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ABSTRACT

Existence and multiplicity of solutions are established, via the
Variational Method, for a class of resonant semilinear elliptic
system in RY under a local nonquadraticity condition at infin-
ity. The main goal is to consider systems with coupling where
one of the potentials does not satisfy any coercivity condition.
The existence of solution is proved under a critical growth
condition on the nonlinearity.
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1. INTRODUCTION

This paper is concerned with the existence and multiplicity of solutions
for the system
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1516 FURTADO, MAIA, AND SILVA

—Au+a(xyu = F,(x,u,v), xeRY, (P)
—Av+b(x)y = F,(x,u,v), xeR",

where N > 3 and the potentials @ and b are positive continuous functions. In
the scalar case Rabinowitz!*®! showed the existence of a nontrivial solution
by assuming that the nonlinearity is superlinear with subcritical growth and
the potential is coercive. In Ref. [3] Bartsch & Wang consider the scalar case
under assumptions similar to those in Ref. [23] and a condition weaker than
coercivity for the potential. Proving that the associated functional satisfies
the Palais-Smale condition they were able to establish existence and
multiplicity of solutions. We should also mention the articles!?’-*%4816.19]
where the scalar case is considered.

We observe that there exists an extensive bibliography in the study of
elliptic systems on bounded domains (see Refs. [17,10,14,9] and references
therein). In particular, we should mention the articles!”-**! where a condition
on Fsimilar to the one used here is assumed. For systems in R" we refer the
interested reader to the articles!!'*'?) where Hamiltonean elliptic systems
are considered. In the case of gradient systems in R", Costal® proves the
existence of a nonzero solution for (P) under the coercivity of the potentials
a and b, and a nonquadratic condition on F. One of the main goals of this
article is to consider (P) in a class of resonant systems that allow us dealing
with it without any coercivity condition on one of the potentials. More
specifically, we suppose

(A;) there are constants ay, by > 0 such that a(x) > ay, b(x) > by for all
xeRY,
(4,) forevery M >0

n(fx € RY 1 b(x) < M}) < oo,

with u denoting the Lebesgue measure in R .

We observe that condition (A4,) was introduced by Bartsch &
Wang?®! for the scalar case. To compensate the lack of coercivity on
the potential @ we suppose that the system is coupled in the following
sense

F(x,z) — Muv

(F)) lim =0, uniformly for a.e. x € RY,

|z| 00 1z)?
where A is a positive eigenvalue for the associated coupled linear problem

{—Au—i—a(x)u:kv, x e RY, (LP)

—AV+b(x)y = ru, xeRY
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SOLUTIONS FOR RESONANT ELLIPTIC SYSTEM 1517

In our first result we establish the existence of a solution for the system
(P) by verifying that the associated functional satisfies the hypothesis of a
version of the Saddle Point Theorem!! characterized by the fact that it
requires a compactness condition with respect to the weak topology of the
space. This fact allows us to deal with a nonlinearity satisfying the critical
growth condition.

Considering 2* = (2N)/(N — 2) the critical Sobolev exponent and
denoting by VF(x, z) the gradient of F with respect to the variable z € R,
we assume

(F,) FeC (R xR R),

(F5) there are constants ¢;,¢, > 0 and 2 < o < 2* such that
IVF(x,2)| < ezl + ealzl,  V(x,2) e RN x R?,

(Fy) there are constants ¢3, ¢, > 0 and B € L¥(R") such that

5(2“”) P, V(x,z) e RY x R

|F(x,2)| < eslul |v] + cqlv* +

where j satisfies

lim sup B(x) = B < ayp.

|x|—00

In order to establish the existence of a solution for (P), based on a
previous work,!"*! we assume a local nonquadraticity condition on F: given
y > 0 we set

Q, = {x eRY : b(x) < l,\,%}
dy

and suppose
(NQ) there exists y > (ay/(ag — ,300))2 and 4 € L'(R") such that

|l‘im VF(x,z) -z =2F(x,z) =00, a.e. x€Q,
|v|—00

VF(x,z) -z —2F(x,2) > A(x),  V(x,2) e RY x R?

where a - b denotes the usual inner product between a, b € [R’. The reader
should be aware that €2, for this choice of y, is a nonempty open subset
of RY (see Remark 3.3). Now we may state a result on the existence of
solution.
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1518 FURTADO, MAIA, AND SILVA

Theorem 1.1. Suppose (A,) and (Ay) hold. If F satisfies (F))—(F4) and (NQ),
then problem (P) possesses a solution.

In our next result we study the existence of a nontrivial solution for the
system (P) when F(x,0) = VF(x,0) = 0 and F satisfies

(F) FeCRYxRLR),
(1/7\3) there are constants ¢;,¢, > 0 and 2 < o < 2* such that
ID’F(x,2)| < ¢l 42 V(x,2) e RY xR,

(F,) there are constants cs,cgp,q¢ >0 with 2p+2%¢>2(2*—1) and
p+q<2"—1and g e L°R") such that

IF, (2| < eslul’|? + caly| + B)Nul, ¥ (x,2) € RY x R?,
where B satisfies

limsup B(x) = B < ay,

Ix]—o00
(Fs5) D*F(x,0) = D’F(0) and we have either

(1) Fu(0), F,,(0)=0 and 2; < F,,(0) + v Fu(0)F,,(0),
or

(i) F,(0), F,,(0) <0,F,(0)>—A; and

)‘k—l > FMV(O) -V Fuu(O)Fw(O)

Under these conditions we are able to prove

Theorem 1.2. Suppose (A,) and (4,) hold. If F satisfies (F,), (Fs)—(Fy), (Fs),
(NQ) and F(x,0)= VF(x,0)=0, then problem (P) possesses a nonzero
solution.

Our final task is to verify the existence of multiple solutions for (P)
under the assumption that the primitive is even with respect to the variable
z. In order to obtain such result we apply a version of the Symmetric
Mountain Pass Theorem of Ambrosetti-Rabinowitz.'**! Since we need a
compactness condition with respect to the norm topology we assume (F3)

with o < 2* and

~ 1
(Fs) F(x,z>—5Az-z=o(|z|2), as |z| — 0,



ﬂ MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016

™
©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

SOLUTIONS FOR RESONANT ELLIPTIC SYSTEM 1519

where 4 = |:“1 MZ] is a symmetric matrix such that wy, u3 < 0, u, > —A;
and U2 U3

Mo — Ny < Aj < A

(Fg) F(x,z) is even with respect to the variable z € R?.
Now, we may state

Theorem 1.3. Suppose (A,) and (A,) hold. If F satisfies F(x,0) =0, (Fy),
(Fy), (F3) witho < 2%, (Fy), (Fs), (Fs) and (NQ), then problem (P) possesses
k — j pairs of nonzero solutions.

As in Ref. [23], Theorems 1.1-1.3 will be proved by finding critical
points for the associated functional defined on an appropriated Hilbert
space. In Section 2, we state the abstract results that we need to prove
our main theorems. There we also obtain the variational characterization
of the eigenvalues of the coupled linear system (LP). In Section 3 we prove
Theorem 1.1 and in Section 4 we present the proof of Theorem 1.2. Finally,
in Section 5, we prove Theorem 1.3.

2. PRELIMINARIES

In this section we present some abstract results that will be used in
the proofs of Theorems 1.1-1.3. We also study the linear problem associated
to (P).

Let E be a real Hilbert space and /: E — R a functional of class
C'. We recall that a sequence (z,) C E is said to be a Palais-Smale
sequence if I(z,) — ¢ and I'(z,) = 0 as n— co. As it is well known,
minimax theorems are based on the existence of a linking structure and
on deformation results. In general, in order to derive such deformation
results, the functional must satisfy a compactness condition. In this arti-
cle, we deal with a condition introduced by Silva in Ref. [26] and defined
bellow.

Definition 2.1. The functional / € C'(E, R) satisfies the strong Cerami con-
dition [(SCe)] if any Palais-Smale sequence (z,,) C E such that ||z, ||||11'(z,)| is
bounded possesses a convergent subsequence.

To establish the existence of a critical point for the functional we only
need a version of the (SCe) condition for the weak topology.
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1520 FURTADO, MAIA, AND SILVA

Definition 2.2. The functional I € C'(E, R) satisfies the strong Cerami con-
dition for the weak topology [(SCe)’] if any Palais-Smale sequence (z,,) C E
such that ||z,|||1I'(z,)| is bounded possesses a subsequence which converges
weakly to a critical point of 1.

Assuming the above condition, we have the following version of the
abstract results in Refs. [24,26].

Theorem 2.3. Let E =V @& W be a real Hilbert space with V finite dimen-
sional and W = V*. Suppose I € C'(E,R) satisfies (SCe)’ and

(1) there exists B € R such that 1(z) < B, for all zin V,
(L) there exists y € R such that 1(z) > y, for all z in W.

Then I possesses a critical point.

Proof. Arguing by contradiction, suppose that I does not have a critical
point. Then, [ satisfies (SCe). Indeed, in this case we do not have any
Palais-Smale sequence (z,) C E such that |z,||||[I'(z,)| is bounded because,
otherwise, / would have a critical point since it satisfies (SCe)’. Invoking
Theorem 2.13 in Ref. [26], we obtain a critical point for /. This concludes
the proof of the theorem. O

For the proof of Theorem 1.2 we apply the following version of the
Lazer—Solimini’s theorem!"® proved in Ref. [13] (see also Ref. [20] for a
related result).

Theorem 2.4. Let E=V @& W be a real Hilbert space with V finite dimen-
sional and W = V*. Suppose I € CI(E, R) satisfies (SCe), (I;), (1) and

(Iy) the origin is a critical point of I, D*1(0) is a Fredholm operator and either
dim V < m(1,0) or m(1,0) < dim V.

Then I possesses a nonzero critical point.

Here, m(1,z) [m(l,z)] denotes the Morse index [augmented Morse
index] of the functional 7 at the point z.

Theorem 1.3 will be proved by applying the following version of the
symmetric Mountain Pass Theorem.!*¥

Theorem 2.5. Let E = V & W be a real Hilbert space with V finite dimensional
and W = V*. Suppose I € CI(E, R) is even and satisfies 1(0) = 0, (SCe) and

(I4)  there exists a finite dimensional closed subspace 1 of E and B € R such
that V.o V and I(z) < B, for all zin V,
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SOLUTIONS FOR RESONANT ELLIPTIC SYSTEM 1521

(Is) there exists p>0 such that I(z) >0, for all z in B,(0)NW.

Then I possesses dim V' — dim V' pairs of nontrivial critical points.

Actually, in Ref. [24], Theorem 2.5 is stated for the Palais-Smale con-
dition. The version of the (SCe) condition is based on a deformation lemma
proved in Ref. [26].

For applying the abstract results we set £ = E, x E, where

E,= {u e WHRY,R) : fRN(WuF + a(x)u?) dx < oo}
and
E, = {v e WHRY,R) : /RN(WVF + b(x)V*) dx < oo}
endowed with the inner product
(@) = [ (u¥o+ TvTy + axhup + B0 d
and associated norm given by
IzlI> = /RN(|Vu|2 + Vv + a(x)u? + b)) dx, Vz=(uv)€E.

2.1)

For z € E the functional
1 2

I(z) =5zl = | F(x,z)dx (2.2)
2 RY

is well defined and of class C! via (F,) and (F3). Moreover the critical points
of I are precisely the weak solutions of the system (P).

The conditions (A4;), (4,) and the Sobolev Theorem imply that the
immersion E < L'(R" R) x L*(R",R) is continuous for 2 <s <2*. In
Ref. [3] it is proved that, in fact, the embedding E, < L'(RY,R) is
compact for 2 < s < 2*. It is worthwhile mentioning that in our problem
the embedding E < L*(RY,R) x L*(R",R) may not be compact. This fact
is compensated by the coupling of the system.

For the sake of completeness we prove a proposition that generalizes
for the system (P) a well known fact for the scalar case.
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1522 FURTADO, MAIA, AND SILVA
Proposition 2.6. Suppose F satisfies (Fy)—(F3). Then every bounded sequence
(z,) C E such that I'(z,) — 0 possesses a subsequence which converges weakly

to a critical point of 1.

Proof. Let (z,) C E be a bounded sequence such that I'(z,) — 0. We may
assume that

(2.3)

z, =~z in E,
z,(x) = z(x), ae. xeRY.

It suffices to show that, for every w € E, we have
/ VF(x,z,) - wdx — / VF(x,z)-wdx.
RN RN

Given ¢ > 0 we set QF = RM\Bg(0), for R >0, and use (F;) and
Holder’s inequality to obtain

*_
/WF(x,zn)-wmxsclf 2P ‘|w|dx+c2/ (zal] dix
QR QR QR
2*—1
< ezl Il ey + eallzall 2

Since (z,) is bounded and w € L*(R) N Lz*(IRN), we obtain

/ |VF(x,z,) w|dx < (2.4)
QR

€
3 b
for R sufficiently large. Taking R larger if necessary, we may suppose that

/QR [VF(x,z) - w|ldx < g (2.5)

On other hand, by (2.3), (F3) and the Lebesgue Convergence Theorem,
there exists ny € N such that

/ |VF(x,z,)-w— VF(x,z)-w| <§, Y n > ng.
Bi(0) 3
The above estimate, (2.4) and (2.5) show that
/ |VF(x,z,)-w—VF(x,z) -w|ldx <&, ¥V n=>ny.
[RJ\'
This concludes the proof of the proposition. U

An immediate consequence of the above proposition is
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Corollary 2.7. Suppose F satisfies (Fy) — (F3). If every Palais-Smale sequence
(z,) C E such that | z,|I|I'(z,)| is bounded possesses a bounded subsequence,
then I satisfies (SCe)’.

Now, we proceed with the study of the linear interchanged eigenvalue
problem

{ —Au+a(x)u=xr, xeR", (LP)

—Av+b(x)y=ru, xeRY.

A simple calculation shows that X is an eigenvalue of (LP) if, and
only if,

1
T(,v) =5 (),
where T : E — E is a selfadjoint bounded linear operator defined by
T @) = [ -+ upa
Moreover, the following result holds.
Lemma 2.8. Suppose (4,) and (A,) hold. Then T is a compact operator.
Proof. Let (z,) = (u,,v,) C E be a sequence such that z, — z = (u,v) in E.
Writing 7 = (T}, T) and using the compact embedding of E;, in L*(R") we
have that v, — v in L*(RY) and Ty(z, — z) = 0 in L*(R"). Now, by the
definition of T,
0< <T(zn —2),T(z, — Z))
= [ 0= = dx+ [ - 0Tz, - ay
RY RN
< e = vl 1Tz — Dl 2 + Ny — ull 21 T5(2, — 2l 2.

Since T and |lu, — u||;> are bounded we conclude that 7(z,) — T(z). The
lemma is proved. Ul

Observing that (u,—v) is an eigenfunction associated with the eigen-
value —XA whenever (u,v) is an eigenfunction associated to A, we invoke
Lemma 2.8 and the spectral theory for compact operators to conclude
that (LP) possesses a sequence {A,,},,cz+ of eigenvalues

'S)umf"'f)»fzi)»q<0<)»1S)»2§"'§)»m§"',
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such that Ay, — *oo as m — oco. Furthermore, denoting by {¢,}ncz
the orthonormal basis of eigenfunctions associated to the sequence
{Am}mezs, the variational characterization of the eigenvalues provides
the inequalities

1
SI <k [ wvds Vi= () espanlpinvnl 26
and

1
ﬂﬁzmﬂ@wM,W=MWHMMW%mwwﬁ
(2.7)

where A, is a positive eigenvalue. For negative eigenvalues we have analo-
gous inequalities. In particular,

1
E”ZHZZ _)"1[ Mde’ VZZ(M, V) € Span{(p—h(p—Zs"-’(p—l‘n’"'}'
RN
2.8)

Finally we observe that, by the orthogonality of the eigenfunctions and
the definition of 7 we have that, if ¢, = (u;,v;) and ¢, = (u,,, v,,), with
! # m, then

/Rw(ulvm + umvl) dx = 0. (29)

3. PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1 by verifying that the functional 7
defined in (2.2) satisfies the hypotheses of Theorem 2.3.

Considering k& given by (F;) we set V = span{¢;, ¢,,...,¢;_1} and
W =Vt (without loss of generality A,_; <A, and V =¢ if k=1). In
order to show that 7 satisfies (SCe)’, we use the following technical result.

Lemma 3.1. Suppose F satisfies (F,) and (Fy). Then, given R > 0 and ¢ > 0,
there exists M = M(R) > 0 such that

/ F(x,z)dx < M + <g +ﬂ;°°> IzI?, VzekE. (3.1)
{1z1<R} 2aq

Proof. Given € > 0, the compact embedding of E, in L*(R") and the
Monotone Convergence Theorem imply that there exists R; > 0 such that
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/ o bPde<E Yzl =1 (32)
RY\Bg, (0)

Taking R; larger if necessary, using the above estimate and Holder’s
inequality we get

/, lullv| <& Vzll =1 (3.3)
RY\Bp, (0)

Invoking (F,), we also may suppose that

B(X) < B +8  VIx| > R

Defining the sets

Q' ={lzl < RN Bg,(0) and Q= {|z| < R} N RY\Bg, (0)),
we can use (3.2), (3.3), the above inequality, (F>) and (F,) to obtain

/ F(x,z)dxf/ F(x,z)dx+/ (c3|u||v|+c4|v|2+@|u|2>dx
{IzI<R} Q! o2 2

~ . €
<M+ C38+C48+7+/3ﬁ 21>
2610 2a0

Taking € > 0 sufficiently small we conclude the proof of the lemma. O

The following result provides the compactness for the functional /.
Hereafter we use the notation

IzlI3= f (IVul* + a(x)u® + |Vv|* + b(x)v?) dx
Q

for a measurable set 2 c R and z = (u,v) € E. We also denote by S a
positive constant such that ||z||i2 < S|iz|I%, for all z € E.

Proposition 3.2. Suppose F satisfies (Fy)—(F4) and (NQ). Then I satisfies
(SCey'.

Proof. Let (z,) C E be such that I(z,) — ¢, I'(z,) — 0 and ||z,||I|I'(z,)]l is
bounded. In view of Corollary 2.7, we need only to verify that (z,) possesses
a bounded subsequence. Arguing by contradiction, we suppose that
llz,l| = oo. Since I(z,) = ¢ and |z,|[|I'(z,)] is bounded there exists
M > 0 such that
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liminf / H(x,z,)dx = liminf [Zl(zn) — I/(zn)zn] <M, (3.4)
rRY

where H(x,z,) = VF(x,z,) -z, — 2F(x,z,). On the other hand, for » suffi-
ciently large, we have

%uznn2 <(c+D+ / F(x,z,) dx. (3.5)
RN

Given ¢ > 0, the hypothesis (F;) implies that there exists R > 0
such that

F(x,z) < My +¢lz]>, VxeRY, |zl > R.

Using this inequality and (3.5), we get

1
Sl =M+ [ Gududivd +elz P v+ [ Fenz)a
{IzI>R} {lzI<R}

and therefore

1

L= 2se)lz, 17 < M, +Akf |u,1||vn|dx+/ F(x,z,) dx.

2 RY {Iz1=R}

Now we use Lemma 3.1 to obtain

v 2

Szl = Mo+ [ Jugllv,l dx, (3.6)

2 R
where v =1—2&(S + 1) — (Bso/ap)-

Let ¥ be given by (NQ). Since y > (ay/(ap — Bs,))* We choose & > 0
sufficiently small such that vy > 1 and vy > v™'. Taking § > 0 such that
vy > 146> v~!, we can use (3.6) and Young’s inequality to get

Vv

2(||Zn||§2y+/ ) |VZ,1|2d)C) +G(Zn)§M2 +)‘k/ |Mn||Vn|dX, (37)
RYM\Q, Q,

where G(z,) = [ o (H1 ()t + Hy(x)v;) dx, with

H(x) = % (va(x) _ % ) and  Hy(x) = % (vb(x) -

A (1 +68)
146 '

dy
(3.9)

Hypothesis (4,), the definition of €2, and the choice of § provide
Vi, v, > 0 such that
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Vi V2 N
H{(x) > ?a(x), H,(x) > 3b(x), VxeRNQ,.
Setting vy = (1/2) min{v, v;, v,}, the above expression and (3.7) imply

wwmzsﬂh+w%/ 4y 1V, ] . (3.9)
QV
Defining 2, = (%,,7,) = 1/(1z4)(Ju,], [v,]). we may assume that

U, =~ in LX(Q,),
¥, =V in LX(RQ,).

Hence, by (3.9), we get

VOS)"/(/ uv.
Q

14

Since we are supposing that ||z,|| goes to infinity, the above expression
implies that lim,,_, o |u,(x)| = oo and lim,,_, , [v,(x)| = oo on a subset of 2,
with positive measure. Finally, using the Fatou’s lemma and (NQ), we have

lim inf/ H(x,z,)dx > / liminf H(x, z,) dx = oo.
[RN RN
This contradicts (3.4) and concludes the proof of the proposition. ]

Remark 3.3. By taking F(x,z)=Auv and z, = ng,, the proof of
Proposition 3.2 up to (3.9) implies that Q, # @ for every y > 1.

The next result is a version of Lemma 3.1 in Ref. [6] (see also Ref. [13])
and will be used to check condition (/) for the functional 1.

Lemma 3.4. Suppose F satisfies (Fy) and (NQ). Then
A(x)

F(x,z) — Muv < - VzeR? ae xeRY

Proof. Defining G(x, z) = F(x, z) — A,uv, we have
VG(x,z) -z —2G(x,z) = VF(x,z) - z — 2F(x, z).

Thus, for any s > 0 and z € R? such that [z] = 1, by (NQ), we have

d [G(x, sz)] _ VG(x,sZ) - (s2) — 2G(x, sZ) - A(x)'

ds 52 53 53
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Integrating over [s, f] C (0, 00), we get

G(x, sZ) - G(x,1z)  A(x) [ 1 1 :|

L = 2 |2 A

Taking the limit as 7 goes to infinity on the above expression and using (F),
we conclude that

A
G(x,s52) < —%, Vs>0,zeR st Z] =1, a.e. xe€ RV,
The argument for s < 0 is similar, hence the lemma is proved. ]

The next proposition establishes the geometric conditions for the
associated functional.

Proposition 3.5. Suppose F satisfies (Fy), (F,), (F,) and (NQ). Then the
functional I satisfies (1) and (I,).

Proof. For any z € W we have, by (2.7) and Lemma 3.4,

: Al
10 =310 = [ was— [ Rz - agam vz -1

Consequently, [ satisfies (/).
In order to verify (/;) we first observe that (2.6) and the definition of V
provide § > 0 such that

1
Nzl =Ax | wvdx < =8|z|I>, VzeV.
2 RY

Hence,
I(z) < —51z|I? +/ (Muv — F(x,z))dx, Vzel.
RY

Given ¢ > 0, we may use (F;) to obtain R > 0 such that
|F(x,z) — Muv| < gz, VxeRY, |z >R
and therefore
I(z) < —5||z|? +8f |z|? dx+/ (Alullv] — F(x,z))dx, Vzel.
RY {lzI=R}

Since dim V' < oo, the above inequality, (F;), (F,) and a similar argument to
the one employed in the proof of Lemma 3.1 imply that there exist
M; = M{(R) > 0 such that

1(z) < My + (=8 + &(S + 1)|1z)|.



ﬂ MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016

™
©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

SOLUTIONS FOR RESONANT ELLIPTIC SYSTEM 1529

Taking ¢ > 0 sufficiently small we have that /(z) - —oc as ||z|| > o0,z € V.
This concludes the proof of the proposition. O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Conditions (F,) and (F3) imply that / € C'(E,R) and
the critical points of I are the weak solutions of (P). In view of Proposition
3.2 the functional 7 satisfies (SCe)’. Furthermore, by Proposition 3.5, [
satisfies the geometric conditions (/) and (I;). The proof of Theorem 1.1
is concluded by invoking Theorem 2.3. ]

4. PROOF OF THEOREM 1.2

In this section we prove Theorem 1.2. We begin by showing that 7
satisfies (SCe).

Proposition 4.1. Suppose F satisfies F(x,0) =0, (Fy), (I::z) - (F:;) and (NQ).
Then the functional I satisfies (SCe).

Proof. Let (z,) CE be a Palais-Smale sequence such that |z,[x
II'(z)| < M < oo. Since F(x,0) =0 we can use (F)), (F3) and (F4) to
show that condition (F4) holds. Hence, in view of Proposition 3.2, we
may suppose that (z,) is bounded and z, — z, with z a critical point of I.
Furthermore, up to a subsequence, we have

U, =~ u in E,,

u, = u in L, (RY), 2 <5 < 2%,

u,(x) = u(x), ae. xeRY, 4.1
v, =V in Ej,

V, =V in LY(RY), 2 <5 < 2%,

Our objective is to verify that u, — u in E,. Recalling that I'(z,) — 0
and I'(z) = 0, we get

e, — ullz, = NNz, — 2t u) + llullZ,
<o(l)+ f Fo6, 20)aty — u) e+ f Foe, ) — uy) d,
RY RY
4.2)
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as n goes to infinity. Given 0 < ¢ < B, — ay, we claim that

Boo +€
ay

/ Fu(xs Zn)(un - Ll) dx = 0(1) + < )”un - u”zEua as n — oQ.
RY
4.3)
Indeed, defining G(z,) = fRN F,(x,z,)(u, — u)dx, we may use (ﬁ) to obtain
R > 0 such that
G(Zn) = 03/ |un|p|vn|q|un - M| dx + 04[ ! |Vn||un - M| dx
RY RY

+ BOOuy|luy — ul dx
By(0)

+ (Boo + ©) (lullt, — ul + |u, — ul®) dx. (4.4)
RV\B(0)

First note that, by the local convergence in (4.1),

By, — uldx — 0, as n — oco. (4.5)
Br(0)

Since u,(x) — u(x) for almost everywhere x € R" and |u, |’ |u, — ul is

bounded in L?/?TDRY), we have that |u,|’|u, —ul — 0 in L*/P*D(®RY)
(see Lemma 4.8 in Ref. [15]). Hence,

/\ lut, [P v, ||, — 1| dx — 0, as n — oo, (4.6)
RY

because |v,|? — [v|? in LZ/PTDRY) from 2 < (2*¢)/Q" — (p+ 1)) < 2*
and (4.1). Analogously

/ valluy, —uldx — 0, / lul|lu,, — ul dx — 0, 4.7)
RrRY RN\ Bz(0)

as n goes to infinity. For the second term of the last integral in the right hand
side of (4.4) we have

(Boo +8) |, — ul* dx < (’3°°+8)||u,, —ullz, .

RV\ Bz(0) ay

This and equations (4.4)—(4.7) prove the claim. In a similar way

/ F,(x,z2)(u—u,)dx — 0, as n— oo.
RJ\’
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The above inequality, (4.2) and (4.3) shows that
(1 —@)Hun - u||i~u <o(l), as n— oo.
0

By our choice of ¢ we conclude that u, — u in E, and therefore the propo-
sition is proved. O

Proof of Theorem 1.2. Since VF(x,0) = 0, we may suppose, without loss of
generality, that 0 is an isolated critical point of /. By Proposition 4.1, 1
satisfies (SCe). As mentioned before, conditions (F)), (F3), (F4) and
F(x,0) = 0 imply that (F,) holds. Thus, by Proposition 3.5, the geometrical
conditions (/;) and (I,) are satisfied. In order to verify that D?I(0) is a
Fredholm operator we first note that

D*1(0)(z, 2) = ||z||> = F,,,(0) / u? dx — / (2F,,(O)uv + F,,(0)v*) dx.
RN RN

Since, by (}/7:1), F,(0) < By < ag, the above expression implies that D*1(0) is
of the type L — K, where L is an isomorphism and K is compact.

In view of Theorem 2.4, we need only to verify that m(/,0) > dim V' or
m(I,0) < dim V. Suppose first that (F5) (ii) holds and

Fuv(o) Y Fuu(O)Fvv(O) < )‘k—l < Fuv(o) + \Y Fuu(O)Fvv(O)‘ (48)

For z = (u7 V) € (Span{q)l’ (2R (/’kfz})l = W/c—z we haVe, by (27)9

D*1(0)(z,2) > Ay f uv dx — / D*F(0)(z,2)dx = / 0(z) dx,
RN RN [RJ\'

where Q(z) is a quadratic form represented by the positive definite
symmetric matrix

Q — _Fuu(O) Al — Fu‘,(O)
Ai—1 — F,,(0) —F,,(0) )

Thus, m(1,0) < dim V.
In the case that

)‘kfl = Fuv(o) + Fuu(O)Fvv(O)s (49)

given z = (u,v) € Wy_,, we write z =z 4z with

7 = (u_7 V_) € Span{(pfla P25 9§07j’ .. }
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and

ZF =", v") e spanfpr, ¢, ..., ..} N Ws.
By (2.7)+2.9), we get

D*I(0)(z,2) = —2(A; + F,,(0)) / u v dx
RY
+ 20t — Fi(0) / v dx
RN
- / (Fuu(o)uz + FVV(O)VZ) dx.
RN

This and the hypothesis (F5) (i) implies that D’I (0)(z,z) > 0 for all
z € Wj._, with z # 0. Hence m(/,0) < dim V' when (F5) (ii) holds.

We claim that m(/,0) > dim V' when the condition (F5) (i) is satisfied.
Indeed, if A, < F,,(0) we have, by (2.6),

D*1(0)(z,2) < 2(x — F,,(0)) / uvdx — / (Fu0)u* + F,,(0)v*) dx < 0
RN IR.N

for all z=(u,v)€span{g|,@,,....,¢\{0}, since [pvuvdx >0. Thus,
m(I,0) > dim V. In the case that

Fuv(o) =< )‘k < Fuv(o) + Vv Fuu(O)Fvv(O)

we may have F,,(0) > 0 and F,,(0) > 0. By analyzing a quadratic form as
before we also have m(/,0) > dim V. The proof is complete. Ul

Remark 4.2. Condition (Fs) in the previous result can be replaced by related
conditions. For example, if F,,,(x,0) and F,,(x, 0) are non-negative functions
on LY 2([RN ) and A, < F,,(x,0), then the same argument employed before
shows that m(/,0) > dim V. If we suppose that F,,(x,0),F,(x,0) and
F,(x,0) are in L"*(RY) and satisfy F,,(x,0) > 0, F,,(x,0) > 0 and

Fipy(3,0) = v/ Fyu(x, 0)F(x, 0) < Ay < Fip(x, 0) + v/ Fu(x, 0)F,,(x, 0),

for all x € RY, then we also have m(I,0) > dim V.

5. PROOF OF THEOREM 1.3

In this section we will prove Theorem 1.3. In view of (Fgz) and
F(x,0) =0 we have that [ is even and satisfies /(0) = 0. Moreover, by
Proposition 4.1, the functional 7 satisfies (SCe).
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Considering &, j given by () and (F’S) we set V=
span{ei, ¢2,..., 91} W =V* and V =span{¢;,¢,...,¢1}. By the
definition of ¥ and Proposition 3.5, condition (/) is satisfied. Thus, in
view of Theorem 2.5, we need only to verify that (/5) holds. With this
purpose, for the matrix A4 given by (Fs) and z € E, we define

U(z) = ||z||2—/RN Az - zdx.

With this setting, we can use (1:";) and the subcritical growth (F3) to obtain
1 1 1 )
10=390) ~ [ (Fen2) =342z Jde=gv@ +oll), 6D

as |zl — 0. Now we claim that there exists @ > 0 such that
Y(2) > alzl’, YzeW. (5.2)

This fact and (5.1) imply that condition (/5) holds and therefore we may
invoke Theorem 2.5 to obtain dim ¥ — dim V = k — j pairs of distinct non-
zero critical points for 1.

It remains to prove the claim. Consider first the case that

Mo — NIy < Aj < fo + /113 (5.3)

This assumption and the hypothesis (f‘s) imply that the matrix
_ —H )
0= |:)\j — M2 M3 }
is positive definite, and therefore there exists «; >0 such that

0z -z > ay|z), for all z € R*. Now, we define

1
W= Span{(p_/a Ditls- -+ 9@/-&-[}9

where A; = Ay = - = Ay < Ajp4q, and w? = w n (W't By this setting
we have the orthogonal decomposition W = W' @ W?2. Hence, for any
=+ e W & W we get

V@ = IR+ 129 =2 [ @ i) dvr [0z zas

R N

)\_A
> (1 —A—-’>||zz||2 +a / (@' + )+ 0"+ dx,
RY

41
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where we are writing z' = (u',v)) € W', for i=1,2. Defining a, =
(1 = (A;/Aj1141)) > 0, we can use the above expression to obtain

V(@) > ol |P + iz, Vz=z'+27eW. (5.4)

Now, arguing by contradiction, we suppose that (5.2) is false for every
a > 0. Then there exists a sequence (z,) C W such that |z,||=1 and
¥(z,) > 0 as n— oo. In view of (5.4) we have that ||z,%|| — 0 and
lz,ll;2 = 0. Since w! is finite dimensional, we may suppose that

2>z inE,

22t in LARY),

with |z'| = 1. Recalling that in W' the norms |-|| and Il ;2 are equivalent
we conclude that ||| ;2 > 0 and therefore

. . 1 1
0= lim |z,ll;2 = lim ||z,ll;2 = |z |l;2 > 0.
n—00 n—oo

This contradiction concludes the proof in the case that (5.3) holds.
Arguing as in the proof of Theorem 1.2 and as above we can prove

that the claim is also true in the complementary case A; > wy + /i1 i43.

Theorem 1.3 is now proved. O
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