moreover, ψ(y) is the unique point of W such that 〈∇I (y + ψ(y)), w〉 = 0 for
any w ∈W ;

(ii) the functional ϕ : Y → R given by

ϕ(y)= I (y + ψ(y))

belongs to C1(Y, R) and y ∈ Y is a critical point of ϕ if, and only if, y + ψ(y)
is a critical point of I ;

(iii) if y ∈ Y is an isolated critical point of ϕ then

Cj (ϕ, y)= Cj (I, y + ψ(y)), j = 0, 1, 2, . . . .

2.1. The linear problem. Hereafter we write
∫
�

u instead of
∫
�

u(x) dx and denote
by X be the Hilbert space H1

0 (�)× H1
0 (�) endowed with the inner product

〈(u, v), (φ, ψ)〉 =
∫
(∇u · ∇φ +∇v · ∇ψ), ∀(u, v), (φ, ψ) ∈ X,
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and associated norm

‖z‖2 =
∫
�

(|∇u|2 + |∇v|2), ∀z = (u, v) ∈ X.

By the Sobolev theorem we know that, for any 2≤ σ ≤ 2∗ fixed, the embedding
H ↪→ Lσ (�)× Lσ (�) is continuous and therefore we can find a positive constant Sσ
such that ∫

�

|z|σ ≤ Sσ‖z‖
σ . (2.2)

Moreover, if σ < 2∗, the Rellich–Kondrachov theorem implies that the above
embedding is compact.

We proceed now with the study of the linear problem associated to (P). We refer
to [10, Section 2] for more details. We know that λ is an eigenvalue of (LP) if, and
only if, TA(u, v)= λ−1(u, v), where TA : X→ X is the symmetric bounded linear
operator defined by

〈TA(u, v), (φ, ψ)〉 =
∫
�

〈
A(x)

(
u
v

)
,

(
φ

ψ

)〉
R2
.

The first eigenvalue can be characterized as

1
λ1(A)

= µ1(A)= sup{〈TAz, z〉 : ‖z‖ = 1}. (2.3)

If µ1(A) > 0, it can be proved (see [5, 6]) that the components of the associated
eigenfunction 8A

1 are nonzero and have constant sign on �. By using induction, if
we suppose that

µ1(A)≥ µ2(A)≥ · · · ≥ µk−1(A)≥ µk(A) > 0

are the k first eigenvalues of TA with associated eigenfunctions {8A
i }

k
i=1, we can define

1
λk+1(A)

= µk+1(A)= sup{〈TAz, z〉 : ‖z‖ = 1, z ∈ (span{8A
1 , . . . , 8

A
k })
⊥
}.

If µk+1(A) > 0, then it is an eigenvalue of TA with associated eigenfunction 8A
k+1

(see [9]). Moreover, if we set Yk = span{8A
1 , . . . , 8

A
k }, we have that X = Yk ⊕Wk ,

with Wk = Y⊥k , and the following variational inequalities hold

‖y‖2 ≤ λk(A)
∫
�

〈A(x)y, y〉, ∀y ∈ Yk, (2.4)

and

‖w‖2 ≥ λk+1(A)
∫
〈A(x)w, w〉, ∀w ∈Wk . (2.5)
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3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. First of all we notice that, in view of (F1), the
weak solutions of the problem (P) are precisely the critical points of the C2-functional
I : X→ R given by

I (z)=
1
2

∫
(|∇u|2 + |∇v|2)−

∫
F(x, z).

Let A∞ be given by (F+∞) and assume that λk(A∞)= 1. For any 1≤ j ≤ k, let8A∞
j

be the normalized eigenfunction associated to the j th positive eigenvalue λ j (A∞),
as explained in the Section 2. If we define

Y = span{8A∞
1 , . . . , 8

A∞
k } and W = Y⊥,

we have that X = Y ⊕W .

LEMMA 3.1. If (1.2) is verified for ε > 0 small, then there exists β > 0 such that, for
any y ∈ Y and w1, w2 ∈W we have that

〈∇I (y + w1)−∇I (y + w2), (w1 − w2)〉 ≥ β‖w1 − w2‖
2. (3.1)

PROOF. Let J (v, w1, w2) the left-hand side of (3.1). By using (2.5), (1.2) and (2.2)
we get

J (y, w1, w2) = ‖w1 − w2‖
2
±

∫
〈A∞(x)(w1 − w2), w1 − w2〉R2

−

∫
〈∇F(x, y + w1)−∇F(x, y + w2), w1 − w2〉R2

≥

(
1−

1
λk+1(A∞)

− εS2

)
‖w1 − w2‖

2
= β‖w1 − w2‖

2.

Since λk+1(A∞) > 1, it suffices to take ε > 0 small in such way that β is positive. 2

In view of the above lemma, we can use Theorem 2.1 to obtain a continuous map
ψ : Y →W and a C1-functional ϕ : Y → R given by

ϕ(y)= I(y + ψ(y))= min
w∈W

I (y + w). (3.2)

Moreover, y ∈ Y is a critical point of ϕ if and only if y + ψ(y) is a critical point of I .

LEMMA 3.2. Suppose (F∞) holds and λk(A∞)= 1 for some k ∈ N. Then the
functional ϕ is anti-coercive.

PROOF. Since λk(A∞)= 1, we can use (3.2) and (2.4) to get, for any y ∈ Y ,

2ϕ(y) ≤ 2I (y)=
∫
(|∇ y|2 − 〈A∞(x)y, y〉)+

∫
(〈A∞(x)y, y〉 − 2F(x, y))

≤

∫
(〈A∞(x)y, y〉 − 2F(x, y)).
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Suppose that (yn)⊂ Y is such that ‖yn‖→∞. Since Y is finite dimensional we
can set ỹn = yn/‖yn‖ and suppose that ỹn→ ỹ 6= 0 strongly in Y . Hence, the set

�̃= {x ∈� : |y(x)| 6= 0}

has positive measure and |yn(x)| →∞ for a.e. x ∈ �̃. The above expression, Fatou’s
lemma and (F+∞) imply that

2ϕ(yn)≤ C |�\�̃| +
∫
�̃

(〈A∞(x)yn, yn〉 − 2F(x, yn))→−∞ as n→∞,

where |�\�̃| denotes the Lebesgue measure of �\�̃. The lemma is proved. 2

We can now follow the argument of [13] to prove our first multiplicity result.

PROOF OF THEOREM 1.1. We first note that, since ϕ is anti-coercive in the finite
dimensional space Y , it possesses a global maximum point ymax such that

Cj (ϕ, ymax)=

{
Z if j = k,
0 otherwise.

Moreover, arguing as in [12, Lemma 2.1], we can prove that the Betti numbers are
given by

β j =

{
1 if j = k,
0 otherwise.

Since ∇I (0)= 0, it follows from Theorem 2.1(i) that ψ(0)= 0. It follows from
items (ii) and (iii) Theorem 2.1 that the origin is a critical point of ϕ and C∗(ϕ, 0)=
C∗(I, 0). In order to compute this last critical group, we observe that we can use
the regularity of F and some calculations to prove that the matrix A0 given by the
condition (F0) is precisely the second derivative D2F(x, 0). Thus, the condition
λm(A0) < 1< λm+1(A0) implies that 0 is a nondegenerate critical point of I with
Morse index equals to m. It follows from [4, Theorem 4.1 of Ch. 1] that

Cj (ϕ, 0)= Cj (I, 0)=
{

Z if j = m,
0 otherwise.

We also note that, since m 6= k, we have that ymax 6= 0.
We can now argue indirectly. If 0 and ymax are the only critical points of ϕ, the

expression (2.1) and the above equalities imply that

(−1)m + (−1)k = (−1)k,

which does not make sense. Hence, ϕ has a third critical point y0. It follows from
Theorem 2.1(ii) that ymax + ψ(ymax) and y0 + ψ(y0) are two nontrivial solutions
of (P). The theorem is proved. 2
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4. Proof of Theorem 1.2

In this section we prove Theorem 1.2. As we shall see, we do not need to use
the reduction method in this case because, in this setting, the original functional I is
coercive.

LEMMA 4.1. Suppose (F−∞) hold and λ1(A∞)= 1. Then the functional I is coercive.

PROOF. Since λ1(A∞)= 1, we can use (2.5) to get, for any z ∈ X ,

2I (z) =
∫
(|∇z|2 − 〈A∞(x)z, z〉)+

∫
(〈A∞(x)z, z〉 − 2F(x, z))

≥

∫
(〈A∞(x)z, z〉 − 2F(x, z)).

(4.1)

Suppose, by contradiction, that there is (zn)⊂ X such that ‖zn‖→∞ and

I (zn)≤ C, (4.2)

for some C > 0. By taking z̃n = zn/‖zn‖, we may suppose that z̃n ⇀ z̃ weakly in X ,
z̃n→ z̃ strongly in L2(�)× L2(�) and z̃n(x)→ z̃(x) for a.e. x ∈�.

Claim. z̃ is an eigenfunction of the problem (LP) associated to λ1(A∞).

Assuming the claim we can proceed as follows. Since z̃ 6= 0, the same unique
continuation argument employed in [14, Appendix] show that, for any open set �̃⊂�,
we have that z̃(x) 6≡ 0 in �̃. Hence, taking �0 given by (F+∞), we concluded that
|zn(x)| →∞ for a.e. x ∈�0. It follows from (4.1), Fatou’s lemma and (F−∞) that

2I (vn) ≥ −

∫
�\�0

M(x) dx +
∫
�0

(〈A∞(x)zn, zn〉

− 2F(x, zn)) dx→+∞ as n→∞,

which contradicts (4.2). Thus, I is coercive.
In order to prove the claim we first note that

lim sup
n→∞

1

‖zn‖
2

∫
�

(〈A∞(x)zn, zn〉 − 2F(x, zn))≥ 0.

On the other hand,∫
〈A∞(x )̃zn, z̃n〉 = 1−

2

‖zn‖
2 I (zn)+

1

‖zn‖
2

∫
(〈A∞(x)zn, zn〉 − 2F(x, zn)).

Taking the limit and using (4.2) we get∫
〈A∞(x )̃z, z̃〉 ≥ 1.
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Since z̃ is the weak limit of z̃n we have that ‖̃z‖ ≤ 1. Hence, it follows from (2.5) that

1≥ ‖̃z‖2 ≥
∫
〈A∞(x )̃z, z̃〉 ≥ 1.

This and (2.3) prove the claim. 2

We are now ready to prove our last multiplicity result.

PROOF OF THEOREM 1.2. As in the proof of Theorem 1.1 the critical groups of I at
the origin are

Cj (I, 0)=
{

Z if j = m,
0 otherwise.

Since I is coercive, it satisfies the (PS) condition. So we can minimize I and we
obtain a global minimum point zmin satisfying

Cj (I, zmin)=

{
Z if j = 0,
0 otherwise.

In particular, recalling that m 6= 0, we conclude that zmin 6= 0. Moreover, for α > 0
sufficiently large we have I−α =∅. So, H∗(X, I−α)= H∗(X) and therefore the
Betti numbers are

β j =

{
1 if j = 0,
0 otherwise.

If 0 and zmin are the only critical points of I , we can use the expression (2.1) and
the above equalities to get

(−1)m + (−1)0 = (−1)0,

which does not make sense. Hence, I has at least three critical points and the theorem
is proved. 2
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