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Double resonant problems which are locally

non-quadratic at infinity ∗

Marcelo F. Furtado & Elves A. B. Silva

Abstract

We establish the existence of a nontrivial solution for a double resonant
elliptic problem under a local non-quadraticity condition at infinity and
pointwise limits. We also study the existence of a nonzero solution when
there is resonance at the first eigenvalue. The first result is obtained as
an application of an abstract theorem that establishes the existence of a
nontrivial critical point for functionals of class C2 on real Hilbert spaces.

1 Introduction

The main goal of this article is to establish sufficient conditions for the existence
of a nontrivial solution for a double resonant semi-linear elliptic problem under
a local non-quadraticity condition and pointwise limits. We also study the
existence and the multiplicity of solutions when there is resonance at the first
eigenvalue.

To achieve our main objective, we prove a generalization of a critical point
theorem due to Lazer-Solimini [14]. Their theorem establishes the existence of
a nontrivial critical point for a functional of class C2 defined on a real Hilbert
space, under the hypotheses of Rabinowitz’s saddle point theorem [19].

As it is well known, minimax theorems and related results are based on the
existence of a linking structure and on deformation lemmas [2, 3, 20, 17, 29, 6,
26]. In general, to be able to derive such deformation results, it is supposed that
the functional satisfies a compactness condition. In this article, we assume the
(SCe) condition introduced by Silva in [25] and defined below (see Definition
2.1).

Denoting by m(I, u) [m(I, u)] the Morse index [augmented Morse index] of
the functional I ∈ C2(E,R) at the point u, we prove the following result:
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156 Double resonant problems non-quadratic at infinity

Theorem 1.1 Let E = V ⊕W be a real Hilbert space with V finite dimensional
and W = V ⊥. Suppose I ∈ C2(E,R) satisfies (SCe) and

(I1) there exists β ∈ R such that I(v) ≤ β, for all v in V ,

(I2) there exists γ ∈ R such that I(w) ≥ γ, for all w in W ,

(I3) the origin is a critical point of I, I ′′(0) is a Fredholm operator and either
dim V < m(I, 0) or m(I, 0) < dim V .

Then I possesses a nonzero critical point.

The above result is a generalization of the Theorem 1.1 in [14] since the con-
dition (I1) does not imply the anti-coercivity of I on the subspace V . Theorem
1.1 also complements a recent result by Perera-Schechter [18]. Note that in [18]
it is assumed the Palais-Smale compactness condition (PS) which is stronger
than condition (SCe) and may not be true under the hypotheses of our appli-
cation.

As in [14], our proof of Theorem 1.1 is based on the infinite dimensional
Morse theory. To compensate the lack of anticoercivity of I on V , we use a
deformation result, due to Silva [25] (see also [23, 24]), that sends V ∩ ∂BR(0),
for R > 0 sufficiently large, below the level surface γ of I, preserving the linking
between V ∩ ∂BR(0) and the subspace W .

As observed above, Theorem 1.1 is motivated by the semilinear elliptic prob-
lem,

−∆u = f(x, u) in Ω, u = 0 on ∂Ω, (1.1)

where Ω is a bounded smooth domain in RN (N ≥ 1) and the nonlinearity
f ∈ C1(Ω× R,R) satisfies f(x, 0) ≡ 0 and the subcritical growth condition:

(f1) there are constants a1, a2 > 0 such that

|fs(x, s)| ≤ a1|s|σ−2 + a2,

for all x ∈ Ω, s ∈ R where σ > 2 (2 < σ < 2N(N − 2)−1 if N ≥ 3).

Standard arguments show that the associated functional I : H1
0 (Ω) → R given

by

I(u) =
1
2

∫

Ω

|∇u|2 dx−
∫

Ω

F (x, u) dx, (1.2)

with F (x, s) =
∫ s

0
f(x, t) dt, is of class C2 and that the classical solutions of

(1.1) are the critical points of I. We also note that u ≡ 0 is a (trivial) solution
for the problem (1.1). Thus, our first objective is to establish the existence of a
nonzero critical point for I.

Denoting by λk the kth eigenvalue of −∆ on Ω with zero boundary conditions
and considering the limits

L(x) = lim inf
|s|→∞

2F (x, s)
s2

and K(x) = lim sup
|s|→∞

2F (x, s)
s2

, (1.3)

taken in the pointwise sense, we suppose
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(F1) λj ≤ L(x) ≤ K(x) ≤ λj+1, a.e. x ∈ Ω. Furthermore, if L(x) ≡ λj , there
exists D+ ∈ L1(Ω) such that

F (x, s) ≥ λj

2
s2 + D+(x), ∀ s ∈ R, a.e. x ∈ Ω, (1.4)

and

(F2) there exist q > 1 (q ≥ N
2 , if N ≥ 3), A ∈ Lq(Ω) and B ∈ L1(Ω) such that

|F (x, s)| ≤ A(x)s2 + B(x), ∀ s ∈ R, a.e x ∈ Ω.

We note that (F1) characterizes (1.1) as a double resonant problem (see [7, 8,
9, 4, 5]) and that the conditions (F1) and (F2) are related to the geometry of
the saddle point theorem.

The necessary Morse index estimates for the functional I at u ≡ 0 are
provided by a local condition for f(x, s) at the origin:

(f2) fs(x, 0) 6≤ λj or λj+1 6≤ fs(x, 0).

Here, we write fs(x, 0) 6≤ ( 6≥)λk to indicate that fs(x, 0) ≤ (≥)λk with strict
inequality holding on a set of positive measure.

In this article, we also consider a local non-quadraticity condition at infinity
on the primitive F . More specifically, setting H(x, s) = f(x, s)s− 2F (x, s), we
suppose

(NQ)+ there exist Ω0 ⊂ Ω with positive measure and C+ ∈ L1(Ω) such that

(i) lim
|s|→∞

H(x, s) = ∞, a.e. x ∈ Ω0,

(ii) H(x, s) ≥ C+(x), ∀ s ∈ R, a.e. x ∈ Ω.

We note that condition (NQ)+ with Ω0 = Ω has been assumed in the works
[7, 5] (see also [21, 22]). In this article we show that the hypothesis (NQ)+, for
Ω0 sufficiently large, and weaker versions of (F1) and (F2) provide the necessary
compactness for the functional I.

Now, denoting by µ(U) the Lebesgue measure of a measurable set U ⊂ RN ,
we state our application of Theorem 1.1:

Theorem 1.2 There exists 0 < α < µ(Ω) such that, if f ∈ C1(Ω × R,R)
satisfies f(x, 0) ≡ 0, (f1), (f2), (F1), (F2) and (NQ)+ with µ(Ω0) > α, then
the problem (1.1) possesses a nonzero solution.

It is worthwhile mentioning that in [7, 9, 4, 5] the authors establish the
existence of solution for (1.1) (without supposing f(x, 0) ≡ 0). Actually, ap-
plying a version of the saddle point theorem due to Silva [25] and the technical
results proved in this article, we are able to study (1.1) in this setting when
f ∈ C(Ω× R,R) and satisfies
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(f̂1) there are constants a3, a4 > 0 such that

|f(x, s)| ≤ a3|s|σ−1 + a4,

for all x ∈ Ω, s ∈ R where σ > 1 (1 < σ < 2N(N − 2)−1 if N ≥ 3).

Noting that on this case the functional I is of class C1, and that the critical
points of I are weak solutions of (1.1), we obtain

Theorem 1.3 There exists 0 < α < µ(Ω) such that, if f ∈ C(Ω×R,R) satisfies
(f̂1), (F1), (F2) and (NQ)+ with µ(Ω0) > α, then the problem (1.1) possesses
a weak solution.

In this work, we also present versions of Theorems 1.2 and 1.3 under condi-
tions that are dual to (NQ)+ and (F1) (see Theorems 3.7 and 4.1).

In our final result, we study the existence of a nonzero solution for the
problem (1.1) under a resonant condition at the first eigenvalue. On this case,
we may replace the condition (F2) by

(F̂2) there exist q > 1 (q ≥ N
2 if N ≥ 3), A ∈ Lq(Ω) and B ∈ L1(Ω) such that

F (x, s) ≤ A(x)s2 + B(x), ∀ s ∈ R, a.e x ∈ Ω,

and consider the following local condition for the primitive F

(F3) there exists r1 > 0 such that

F (x, s) ≥ 0, ∀ 0 < s < r1, a.e. x ∈ Ω.

Setting

L0(x) = lim inf
s→0+

2F (x, s)
s2

,

with the limit taken in the pointwise sense, we also suppose the following gen-
eralization of the local condition (f2):

(f̂2) L0 ∈ L1(Ω), L0(x) ≥ λ1, a.e. x ∈ Ω. Furthermore, if L0(x) ≡ λ1, there
exists r2 > 0 such that

F (x, s) ≥ λ1

2
s2, ∀ 0 < s < r2, a.e. x ∈ Ω. (1.5)

On this case, we may assume (NQ)+ without any restriction on the measure of
the set Ω0 obtaining

Theorem 1.4 Suppose f ∈ C(Ω×R,R) satisfies (f̂1), (f̂2), (F̂2), (F3), K(x) ≤
λ1 and (NQ)+. Then the problem (1.1) possesses a nonzero weak solution.
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There is a vast literature for the resonance at the first eigenvalue. Here, we
cite [12, 11, 10] which are closely related to the above result. We also observe
that our argument provides the possibility of considering the nonautonomous
problem with pointwise limits in those articles.

Double resonant problems were treated first by Figueiredo-Berestick [4]. In
[9], Costa-Oliveira assumed (F1) and a related double resonant condition for f .
Later, Costa–Magalhães [7] replaced this last hypothesis by the non-quadraticity
condition (NQ)+ with Ω0 = Ω. We note that in [9, 7] the authors do not
allow L(x) ≡ λj and they also assume uniform limits on (1.3) with respect to
Ω. In [5], Carrião–Gonçalves–Pádua assumed the non-quadraticity on Ω and
pointwise limits on (1.3) with some extra hypotheses. We should also mention
the articles by Silva [25] and Costa–Magalhães [8] where it is considered, under
the non-quadraticity condition, the problem of existence of critical points for
strongly indefinite functionals and applications. Finally, we observe that in [18]
an abstract theorem related to ours is used to study the existence of a nontrivial
solution for problem (1.1) under a nonresonant condition and pointwise limits.

The article has the following structure: in Section 2, after presenting some
preliminary results, we prove Theorem 1.1. There, we also state the version of
Silva’s result [25] that we use to prove Theorem 1.3. In Section 3, we prove
Theorem 1.2. In Section 4, we present the proofs of Theorems 1.3 and 1.4.

2 Abstract Result

Let E be a real Hilbert space with norm ‖·‖ derived from the inner product
〈·, ·〉. This symbol will also represent the pairing between E and its dual E∗.

Given a functional I of class C1 on E, and γ, β, c ∈ R, we set Iβ = {u ∈
E | I(u) ≤ β}, Iγ = {u ∈ E | I(u) ≥ γ}, K = {u ∈ E | I ′(u) = 0} and
Kc = {u ∈ K | I(u) = c}.

Throughout this article we use a generalization of the classical Palais-Smale
condition which has been introduced by Silva [25]:

Definition 2.1 The functional I ∈ C1(E,R) satisfies the strong Cerami condi-
tion at the level c ∈ R [(SCe)c] if for any sequence (un) ⊂ E such that I(un) → c
and I ′(un) → 0 we have either

(i) (un) is bounded and possesses a convergent subsequence, or

(ii) for every (unj ) ⊂ (un) such that ‖unj‖ → ∞, we have

lim
nj→∞

‖I ′(unj )‖‖unj‖ → ∞.

If I satisfies (SCe)c for every c ∈ [a, b] or for every c ∈ R, we say that I satisfies
(SCe) on [a, b] or (SCe), respectively.

Since the condition (SCe) is stronger than the Cerami condition we have
(see [27]) the following version of the deformation lemma due to Chang [6]:
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Lemma 2.2 Suppose I ∈ C1(E,R) satisfies (SCe) on [a, b], a is the only critical
value of I on [a, b) and Ka have only pointwise connected components. Then Ia

is a strong deformation retract of Ib \Kb.

Remark 2.3 We may have b = ∞ in Lemma 2.2. On this case, Ia is a strong
deformation retract of E.

For the proof of Theorem 1.1 we also use a technical result proved in [25]:

Lemma 2.4 Let E = V ⊕W be a real Hilbert space with W = V ⊥. Suppose
I ∈ C1(E,R) satisfies (I1), (I2) and (SCe) on [γ, β]. Then, given ε > 0, there
exist ε ∈ (0, ε), R > 0 and a continuous function η : [0, 1]× E → E such that

(η1) η(t, u) = u, for every u ∈ W ,

(η2) η(t, ·) : E → E is a homeomorfism, for every t ∈ [0, 1],

(η3) η(1, u) ∈ Iγ−ε, for every u ∈ V ∩ ∂BR(0),

(η4) I(η(t, u)) ≤ I(u), for every u ∈ E, t ∈ [0, 1].

Given two topological spaces A and X, with A a subspace of X, let Hn(X, A)
denote the nth relative singular homology group with coefficient group equal to
the real numbers. The next result is based on [14].

Proposition 2.5 Let E = V ⊕W be a real Hilbert space with V finite dimen-
sional and W = V ⊥. Suppose I ∈ C2(E,R) satisfies (I1), (I2), (SCe) and has
only a finite number of critical points, all of which are nondegenerate. Then I
possesses a critical point u such that m(I, u) = dim V .

Proof. Let k = dim V . When k = 0, the condition (I2) implies that I is
bounded from below and consenquently, by (SCe), the infimum of I is attained
at a point u ∈ E (see [3, 20]). Since u is nondegenerate, m(I, u) = 0.

Now, let us consider k ≥ 1. Arguing by contradiction, we suppose that I
has no critical point with Morse index equals to k.

First, we choose d0 < γ such that I has no critical points on Id0 . Noting
that I satisfies (I2) with γ replaced by d0, we may apply Lemma 2.4 to obtain
ε ∈ (0, 1), R > 0 and η ∈ C([0, 1]× E, E) satisfying (η1), (η2), (η4) and

S̃ = η(1, S) ⊂ Id0−ε ⊂ Id0 ⊂ E \W, (2.1)

where S = V ∩ ∂BR(0).
Moreover, by (η1) and (η2), we have that η(1, E \ W ) = E \ W . Thus,

considering the inclusions i : S̃ → E \ W and l : S → E \ W , we obtain the
following commutative diagram of homomorphisms

H∗(S) l∗−→ H∗(E \W )
ψ1∗ ↓ ↓ ψ2∗
H∗(S̃) i∗−→ H∗(E \W ),
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where ψ1 = η(1, ·)|S and ψ2 = η(1, ·)|E\W . Invoking (η2) one more time, we have
that ψ1∗ and ψ2∗ are isomorphisms. Therefore, since S is a strong deformation
retract of E \W , we conclude that

i∗ : H∗(S̃) → H∗(E \W )

is an isomorphism.
Now, let j : S̃ → Id0 and h : Id0 → H \W be the inclusion maps. Since, by

(2.1), i = h ◦ j, we have that i∗ = h∗ ◦ j∗. Hence, h∗ is surjective and

dim Hk−1(Id0) ≥ dim Hk−1(E \W ) = dim Hk−1(S).

Therefore,

dim Hk−1(Id0) ≥
{

1, if k > 1,
2, if k = 1.

(2.2)

Now, consider
c1 < c2 < · · · < cm,

the possible critical levels of I, and take d1, . . . , dm real numbers such that
dj−1 < cj < dj , for j = 1, . . . , m. If I does not possess critical values, set d1 =
dm > d0. Recalling that dim Hk(Idj , Idj−1) is equal to the number of critical
points of I with Morse index k at the critical level cj (see [17]), we have

dim Hk(Idj , Idj−1) = 0, ∀ j = 1, . . . ,m. (2.3)

The exactness of the sequence

· · · −→Hk

(
Idj−1 , Id0

)−→Hk

(
Idj , Id0

)−→Hk

(
Idj , Idj−1

)−→· · ·
implies that

dim Hk

(
Idj , Id0

) ≤ dim Hk

(
Idj , Idj−1

)
+ dim Hk

(
Idj−1 , Id0

)
.

Consequently, by the above inequality and (2.3), we obtain

dim Hk(Idm , Id0) ≤
m∑

j=1

dim Hk(Idj , Idj−1) = 0. (2.4)

Considering the exact sequence of the pair (Idm , Id0), we conclude that

dim Hk−1(Id0) ≤ dim Hk(Idm , Id0) + dim Hk−1(Idm).

Since Idm is a strong deformation retract of E (see Remark 2.3), by (2.4) and
the above expression, we have

dim Hk−1(Id0) ≤ dim Hk−1(E) =
{

0, se k > 1,
1, se k = 1,

which contradicts (2.2) and concludes the proof of Proposition 2.5. ♦
Proposition 2.5 is a key ingredient for the proof of Theorem 1.1. We also

need the following version of a result by Marino-Prodi [15] (see also [28]).
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Lemma 2.6 Suppose I ∈ C2(E,R) satisfies (SCe), u0 is an isolated critical
point of I and I ′′(u0) is a Fredholm operator. Then, given ε > 0, there exists
J ∈ C2(E,R) such that J satisfies (SCe), I(u) = J(u) for ‖u− u0‖ ≥ ε, J has
only a finite number of critical points all of which are nondegenerate in the open
ball Bε(u0), and

∥∥I(j)(u)− J (j)(u)
∥∥ < ε, for j = 0, 1, 2 and u ∈ E.

Remark 2.7 In [15], the authors consider the above lemma with the hypothesis
that I satisfies the Palais-Smale condition. Noting that for bounded sequences
the (SCe) condition is equivalent to the Palais-Smale condition and that the
functionals I and J are equals on the complement of Bε(u0), we see easily that
the result in [15] holds with the weaker condition (SCe).

We are ready to prove our abstract theorem. The following argument is due
to Lazer–Solimini [14] and it will be presented for the sake of completness.

Proof of Theorem 1.1. Without loss of generality we may assume that 0
is an isolated critical point. Since I ′′(0) is a Fredholm operator, we can use the
spectral theory to obtain a constant b > 0 and an orthogonal decomposition
E = E0⊕E+⊕E−, where E0 is the kernel of I ′′(0), E+ and E− are closed and
invariants under I ′′(0), and

〈I ′′(0)u, u〉 ≥ b ‖u‖2 , ∀u ∈ E+, (2.5)

〈I ′′(0)u, u〉 ≤ −b ‖u‖2 , ∀u ∈ E−. (2.6)

Now, let J be the functional given by Lemma 2.6, with ε > 0 such that
0 < ε < b

3 and ‖I ′′(u)− I ′′(0)‖ < b
3 , if ‖u‖ < ε. It is clear that J also satisfies

(I1) and (I2) for appropriated constants.
To prove Theorem 1.1 it suffices to show that J possesses a critical point

on the complement of Bε(0). Suppose, by contradiction, that this is not the
case. Then, by Proposition 2.5, there exists a critical point u of J such that
m(J, u) = dim V .

By our choice of ε and Lema 2.6, we obtain

‖J ′′(u)− I ′′(0)‖ ≤ ‖J ′′(u)− I ′′(u)‖+ ‖I ′′(u)− I ′′(0)‖ <
2b

3
.

Hence, by (2.5) and (2.6), we get

〈J ′′(u)u, u〉 ≥ b

3
‖u‖2 , ∀u ∈ E+,

〈J ′′(u)u, u〉 ≤ − b

3
‖u‖2 , ∀u ∈ E−.

Consequently,

m(I, 0) = dim E− ≤ m(J, u) ≤ dim
(
E0 ⊕ E−)

= m(I, 0).

The last expression and the hypotheses of Theorem 1.1 show that m(J, u) 6=
dim V . This concludes the proof of Theorem 1.1. ♦

By the above argument and repeated applications of Lemma 2.6, we get
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Proposition 2.8 Let E = V ⊕W be a real Hilbert space with V finite dimen-
sional and W = V ⊥. Suppose I ∈ C2(E,R) satisfies (SCe), (I1), (I2) and

(Î3) I possesses a finite number of critical points {uj}m
j=1 such that I ′′(uj) is a

Fredholm operator and either dim V < m(I, uj) or m(I, uj) < dim V , for
j = 1, . . . , m.

Then there exists a critical point u of I with u 6= uj , j = 1, . . . , m.

Finally, we state the version of the saddle point theorem, due to Silva [25]
(see also [23, 24]), that will be used in the proof of Theorem 1.3.

Theorem 2.9 Let E = V ⊕W be a real Hilbert space with V finite dimensional
and W = V ⊥. Suppose I ∈ C1(E,R) satisfies (I1), (I2) and (SCe)b for every
b ≥ γ. Then I possesses a critical value b ∈ [γ, β].

3 Proof of Theorem 1.2

We denote by | · |p the Lp(Ω)-norm (1 ≤ p ≤ ∞) and by ‖·‖ the norm in
E = H1

0 (Ω) induced by the inner product

〈u, v〉 =
∫

Ω

∇u · ∇v dx, ∀u, v ∈ H1
0 (Ω).

As mentioned previously, the condition (f1) implies that the functional I given
by (1.2) is of class C2, and the classical solutions of (1.1) are the critical points
of I. A standard argument [20, 6] shows that for ϕ,ψ ∈ H,

I ′′(0)(ϕ,ψ) =
∫

Ω

∇ϕ · ∇ψ dx−
∫

Ω

fs(x, 0)ϕψ dx . (3.1)

We denote by Ek the subspace of E spanned by {φ1, . . . , φk}, where {φ1, φ2, . . .}
is the orthonormal basis of E formed by the eigenfunctions associated to the
eigenvalues 0 < λ1 < λ2 ≤ . . . ≤ λn ≤ . . . of −∆ on Ω with zero boundary
conditions.

Given N ≥ 3, consider 2∗ = 2N
N−2 and set

S = S(N) = inf
u∈E, u 6≡0

∫
Ω
|∇u|2 dx

(∫
Ω
|u|2∗ dx

)2/2∗ > 0,

the best constant for the Sobolev embedding H1
0 (Ω) ↪→ L2∗(Ω). Note that S

depends only on the dimension N [29].
We start with a technical result

Lemma 3.1 Suppose f ∈ C(Ω × R,R) satisfies K(x) ≤ λj+1. Then, given
ε > 0, there exists Ω̃ ⊂ Ω and a constant M1 = M1(ε) > 0 such that µ(Ω\Ω̃) < ε
and

F (x, s) ≤ 1
2
(ε + λj+1)s2 + M1, ∀ s ∈ R, a.e. x ∈ Ω̃. (3.2)
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Proof. Effectively, given ε > 0, we apply the Egorov’s Theorem for the se-
quence

Gn(x) = sup
{

2F (x, s)
s2

| |s| ≥ n

}
,

to obtain Ω̃ ⊂ Ω such that µ(Ω \ Ω̃) < ε and

lim sup
|s|→∞

2F (x, s)
s2

≤ λj+1, unif. for a.e. x ∈ Ω̃.

The above expression provide r = r(ε) > 0 such that

F (x, s) ≤ 1
2
(ε + λj+1)s2, ∀ |s| ≥ r, a.e. x ∈ Ω̃. (3.3)

Now, by the continuity of F (x, s) on Ω× [−r, r],

F (x, s) ≤ M1, ∀ |s| ≤ r, a.e. x ∈ Ω.

The above expression and (3.3) prove the statement (3.2). ♦

Remark 3.2 If we suppose that for every r > 0 there exists Br ∈ L1(Ω) such
that

F (x, s) ≤ Br(x), ∀ |s| ≤ r, a.e. x ∈ Ω,

we obtain a version of the above result with M1 ∈ L1(Ω) without to assume the
continuity of f .

Now, we prove the compactness condition for the functional I.

Lemma 3.3 There exists 0 < α < µ(Ω) such that, if f ∈ C(Ω× R,R) satisfies
(f̂1), (F̂2), K(x) ≤ λj+1 and (NQ)+ with µ(Ω0) > α, then the functional I
satisfies (SCe).

Proof. Let (un) ⊂ E be such that I(un) → c ∈ R and I ′(un) → 0. If (un) is
bounded, hypothesis (f̂1) implies that (un) possesses a convergent subsequence.
Consequently, by Definition 2.1, it suffices to verify that ‖I ′(unj )‖‖unj‖ → ∞,
for every sequence (unj ) ⊂ (un) such that ‖unj‖ → ∞.

Arguing by contradiction, we suppose that there exists a subsequence, which
we will denote by (un), such that ‖un‖ → ∞ and ‖I ′(un)‖ ‖un‖ is bounded. This
assumption and the fact that I(un) → c provide M ∈ R such that

lim inf
∫

Ω

H(x, un) dx = lim inf [2I(un)− I ′(un)un] ≤ M. (3.4)

On the other hand, given ε > 0, for n sufficiently large, we have

1
2
‖un‖2 ≤ (ε + c) +

∫

Ω

F (x, un) dx. (3.5)
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Now, we apply Lemma 3.1 to obtain M1 > 0 and Ω̃ ⊂ Ω such that µ(Ω \ Ω̃) < ε
and

F (x, un) ≤ 1
2
(ε + λj+1)u2

n + M1, a.e. x ∈ Ω̃.

Considering N ≥ 3, we may use the above expression, (3.5), Hölder inequal-
ity, (F̂2) and the Sobolev Embeding Theorem, to obtain

1
2
‖un‖2 ≤ (c + ε) +

1
2
(ε + λj+1)|un|22 + M1µ(Ω)

+
∫

Ω\Ω̃

[
Au2

n + B
]

dx

≤ 1
2
(ε + λj+1)|un|22 + S−1|A|

L
N
2 (Ω\Ω̃)

‖un‖2 + M̃,

where M̃ = M̃(ε) = c + ε + M1µ(Ω) + |B|1, or equivalently
(

1
2
− S−1|A|

L
N
2 (Ω\Ω̃)

)
‖un‖2 ≤ 1

2
(ε + λj+1)|un|22 + M̃. (3.6)

Defining ũn = un

‖un‖ we may suppose that ũn ⇀ ũ weakly in E, ũn → ũ

strongly in L2(Ω) and ũn(x) → ũ(x) for almost everywhere x ∈ Ω. Thus,
dividing (3.6) by ‖un‖2, taking n →∞, ε → 0, we conclude that

1 ≤ λj+1|ũ|22. (3.7)

At this point, we claim that there exists a measurable set Ω1 ⊂ Ω0 with
positive measure such that

ũ(x) 6= 0, a.e. x ∈ Ω1. (3.8)

Supposing the claim, we use (NQ)+ and Fatou’s lemma to conclude that

lim inf
∫

Ω

H(x, un) dx ≥
∫

Ω

lim inf H(x, un) dx = ∞,

which contradicts (3.4).
To prove the claim we set

α = µ(Ω)−
(

S

λj+1

)N/2

> 0,

and suppose, by contradiction, that the claim is false. Then, by (3.7), we have

1 ≤ λj+1

∫

Ω

|ũ(x)|2 dx ≤ λj+1

[∫

Ω\Ω0

|ũ(x)|2∗ dx

]2/2∗

µ(Ω \ Ω0)2/N

≤ λj+1S
−1 ‖ũ‖2 µ(Ω \ Ω0)2/N ≤ λj+1S

−1µ(Ω \ Ω0)2/N < 1.

For N = 1 or N = 2, we use the Sobolev embedding H1
0 (Ω) ↪→ Lr(Ω), 1 < r <

∞, and the above argument for µ(Ω \ Ω0) sufficiently small. ♦
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Remark 3.4 We note that for K(x) ≤ λ1 the above result is valid with α = 0.
Effectively, on this case, we verify (3.8) with Ω1 = Ω0 using (3.7) and the
Poincaré’s inequality

1 ≤ λ1|ũ|22 ≤ ‖ũ‖2 ≤ 1.

The last expression shows that ũ is a λ1-eigenfunction and therefore ũ(x) 6= 0
a.e. x ∈ Ω.

The following lemma is a version of a technical result due to Costa-Magalhães
[7].

Lemma 3.5 Suppose f satisfies (NQ)+ and K(x) ≤ λj+1. Then

F (x, s)− 1
2
K(x)s2 ≤ −C+(x)

2
, ∀ s ∈ R, a.e x ∈ Ω.

Proof. Let g(x, s) = f(x, s)−K(x)s and G(x, s) = F (x, s)− 1
2K(x)s2. Then

we have
g(x, s)s− 2G(x, s) = f(x, s)s− 2F (x, s) .

Taking s > 0 and using (NQ)+, we obtain

d

ds

[
G(x, s)

s2

]
=

g(x, s)s− 2G(x, s)
s3

≥ C+(x)
s3

. (3.9)

Integrating the above expression on [s, t] ⊂ (0,∞), we get

G(x, s)
s2

≤ G(x, t)
t2

− C+(x)
2

[
1
s2
− 1

t2

]
.

Since K(x) ≤ λj+1, we have that lim supt→∞ t−2G(x, t) ≤ 0 for almost every-
where x ∈ Ω, and therefore

G(x, s) ≤ −C+(x)
2

, ∀ s > 0, a.e. x ∈ Ω.

The proof for s < 0 is similar. ♦
The above lemma is used to verify the condition (I2) of Theorem 1.1. The

next result is a version of Proposition 2 in [9] (see also [16]). It provides estimates
on subsets of Ω and it will be used to verify the hypothesis (I1) of Theorem 1.1.

Lemma 3.6 Suppose (F1) and L(x) 6≥ λj. Then there exist δ1, ε > 0 such that,
for every subset Ω̃ ⊂ Ω with µ(Ω \ Ω̃) < ε, we have

‖u‖2 −
∫

Ω̃

L(x)u2 dx ≤ −δ1 ‖u‖2 , ∀u ∈ Ej .
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Proof. By Proposition 2 in [9], the lemma holds for Ω̃ = Ω and δ̂1 > 0. Let
u ∈ Ej , Ω̃ ⊂ Ω. Supposing N ≥ 3, using Hölder inequality and the Sobolev
Embeding Theorem, we obtain

‖u‖2 −
∫

Ω̃

L(x)u2 dx = ‖u‖2 −
∫

Ω

L(x)u2 dx +
∫

Ω\Ω̃
L(x)u2 dx

≤ −δ̂1 ‖u‖2 + |L|∞S−1µ(Ω \ Ω̃)
2
N ‖u‖2

= ‖u‖2
(
−δ̂1 + |L|∞S−1µ(Ω \ Ω̃)

2
N

)
.

Hence, the lemma holds for δ1 = δ̂1/2 and ε > 0 sufficiently small. The argument
for the cases N = 1 or N = 2 is similar. ♦

Proof of Theorem 1.2 Without loss of generality, we may suppose that the
origin is an isolated critical point of I. Taking V = Ek and W = V ⊥, by Lemma
3.5, we have

I(w) =
1
2
( ‖w‖2 −

∫

Ω

K(x)w2 dx
)−

∫

Ω

[
F (x,w)− K(x)

2
w2

]
dx ≥ −|C+|1

2
,

for every w ∈ W . Consenquently, I satisfies (I2). To verify (I1), we first suppose
that L(x) ≡ λj . Then, using (1.4), we have

I(v) ≤ 1
2

(
‖v‖2 − λj |v|22

)
+ |D+|1 ≤ |D+|1, ∀ v ∈ V.

Thus, I satisfies (I1) on this case.
Now, let us consider L(x) 6≥ λj . Consider δ1, ε > 0 given by Lemma 3.6.

Using the same argument employed in the proof of Lemma 3.1, we obtain M1 =
M1(ε) > 0 such that

2F (x, v) ≥ (L(x)− ε)v2 −M1, ∀ v ∈ V, a.e. x ∈ Ω̃,

where Ω̃ ⊂ Ω satisfies µ(Ω \ Ω̃) < ε. Taking N ≥ 3, the above expression,
Lemma 3.6, (F2), Hölder inequality and the Sobolev Embeding Theorem imply

2I(v) ≤ ‖v‖2 −
∫

Ω̃

L(x)v2 dx + ε|v|22 + M1µ(Ω) + 2
∫

Ω\Ω̃

[
Av2 + B

]
dx

≤
(
−δ1 +

ε

λ1
+ 2S−1|A|

L
N
2 (Ω\Ω̃)

)
‖v‖2 + M1µ(Ω) + 2|B|1,

for every v ∈ V . Considering ε smaller if necessary, we conclude that I(v) →
−∞, when ‖v‖ → ∞. Thus, (I1) also holds on this case. The proof for N = 1
and N = 2 is similar.

Since f satifies (f1), I ′′(0) is a Fredholm operator. To establish the Morse
Index estimates, we suppose first that fs(x, 0) 6≥ λj+1. Using (3.1) and the same
argument employed on the proof of the Lemma 3.6, we obtain δ1 > 0 such that

I ′′(0)(u, u) = ‖u‖2 −
∫

Ω

fs(x, 0)u2 dx ≤ −δ1 ‖u‖2 , ∀u ∈ Ej+1.
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Consequently, m(I, 0) ≥ j + 1 > dim V . An analogous argument shows that,
m(I, 0) ≤ j − 1 < dim V , whenever fs(x, 0) 6≤ λj . Hence, I satisfies (I3). Now,
we invoke Lemma 3.3 and Theorem 1.1 to obtain a nonzero solution for (1.1).
♦

We also observe that the problem (1.1) can be considered under conditions
that are dual to (NQ)+ and (F1). More specifically, assuming

(F̂1) λj ≤ L(x) ≤ K(x) ≤ λj+1, a.e. x ∈ Ω. Furthermore, if K(x) ≡ λj+1,
there exist D− ∈ L1(Ω) such that

F (x, s) ≤ λj+1

2
s2 + D−(x), ∀ s ∈ R, a.e. x ∈ Ω,

and

(NQ)− there exist Ω0 ⊂ Ω with positive measure and C− ∈ L1(Ω) such that

(i) lim
|s|→∞

H(x, s) = −∞, a.e. x ∈ Ω0,

(ii) H(x, s) ≤ C−(x), ∀ s ∈ R, a.e. x ∈ Ω,

an argument similar to the one employed in the proof of Theorem 1.2 provides
the following theorem.

Theorem 3.7 There exists 0 < α < µ(Ω) such that, if f ∈ C1(Ω × R,R)
satisfies f(x, 0) ≡ 0, (f1), (f2), (F̂1), (F2) and (NQ)− with µ(Ω0) > α, then
the problem (1.1) possesses a nonzero solution.

4 Proofs of Theorems 1.3 and 1.4

We start by observing that, under hypothesis (f̂1), the functional I given by
(1.2) is of class C1 in E = H1

0 (Ω) and that the weak solutions of (1.1) are the
critical points of I.

Proof of Theorem 1.3 The same arguments employed in the proof of The-
orem 1.2 show that I satisfies (I1) and (I2). Thus, we may invoke Lemma 3.3
and Theorem 2.9 to derive the existence of a critical point for I. ♦

Considering the dual conditions (NQ)− and (F̂1), we may apply the above
argument to prove

Theorem 4.1 There exist 0 < α < µ(Ω) such that, if f ∈ C(Ω×R,R) satisfies
(f̂1), (F̂1), (F2) and (NQ)− with µ(Ω0) > α, then the problem (1.1) possesses
a weak solution.

Finally, let us establish the multiplicity of solutions for the resonance at the
first eigenvalue.
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Proof of Theorem 1.4 Using (f̂1), (F̂2), K(x) ≤ λ1 and Remark 3.4, we
conclude that I satisfies (SCe). The Lemma 3.5 and the argument used in the
proof of Theorem 1.2 imply that I is bounded from bellow. Thus, by (SCe),
the infimun of I is attained at a critical point u ∈ E. Hence, to prove Theorem
1.4, it suffices to verify that I(tφ1) ≤ 0, for some t > 0, where φ1 is the first
eigenfunction of −∆ on Ω with zero boundary conditions.

Suppose first that L0(x) ≡ λ1. The regularity of φ1 implies that, for t > 0
sufficiently small, we have 0 < tφ1(x) < r2 for a.e. x ∈ Ω, with r2 given by (f̂2).
Thus, we may use (1.5) to obtain the desired inequality

I(tφ1) =
1
2

∫

Ω

λ1(tφ1)2 dx−
∫

Ω

F (x, tφ1) dx ≤ 0 .

Now, let us consider L0(x) 6≥ λ1. Then, given ε > 0, we may use the
definition of L0(x) and the same argument of the proof of Lemma 3.1, to obtain
Ω̃ ⊂ Ω such that µ(Ω \ Ω̃) < ε and

F (x, s) ≥ 1
2
(L0(x)− ε)s2, 0 < s < r, a.e. x ∈ Ω̃, (4.1)

for some constant r = r(ε) > 0. Furthermore, we may suppose that ε and r are
so that ∫

Ω̃

(L0(x)− λ1)φ2
1 dx ≥ α > 0, (4.2)

and r < r1, with r1 given by (F3). This last relation implies that

m = inf
0<s<r

F (x, s) ≥ 0. (4.3)

Now, using the regularity of φ1 one more time, we have that 0 < tφ1(x) < r,
for t > 0 sufficiently small and for almost everywhere x ∈ Ω. Considering
(4.1)–(4.3), we obtain

2I(tφ1) ≤
∫

Ω

λ1(tφ1)2 dx−
∫

Ω̃

(L0(x)− ε)(tφ1)2 dx

−
∫

Ω\Ω̃
F (x, tφ1) dx

≤ −t2
[
α− ε

(|φ1|22 + λ1|φ1|2∞
)]

.

Taking ε smaller, if necessary, we conclude that I(tφ1) < 0, for every t > 0
sufficiently small. This concludes the proof of Theorem 1.4. ♦
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