SYSTEMS WITH COUPLING IN \mathbb{R}^{N} FOR A CLASS OF NONCOERCIVE POTENTIALS

Marcelo F. Furtado ${ }^{\dagger}$, Liliane A. Maia ${ }^{\ddagger}$ and Elves A. B. Silva ${ }^{\ddagger}$
\dagger Departamento de Matemática, IMECC-UNICAMP
13081-970 Campinas-SP, Brazil
\ddagger Departamento de Matemática, UnB 70910-900 Brasília-DF, Brazil

Abstract

This paper deals with the existence and multiplicity of solutions to a class of resonant semilinear elliptic system in \mathbb{R}^{N}. The main goal is to consider systems with coupling where none of the potentials are coercive. The existence of solution is proved under a critical growth condition on the nonlinearity.

1. Introduction. In this article we study the existence and multiplicity of solutions for the problem

$$
\begin{cases}-\Delta u+a(x) u=F_{u}(x, u, v), & x \in \mathbb{R}^{N} \tag{P}\\ -\Delta v+b(x) v=F_{v}(x, u, v), & x \in \mathbb{R}^{N},\end{cases}
$$

with $N \geq 3$ and the potentials a and b satisfy
$\left(A_{1}\right)$ there are constants $a_{0}, b_{0}>0$ such that $a(x) \geq a_{0}, b(x) \geq b_{0}$ for all $x \in \mathbb{R}^{N}$,
$\left(A_{2}\right) \mu\left(\left\{x \in \mathbb{R}^{N}: a(x) b(x)<M\right\}\right)<\infty$, for every $M>0$.
Here μ denotes the Lebesgue measure in \mathbb{R}^{N}. We also suppose that the system is coupled and resonant in the following sense
$\left(F_{1}\right) \quad \lim _{|z| \rightarrow \infty} \frac{F(x, z)-\lambda_{k} u v}{|z|^{2}}=0$, uniformly for a.e $x \in \mathbb{R}^{N}$,
where $z=(u, v) \in \mathbb{R}^{2}$ and λ_{k} is a positive eigenvalue for the associated coupled linear problem

$$
\begin{cases}-\Delta u+a(x) u=\lambda v, & x \in \mathbb{R}^{N} \tag{LP}\\ -\Delta v+b(x) v=\lambda u, & x \in \mathbb{R}^{N}\end{cases}
$$

Elliptic systems have been intensively studied in the literature (see [1, 9, 11] and references therein). In a recent paper [3], the authors studied the system (P), under the coupling condition $\left(F_{1}\right)$, in which one of the potentials did not satisfy any coercivity condition. In this work we show that, actually, the existence of coupling allows us to consider a setting where none of the potentials are coercive.

[^0]In our first result we prove the existence of one solution for problem (P). Denoting by $\nabla F(x, z)$ the gradient of F with respect to the variable $z \in \mathbb{R}^{2}$, we assume $\left(F_{2}\right) F \in C^{1}\left(\mathbb{R}^{N} \times \mathbb{R}^{2}, \mathbb{R}\right)$,
$\left(F_{3}\right)$ there are constants $c_{1}, c_{2}>0$ and $2 \leq \sigma \leq 2^{*}=2 N /(N-2)$ such that

$$
|\nabla F(x, z)| \leq c_{1}|z|^{\sigma-1}+c_{2}|z|, \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R}^{2}
$$

$\left(F_{4}\right)$ there are functions α and $\beta \in L^{\infty}\left(\mathbb{R}^{N}\right)$ and a constant $c_{3} \geq 0$ such that

$$
|F(x, z)| \leq c_{3}|u||v|+\frac{\alpha(x)}{2}|u|^{2}+\frac{\beta(x)}{2}|v|^{2}, \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R}^{2}
$$

where α and β satisfy

$$
\begin{equation*}
\limsup _{|x| \rightarrow \infty} \alpha(x)=\alpha_{\infty}<a_{0} \text { and } \underset{|x| \rightarrow \infty}{\limsup } \beta(x)=\beta_{\infty}<b_{0} \tag{1}
\end{equation*}
$$

Given $\gamma>0$, we set $\Omega_{\gamma}=\left\{x \in \mathbb{R}^{N}: a(x) b(x)<\gamma \lambda_{k}^{2}\right\}$, and we suppose a local nonquadraticity condition on F :
$(N Q)$ there exists $\sqrt{\gamma}>\max \left\{a_{0} /\left(a_{0}-\alpha_{\infty}\right), b_{0} /\left(b_{0}-\beta_{\infty}\right)\right\}$ and $A \in L^{1}\left(\mathbb{R}^{N}\right)$ such that

$$
\left\{\begin{array}{l}
\lim _{\substack{|u| \rightarrow \infty \\
|v| \rightarrow \infty}} \nabla F(x, z) \cdot z-2 F(x, z)=\infty, \text { a.e. } x \in \Omega_{\gamma}, \\
\nabla F(x, z) \cdot z-2 F(x, z) \geq A(x), \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R}^{2},
\end{array}\right.
$$

where $a \cdot b$ denotes the usual inner product between $a, b \in \mathbb{R}^{2}$. Now we may state our first result.

Theorem 1. Suppose $\left(A_{1}\right)$ and $\left(A_{2}\right)$ hold. If F satisfies $\left(F_{1}\right)-\left(F_{4}\right)$ and $(N Q)$, then problem (P) possesses a solution.

When $F(x, 0) \equiv \nabla F(x, 0) \equiv 0$, we are able to establish the existence of a nontrivial solution by supposing that F satisfies
$\left(\widehat{F_{2}}\right) F \in C^{2}\left(\mathbb{R}^{N} \times \mathbb{R}^{2}, \mathbb{R}\right)$,
$\left(\widehat{F_{3}}\right)$ there are constants $c_{1}, c_{2}>0$ and $2 \leq \sigma<2^{*}$ such that

$$
\left|D^{2} F(x, z)\right| \leq c_{1}|z|^{\sigma-2}+c_{2}, \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R}^{2}
$$

$\left(\widehat{F_{4}}\right)$ there are constants $c_{3}, q_{1}, q_{2}>0, p_{1}, p_{2}>1$ and functions α and $\beta \in L^{\infty}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{aligned}
& \left|F_{u}(x, z)\right| \leq c_{3}|u|^{p_{1}-1}|v|^{q_{1}}+\alpha(x)|u|+c_{3}|v|, \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R}^{2}, \\
& \left|F_{v}(x, z)\right| \leq c_{3}|u|^{q_{2}}|v|^{p_{2}-1}+c_{3}|u|+\beta(x)|v|, \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R}^{2},
\end{aligned}
$$

where $2 \leq p_{i}+q_{i}<2^{*}, i=1,2$ and α, β satisfy (1).
$\left(F_{5}\right) D^{2} F(x, 0) \equiv D^{2} F(0)$ and we have either
(i) $F_{u u}(0) \geq 0, F_{v v}(0) \geq 0$ and $\lambda_{k}<F_{u v}(0)+\sqrt{F_{u u}(0) F_{v v}(0)}$,
or
(ii) $F_{u u}(0)<0, F_{v v}(0)<0, F_{u v}(0)>-\lambda_{1}$ and $\lambda_{k-1}>F_{u v}(0)-\sqrt{F_{u u}(0) F_{v v}(0)}$.

Under these conditions we are able to prove

Theorem 2. Suppose $\left(A_{1}\right)$ and $\left(A_{2}\right)$ hold. If F satisfies $\left(F_{1}\right)$, $\left(\widehat{F_{2}}\right)-\left(\widehat{F_{4}}\right),\left(F_{5}\right)$, $(N Q)$ and $F(x, 0) \equiv \nabla F(x, 0) \equiv 0$, then problem (P) possesses a nonzero solution.

In our final result we verify the existence of multiple solutions for (P) under the assumption that the primitive is even with respect to the variable z. Since we need a compactness condition with respect to the norm topology we assume (F_{3}) with $\sigma<2^{*}$ and
$\left(\widehat{F_{5}}\right)$

$$
F(x, z)-\frac{1}{2} A z \cdot z=o\left(|z|^{2}\right), \quad \text { as } \quad|z| \rightarrow 0
$$

where $A=\left(a_{i j}\right)$ is a symmetric 2×2 matrix such that $a_{11}, a_{22}<0, a_{12}>-\lambda_{1}$ and $a_{12}-\sqrt{a_{11} a_{22}}<\lambda_{j}<\lambda_{k}$.
$\left(F_{6}\right) F(x, z)$ is even with respect to the variable $z \in \mathbb{R}^{2}$.
Now, we may state
Theorem 3. Suppose $\left(A_{1}\right)$ and $\left(A_{2}\right)$ hold. If F satisfies $F(x, 0) \equiv 0,\left(F_{1}\right),\left(F_{2}\right)$, $\left(F_{3}\right)$ with $\sigma<2^{*}$, $\left(\widehat{F_{4}}\right),\left(\widehat{F_{5}}\right),\left(F_{6}\right)$ and $(N Q)$, then problem (P) possesses $k-j$ pairs of nonzero solutions.

The paper is organized as follows. In Section 2 we state the abstract results we need to prove our main theorems and study the coupled linear system $(L P)$. In Section 3 we prove Theorem 1. Finally, in Section 4, we present the proofs of Theorems 2 and 3.
2. Preliminaries and the Linear Problem. Let E be a real Hilbert space and $I: E \rightarrow \mathbb{R}$ a functional of class C^{1}. In general, in order to apply minimax theorems, the functional must satisfy a compactness condition. In this article, we deal with a condition introduced by Silva in [10]. A sequence $\left(z_{n}\right) \subset E$ is said to be a strong Cerami sequence if $I\left(z_{n}\right) \rightarrow c$ and $I^{\prime}\left(z_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, and $\left\|z_{n}\right\|\left\|I^{\prime}\left(z_{n}\right)\right\|$ is bounded. We recall that $I \in C^{1}(E, \mathbb{R})$ satisfies the strong Cerami condition $[(\mathrm{SCe})]$ if any strong Cerami sequence $\left(z_{n}\right) \subset E$ possesses a convergent subsequence.

To establish the existence of a critical point for the functional we only need a version of the (SCe) condition for the weak topology. We say that $I \in C^{1}(E, \mathbb{R})$ satisfies the strong Cerami condition for the weak topology [(SCe)'] if any strong Cerami sequence $\left(z_{n}\right) \subset E$ possesses a subsequence which converges weakly to a critical point of I.

Next, we state the abstract results that will be used for the proof of our theorems (see also $[8,6,5,4,7]$ for related results).
Theorem 4 ([3]). Let $E=V \oplus W$ be a real Hilbert space with V finite dimensional and $W=V^{\perp}$. Suppose $I \in C^{1}(E, \mathbb{R})$ satisfies $(\mathrm{SCe})^{\prime}$ and
$\left(I_{1}\right)$ there exists $\beta \in \mathbb{R}$ such that $I(z) \leq \beta$, for all z in V,
(I_{2}) there exists $\gamma \in \mathbb{R}$ such that $I(z) \geq \gamma$, for all z in W.
Then I possesses a critical point.
Theorem 5 ([2]). Let $E=V \oplus W$ be a real Hilbert space with V finite dimensional and $W=V^{\perp}$. Suppose $I \in C^{1}(E, \mathbb{R})$ satisfies $(\mathrm{SCe}),\left(I_{1}\right),\left(I_{2}\right)$ and
$\left(I_{3}\right)$ the origin is a critical point of $I, D^{2} I(0)$ is a Fredholm operator and either $\operatorname{dim} V<m(I, 0)$ or $\bar{m}(I, 0)<\operatorname{dim} V$.
Then I possesses a nonzero critical point.

Theorem 6 ([8]). Let $E=V \oplus W$ be a real Hilbert space with V finite dimensional and $W=V^{\perp}$. Suppose $I \in C^{1}(E, \mathbb{R})$ is even and satisfies $I(0)=0$, (SCe) and
$\left(I_{4}\right)$ there exists a finite dimensional closed subspace \widehat{V} of E and $\beta \in \mathbb{R}$ such that $\widehat{V} \supset V$ and $I(z) \leq \beta$, for all z in \widehat{V},
(I_{5}) there exists $\rho>0$ such that $I(z) \geq 0$, for all z in $B_{\rho}(0) \cap W$.
Then I possesses $\operatorname{dim} \widehat{V}-\operatorname{dim} V$ pairs of nontrivial critical points.
Remark 1. In Theorem $5, m(I, z)[\bar{m}(I, z)]$ denotes the Morse index [augmented Morse index] of the functional I at the point z. Actually, in [8], Theorem 6 is stated for the Palais-Smale condition. The version for the (SCe) condition is based on a deformation lemma proved in [10].

For applying the abstract results we set $E=E_{a} \times E_{b}$ where

$$
E_{a}=\left\{u \in W^{1,2}\left(\mathbb{R}^{N}, \mathbb{R}\right): \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+a(x) u^{2}\right) d x<\infty\right\}
$$

and

$$
E_{b}=\left\{v \in W^{1,2}\left(\mathbb{R}^{N}, \mathbb{R}\right): \int_{\mathbb{R}^{N}}\left(|\nabla v|^{2}+b(x) v^{2}\right) d x<\infty\right\}
$$

endowed with the inner product

$$
\langle(u, v),(\phi, \psi)\rangle=\int_{\mathbb{R}^{N}}(\nabla u \nabla \phi+\nabla v \nabla \psi+a(x) u \phi+b(x) v \psi) d x
$$

and associated norm given by

$$
\begin{equation*}
\|z\|^{2}=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+|\nabla v|^{2}+a(x) u^{2}+b(x) v^{2}\right) d x, \forall z=(u, v) \in E . \tag{2}
\end{equation*}
$$

For $z \in E$ the functional

$$
\begin{equation*}
I(z)=\frac{1}{2}\|z\|^{2}-\int_{\mathbb{R}^{N}} F(x, z) d x \tag{3}
\end{equation*}
$$

is well defined and of class C^{1} via $\left(F_{2}\right)$ and $\left(F_{3}\right)$. Moreover the critical points of I are precisely the weak solutions of the system (P).

The condition $\left(A_{1}\right)$ and the Sobolev Theorem imply that the immersion $E \hookrightarrow$ $L^{s}\left(\mathbb{R}^{N}, \mathbb{R}\right) \times L^{s}\left(\mathbb{R}^{N}, \mathbb{R}\right)$ is continuous for $2 \leq s \leq 2^{*}$. However, since we are not supposing that a or b are coercive, this embedding may not be compact. This fact is compensated by the coupling of the system.

We state bellow a result proved in [3] that will be useful to verify the condition (SCe)'.

Lemma 1. Suppose F satisfies $\left(F_{2}\right)-\left(F_{3}\right)$. If every strong Cerami sequence $\left(z_{n}\right) \subset$ E possesses a bounded subsequence, then I satisfies (SCe)'.

Now, we proceed with the study of the associated coupled linear problem $(L P)$. Standard calculations shows that λ is an eigenvalue of $(L P)$ if, and only if,

$$
T(u, v)=\frac{1}{\lambda}(u, v)
$$

where $T: E \rightarrow E$ is the selfadjoint bounded linear operator defined by

$$
\langle T(u, v),(\phi, \psi)\rangle=\int_{\mathbb{R}^{N}}(v \phi+u \psi) d x
$$

Moreover, the following result holds.

Lemma 2. Suppose $\left(A_{1}\right)$ and $\left(A_{2}\right)$ hold. Then T is a compact operator.
Proof. Let $\left(z_{n}\right)=\left(\left(u_{n}, v_{n}\right)\right) \subset E$ be a sequence such that $z_{n} \rightharpoonup z=(u, v)$ in E (without loss of generality, we may suppose $z=(0,0)$). Then there exists $M>0$ such that, for all $n \in N$,

$$
\begin{equation*}
\left\|z_{n}\right\| \leq M,\left\|T z_{n}\right\| \leq M \tag{4}
\end{equation*}
$$

By the condition $\left(A_{2}\right)$, given $\varepsilon>0$ we may choose $R>0$ such that

$$
\begin{equation*}
\mu\left(C_{\varepsilon}\right)<\varepsilon \tag{5}
\end{equation*}
$$

where $C_{\varepsilon}=\left\{x \in \mathbb{R}^{N} \backslash B_{R}(0): a(x) b(x) \leq \varepsilon^{-2}\right\}$. Now, writing $T=\left(T_{1}, T_{2}\right)$, by the definition of T, we have

$$
\begin{aligned}
0 & \leq\left\|T z_{n}\right\|^{2}=\left\langle T z_{n}, T z_{n}\right\rangle \\
& =\int_{\mathbb{R}^{N}} v_{n} T_{1} z_{n} d x+\int_{\mathbb{R}^{N}} u_{n} T_{2} z_{n} d x .
\end{aligned}
$$

Since $v_{n} \rightarrow 0$ strongly in $L^{2}\left(B_{R}(0)\right)$, for n sufficiently large, we obtain

$$
\begin{equation*}
\left|\int_{B_{R}(0)} v_{n} T_{1} z_{n} d x\right|<\varepsilon \tag{6}
\end{equation*}
$$

Setting $D_{\varepsilon}=\mathbb{R}^{N} \backslash\left(B_{R}(0) \cup C_{\varepsilon}\right)$, we may use Holder's inequality and (4) to get

$$
\begin{equation*}
\left|\int_{D_{\varepsilon}} v_{n} T_{1} z_{n} d x\right| \leq \varepsilon \int_{D_{\varepsilon}}\left|\sqrt{b(x)} v_{n} \sqrt{a(x)} T_{1} z_{n}\right| d x \leq \varepsilon M^{2} \tag{7}
\end{equation*}
$$

On the other hand, invoking (4), (5) and using Holder's inequality one more time, we obtain $M_{1}>0$ such that

$$
\begin{align*}
\left|\int_{C_{\varepsilon}} v_{n} T_{1} z_{n} d x\right| & \leq\left[\int_{C_{\varepsilon}}\left|v_{n}\right|^{2} d x\right]^{\frac{1}{2}}\left\|T_{1} z_{n}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \\
& \leq \mu\left(C_{\varepsilon}\right)^{\frac{1}{N}}\left\|v_{n}\right\|_{L^{2^{*}}\left(\mathbb{R}^{N}\right)}\left\|T_{1} z_{n}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \tag{8}\\
& \leq M_{1} \varepsilon^{\frac{1}{N}}
\end{align*}
$$

In view of (6)-(8) and the fact that $\varepsilon>0$ can be arbitrarily chosen, we have

$$
\int_{\mathbb{R}^{N}} v_{n} T_{1} z_{n} d x \rightarrow 0, \text { as } n \rightarrow \infty
$$

Analogous argument shows that

$$
\int_{\mathbb{R}^{N}} u_{n} T_{2} z_{n} d x \rightarrow 0, \text { as } n \rightarrow \infty
$$

Consequently, $T z_{n} \rightarrow 0$, as $n \rightarrow \infty$. The lemma is proved.
Observing that $(u,-v)$ is an eigenfunction associated with the eigenvalue $-\lambda$ whenever (u, v) is an eigenfunction associated to λ, we invoke Lemma 2 and the spectral theory for compact operators to conclude that $(L P)$ possesses a sequence $\left\{\lambda_{m}\right\}_{m \in \mathbb{Z}^{*}}$ of eigenvalues

$$
\cdots \leq \lambda_{-m} \leq \cdots \leq \lambda_{-2} \leq \lambda_{-1}<0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{m} \leq \cdots
$$

such that $\lambda_{ \pm m} \rightarrow \pm \infty$ as $m \rightarrow \infty$.
3. Proof of Theorem 1. In this section we prove Theorem 1 by verifying that the functional I defined in (3) satisfies the hypotheses of Theorem 4.

Considering k given by $\left(F_{1}\right)$ we set $V=\operatorname{span}\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k-1}\right\}$ and $W=V^{\perp}$ (without loss of generality $\lambda_{k-1}<\lambda_{k}$ and $V=\emptyset$ if $k=1$). The following lemma is a variant of Lemma 3.1 in [3].

Lemma 3. Suppose $\left(A_{1}\right)$ and $\left(A_{2}\right)$ hold. If F satisfies $\left(F_{2}\right)$ and $\left(F_{4}\right)$, then, given $R>0$ and $\varepsilon>0$, there exists $M=M(R)>0$ such that

$$
\begin{equation*}
\int_{\{|z| \leq R\}} F(x, z) d x \leq M+\left(\varepsilon+\frac{\alpha_{\infty}}{2 a_{0}}\right)\|u\|_{E_{a}}^{2}+\left(\varepsilon+\frac{\beta_{\infty}}{2 b_{0}}\right)\|v\|_{E_{b}}^{2} \tag{9}
\end{equation*}
$$

for all $z=(u, v) \in E$.
Proof of Theorem 1. Conditions $\left(F_{2}\right)$ and $\left(F_{3}\right)$ imply that $I \in C^{1}(E, \mathbb{R})$ and the critical points of I are the weak solutions of (P). The geometrical conditions (I_{1}) and $\left(I_{2}\right)$ are proved by arguments similar to those used in the proof of Theorem 1.1 in [3]. Thus, we need only to show that I satisfies (SCe)' condition.

Let $\left(z_{n}\right) \subset E$ be such that $I\left(z_{n}\right) \rightarrow c, I^{\prime}\left(z_{n}\right) \rightarrow 0$ and $\left\|z_{n}\right\|\left\|I^{\prime}\left(z_{n}\right)\right\|$ is bounded. In view of Lemma 1 it suffices to verify that $\left(z_{n}\right)$ possesses a bounded subsequence. Arguing by contradiction, we suppose that $\left\|z_{n}\right\| \rightarrow \infty$. Since $I\left(z_{n}\right) \rightarrow c$ and $\left\|z_{n}\right\|\left\|I^{\prime}\left(z_{n}\right)\right\|$ is bounded there exists $M>0$ such that

$$
\begin{equation*}
\liminf \int_{\mathbb{R}^{N}} H\left(x, z_{n}\right) d x=\liminf \left[2 I\left(z_{n}\right)-I^{\prime}\left(z_{n}\right) z_{n}\right] \leq M \tag{10}
\end{equation*}
$$

where $H\left(x, z_{n}\right)=\nabla F\left(x, z_{n}\right) \cdot z_{n}-2 F\left(x, z_{n}\right)$. We obtain a contradiction by the following claim: there exists $\hat{\Omega} \subset \Omega_{\gamma}$ with $\mu(\hat{\Omega})>0$, such that up to subsequences, $\left|u_{n}(x)\right| \rightarrow+\infty$ and $\left|v_{n}(x)\right| \rightarrow+\infty$ as $n \rightarrow+\infty$, for almost every $x \in \hat{\Omega}$.

Assuming the claim, by Fatou's lemma and $(N Q)$, we have

$$
\liminf \int_{\mathbb{R}^{N}} H\left(x, z_{n}\right) d x \geq \int_{\mathbb{R}^{N}} \liminf H\left(x, z_{n}\right) d x=\infty
$$

which contradicts (10).
Now we proceed with the proof of the claim. Given $\varepsilon>0$, by $\left(F_{1}\right)$, there exists $R>0$ such that

$$
F(x, z) \leq \lambda_{k} u v+\varepsilon|z|^{2}, \forall x \in \mathbb{R}^{N},|z|>R .
$$

Thus, for n sufficiently large, we have

$$
\frac{1}{2}\left\|z_{n}\right\|^{2} \leq(c+1)+\int_{\{|z|>R\}}\left(\lambda_{k}\left|u_{n}\right|\left|v_{n}\right|+\varepsilon\left|z_{n}\right|^{2}\right) d x+\int_{\{|z| \leq R\}} F\left(x, z_{n}\right) d x
$$

and therefore

$$
\frac{1}{2}(1-2 S \varepsilon)\left\|z_{n}\right\|^{2} \leq M_{1}+\lambda_{k} \int_{\mathbb{R}^{N}}\left|u_{n}\right|\left|v_{n}\right| d x+\int_{\{|z| \leq R\}} F\left(x, z_{n}\right) d x
$$

where S is a positive constant such that $\|z\|_{L^{2}}^{2} \leq S\|z\|^{2}$, for all $z \in E$. Recalling that $\left\|z_{n}\right\|^{2}=\left\|u_{n}\right\|_{E_{a}}^{2}+\left\|v_{n}\right\|_{E_{b}}^{2}$, we can use Lemma 3 to obtain

$$
\begin{equation*}
\frac{\nu_{1}}{2}\left\|u_{n}\right\|_{E_{a}}^{2}+\frac{\nu_{2}}{2}\left\|v_{n}\right\|_{E_{b}}^{2} \leq M_{2}+\lambda_{k} \int_{\mathbb{R}^{N}}\left|u_{n} \| v_{n}\right| d x \tag{11}
\end{equation*}
$$

where $\nu_{1}=\left(1-2 \varepsilon(S+1)-\alpha_{\infty} / a_{0}\right)$ and $\nu_{2}=\left(1-2 \varepsilon(S+1)-\beta_{\infty} / b_{0}\right)$. Furthermore, taking $\varepsilon>0$ sufficiently small, we may suppose that $\nu_{1}, \nu_{2}>1 / \sqrt{\gamma}$.

Let γ be given by $(N Q)$, since $\sqrt{a(x) b(x)} \geq \lambda_{k} \sqrt{\gamma}$ in $\mathbb{R}^{N} \backslash \Omega_{\gamma}$, we may use Young's inequality to obtain

$$
\lambda_{k} \int_{\mathbb{R}^{N} \backslash \Omega_{\gamma}}\left|u_{n}\right|\left|v_{n}\right| d x \leq \frac{1}{2 \sqrt{\gamma}} \int_{\mathbb{R}^{N} \backslash \Omega_{\gamma}}\left(a(x)\left|u_{n}\right|^{2}+b(x)\left|v_{n}\right|^{2}\right) d x .
$$

Splitting the integrals in (11) over the sets Ω_{γ} and $\mathbb{R}^{N} \backslash \Omega_{\gamma}=\Gamma$ and using the above estimate, we get

$$
\begin{aligned}
\frac{\nu_{1}}{2}\left(\left\|u_{n}\right\|_{E_{a}\left(\Omega_{\gamma}\right)}^{2}+\int_{\Gamma}\left|\nabla u_{n}\right|^{2} d x\right) & +\frac{\nu_{2}}{2}\left(\left\|v_{n}\right\|_{E_{b}\left(\Omega_{\gamma}\right)}^{2}+\int_{\Gamma}\left|\nabla v_{n}\right|^{2} d x\right) \\
& +\frac{1}{2}\left(\nu_{1}-\gamma^{-1 / 2}\right) \int_{\Gamma} a(x)\left|u_{n}\right|^{2} d x \\
& +\frac{1}{2}\left(\nu_{2}-\gamma^{-1 / 2}\right) \int_{\Gamma} b(x)\left|v_{n}\right|^{2} d x \\
& \leq M_{2}+\lambda_{k} \int_{\Omega_{\gamma}}\left|u_{n}\right|\left|v_{n}\right| d x
\end{aligned}
$$

Therefore, setting $\nu_{0}=\frac{1}{2} \min \left\{\nu_{1}-\gamma^{-1 / 2}, \nu_{2}-\gamma^{-1 / 2}\right\}>0$, we have

$$
\begin{equation*}
\nu_{0}\left\|z_{n}\right\|^{2} \leq M_{2}+\lambda_{k} \int_{\Omega_{\gamma}}\left|u_{n} \| v_{n}\right| d x \tag{12}
\end{equation*}
$$

Now we set $C=\left\{x \in \mathbb{R}^{N} \backslash B_{R_{1}}(0): \sqrt{a(x) b(x)} \leq \lambda_{k} \nu_{0}^{-1}\right\}$. By $\left(A_{2}\right)$ and the argument used in Lemma 2, we find $R_{1}>0$ such that

$$
\begin{equation*}
\lambda_{k} \int_{C}\left|u_{n}\right|\left|v_{n}\right| d x \leq \frac{\nu_{0}}{4}\left\|z_{n}\right\|^{2} \tag{13}
\end{equation*}
$$

Moreover, by Young's inequality, we have

$$
\begin{equation*}
\lambda_{k} \int_{\mathbb{R}^{N} \backslash\left(B_{R_{1}}(0) \cup C\right)}\left|u_{n}\left\|v_{n} \left\lvert\, d x \leq \frac{\nu_{0}}{2}\right.\right\| z_{n} \|^{2}\right. \tag{14}
\end{equation*}
$$

¿From (12)-(14), we get

$$
\begin{equation*}
\frac{\nu_{0}}{4}\left\|z_{n}\right\|^{2} \leq M_{2}+\lambda_{k} \int_{\Omega_{\gamma} \cap B_{R_{1}}(0)}\left|u_{n} \| v_{n}\right| d x . \tag{15}
\end{equation*}
$$

Defining $\widehat{z}_{n}=\left(\widehat{u}_{n}, \widehat{v}_{n}\right)=\frac{1}{\left\|z_{n}\right\|}\left(\left|u_{n}\right|,\left|v_{n}\right|\right)$, we may assume that

$$
\left\{\begin{array}{l}
\widehat{u}_{n} \rightarrow \widehat{u} \text { in } L^{2}\left(\Omega_{\gamma} \cap B_{R_{1}}(0)\right), \\
\widehat{v}_{n} \rightarrow \widehat{v} \text { in } L^{2}\left(\Omega_{\gamma} \cap B_{R_{1}}(0)\right) .
\end{array}\right.
$$

Hence, by (15), we get

$$
\frac{\nu_{0}}{4} \leq \lambda_{k} \int_{\Omega_{\gamma} \cap B_{R_{1}}(0)} \widehat{u v} d x
$$

and therefore there exists $\hat{\Omega} \subset \Omega_{\gamma}$, with positive measure, such that $\widehat{u}(x) \neq 0$ and $\widehat{v}(x) \neq 0$, a.e. $x \in \hat{\Omega}$. The claim is now proved by observing that we are assuming that $\left\|z_{n}\right\| \rightarrow+\infty$ as $n \rightarrow+\infty$.
4. Proofs of Theorems 2 and 3. We begin by observing that we may suppose without loss of generality that 0 is an isolated critical point of I. Conditions (F_{1}), $\left(\widehat{F_{3}}\right),\left(\widehat{F_{4}}\right), F(x, 0) \equiv 0$ and $\nabla F(x, 0) \equiv 0$ imply that $\left(F_{4}\right)$ holds. Thus, by Proposition 3.5 in [3], the geometrical conditions $\left(I_{1}\right)$ and $\left(I_{2}\right)$ are satisfied. In order to verify that $D^{2} I(0)$ is a Fredholm operator we first note that

$$
D^{2} I(0)(z, z)=\|z\|^{2}-F_{u u}(0) \int_{\mathbb{R}^{N}} u^{2} d x-F_{v v}(0) \int_{\mathbb{R}^{N}} v^{2} d x-2 F_{u v}(0) \int_{\mathbb{R}^{N}} u v d x
$$

Since, by $\left(\widehat{F_{4}}\right), F_{u u}(0) \leq \alpha_{\infty}<a_{0}$ and $F_{v v}(0) \leq \beta_{\infty}<b_{0}$, the above expression implies that $D^{2} I(0)$ is of the type $L-K$, where L is an isomorphism and K is compact.

It is proved in [3] that the hypothesis $\left(F_{5}\right)$ implies the Morse index estimates stated in condition $\left(I_{3}\right)$. Thus, in view of Theorem 5 , we need only to verify that the functional I satisfies (SCe).

Let $\left(z_{n}\right) \subset E$ be a strong Cerami sequence. In view of the proof of Theorem 1 , we may suppose that $\left(z_{n}\right)$ is bounded and $z_{n} \rightharpoonup z$, with z a critical point of I. Furthermore, up to a subsequence, we have

$$
\left\{\begin{array}{l}
u_{n} \rightharpoonup u \text { in } E_{a}, v_{n} \rightharpoonup v \text { in } E_{b}, \tag{16}\\
u_{n} \rightarrow u, v_{n} \rightarrow v \text { in } L_{l o c}^{s}\left(\mathbb{R}^{N}\right) \text { for } 2 \leq s<2^{*}
\end{array}\right.
$$

We will show that the first inequality in the condition ($\widehat{F_{4}}$) implies $u_{n} \rightarrow u$ in E_{a}. Since $I^{\prime}(z)=0, I^{\prime}\left(z_{n}\right) \rightarrow 0$ and $\left(u_{n}\right)$ is bounded, we have

$$
\begin{align*}
\left\|u_{n}-u\right\|_{E_{a}}^{2} & =I^{\prime}\left(z_{n}\right)\left(u_{n}-u, 0\right)+\int_{\mathbb{R}^{N}}\left(u_{n}-u\right)\left(F_{u}\left(x, z_{n}\right)-F_{u}(x, z)\right) d x \\
& \leq o(1)+\int_{\mathbb{R}^{N}}\left(F_{u}\left(x, z_{n}\right)\left(u_{n}-u\right)+F_{u}(x, z)\left(u-u_{n}\right)\right) d x \tag{17}
\end{align*}
$$

as $n \rightarrow \infty$. Choosing $0<\delta<a_{0}-\alpha_{\infty}$, we claim that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} F_{u}\left(x, z_{n}\right)\left(u_{n}-u\right) d x \leq o(1)+\left(\frac{\alpha_{\infty}+\delta}{a_{0}}\right)\left\|u_{n}-u\right\|_{E_{a}}^{2}, \quad \text { as } n \rightarrow \infty \tag{18}
\end{equation*}
$$

Indeed, defining $G\left(z_{n}\right)=\int_{\mathbb{R}^{N}} F_{u}\left(x, z_{n}\right)\left(u_{n}-u\right) d x$, we may use $\left(\widehat{F_{4}}\right)$ to obtain $R>0$ such that

$$
\begin{align*}
G\left(z_{n}\right) \leq & c_{3} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p_{1}-1}\left|v_{n}\right|^{q_{1}}\left|u_{n}-u\right| d x+\int_{B_{R}(0)} \alpha(x)\left|u_{n} \| u_{n}-u\right| d x \\
& +\left(\alpha_{\infty}+\delta\right) \int_{\mathbb{R}^{N} \backslash B_{R}(0)}\left(|u|\left|u_{n}-u\right|+\left|u_{n}-u\right|^{2}\right) d x \tag{19}\\
& +c_{3} \int_{\mathbb{R}^{N}}\left|v_{n} \| u_{n}-u\right| d x
\end{align*}
$$

First note that, by the local convergence in (16),

$$
\begin{equation*}
\int_{B_{R}(0)} \alpha(x)\left|u_{n} \| u_{n}-u\right| d x \rightarrow 0, \text { as } n \rightarrow \infty \tag{20}
\end{equation*}
$$

In order to estimate the first integral in (19), given $\varepsilon>0$, we choose $R_{1}>0$ such that $\mu\left(C_{\varepsilon}\right)<\varepsilon$ where $C_{\varepsilon}=\left\{x \in \mathbb{R}^{N} \backslash B_{R_{1}}(0): a(x) b(x) \leq \varepsilon^{-2}\right\}$. For this value of R_{1}, taking $r_{1}=\left(p_{1}+q_{1}\right) /\left(p_{1}-1\right), r_{2}=\left(p_{1}+q_{1}\right) / q_{1}$ and $r_{3}=p_{1}+q_{1}$, where
$1 / r_{1}+1 / r_{2}+1 / r_{3}=1$, we may invoke the local convergence as above and Holder's inequality to get

$$
\begin{equation*}
\int_{B_{R_{1}}(0)}\left|u_{n}\right|^{p_{1}-1}\left|v_{n}\right|^{q_{1}}\left|u_{n}-u\right| d x<\varepsilon \tag{21}
\end{equation*}
$$

for n sufficiently large. Setting $D_{\varepsilon}=\mathbb{R}^{N} \backslash\left(B_{R_{1}}(0) \cup C_{\varepsilon}\right)$ and using Holder's inequality and (16), we find $M_{1}>0$ such that

$$
\int_{D_{\varepsilon}}\left|u_{n}\right|^{p_{1}-1}\left|v_{n}\right|^{q_{1}}\left|u_{n}-u\right| d x \leq M_{1}\left[\int_{D_{\varepsilon}}\left(\left|u_{n}\right|^{p_{1}-1}\left|v_{n}\right|^{q_{1}}\right)^{\frac{p_{1}+q_{1}}{p_{1}+q_{1}-1}} d x\right]^{\frac{p_{1}+q_{1}-1}{p_{1}+q_{1}}} .
$$

Supposing without loss of generality that $q_{1}>p_{1}-1$, we apply Holder's inequality and (16) one more time to find $M_{2}>0$ such that

$$
\begin{equation*}
\int_{D_{\varepsilon}}\left|u_{n}\right|^{p_{1}-1}\left|v_{n}\right|^{q_{1}}\left|u_{n}-u\right| d x \leq M_{2}\left[\int_{D_{\varepsilon}}\left(\left|u_{n} v_{n}\right|\right)^{\frac{p_{1}+q_{1}}{2}} d x\right]^{\frac{2\left(p_{1}-1\right)}{p_{1}+q_{1}}} \tag{22}
\end{equation*}
$$

Now we take $t \in(0,1]$ such that $p_{1}+q_{1}=2 t+(1-t) 2^{*}$, obtaining by interpolation and the definition of D_{ε}

$$
\begin{aligned}
\int_{D_{\varepsilon}}\left|u_{n}\right|\left|v_{n}\right|^{\frac{p_{1}+q_{1}}{2}} d x & \leq\left(\int_{D_{\varepsilon}}\left|u_{n} v_{n}\right| d x\right)^{t}\left(\int_{\mathbb{R}^{N}}\left|u_{n} v_{n}\right|^{2^{*} / 2} d x\right)^{1-t} \\
& \leq \varepsilon^{t}\left(\left\|u_{n}\right\|_{E_{a}}^{2}+\left\|v_{n}\right\|_{E_{b}}^{2}\right)^{t}\left(\left\|u_{n}\right\|_{L^{2^{*}}}^{2^{*}}+\left\|v_{n}\right\|_{L^{2^{*}}}^{2^{*}}\right)^{1-t}
\end{aligned}
$$

By the above expression, (22) and the bound of $\left(z_{n}\right)$, we find $r>0$ and $M_{3}>0$ such that, for every n,

$$
\begin{equation*}
\int_{D_{\varepsilon}}\left|u_{n}\right|^{p_{1}-1}\left|v_{n}\right|^{q_{1}}\left|u_{n}-u\right| d x \leq M_{3} \varepsilon^{r} . \tag{23}
\end{equation*}
$$

On the other hand, by Holder's inequality and (16), for every n,

$$
\begin{align*}
& \int_{C_{\varepsilon}}\left|u_{n}\right|^{p_{1}-1}\left|v_{n}\right|^{q_{1}}\left|u_{n}-u\right| d x \leq \\
& \left(\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p_{1}+q_{1}} d x\right)^{\frac{p_{1}-1}{p_{1}+q_{1}}}\left(\int_{\mathbb{R}^{N}}\left|v_{n}\right|^{p_{1}+q_{1}} d x\right)^{\frac{q_{1}}{p_{1}+q_{1}}}\left(\int_{\mathbb{R}^{N}}\left|u_{n}-u\right|^{2^{*}} d x\right)^{\frac{1}{2^{*}}} \mu\left(C_{\varepsilon}\right)^{s} \\
& <M_{4} \varepsilon^{s}, \tag{24}
\end{align*}
$$

where $s=\frac{2^{*}-\left(p_{1}+q_{1}\right)}{2^{*}\left(p_{1}+q_{1}\right)}>0$. Hence it follows from (21), (23) and (24)

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p_{1}-1}\left|v_{n}\right|^{q_{1}}\left|u_{n}-u\right| d x \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{25}
\end{equation*}
$$

Analogously

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|v_{n}\right|\left|u_{n}-u\right| d x \rightarrow 0 \text { and } \int_{\mathbb{R}^{N} \backslash B_{R}(0)}|u|\left|u_{n}-u\right| d x \rightarrow 0 \tag{26}
\end{equation*}
$$

as n goes to infinity. Furthermore

$$
\left(\alpha_{\infty}+\delta\right) \int_{\mathbb{R}^{N} \backslash B_{R}(0)}\left|u_{n}-u\right|^{2} d x \leq\left(\frac{\alpha_{\infty}+\delta}{a_{0}}\right)\left\|u_{n}-u\right\|_{E_{a}}^{2} .
$$

This and equations $(19),(20),(25)$ and (26) prove the claim. In a similar way

$$
\int_{\mathbb{R}^{N}} F_{u}(x, z)\left(u-u_{n}\right) d x \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty
$$

The above inequality, (17) and (18) shows that

$$
\left(1-\frac{\alpha_{\infty}+\delta}{a_{0}}\right)\left\|u_{n}-u\right\|_{E_{a}}^{2} \leq o(1), \text { as } n \rightarrow \infty
$$

By our choice of δ we conclude that $u_{n} \rightarrow u$ in E_{a}.
Proceeding in a similar way we can use the second inequality in $\left(\widehat{F_{4}}\right)$ to show that $v_{n} \rightarrow v$ in E_{b}. Thus, we conclude that the functional I satisfies (SCe).

For the proof of Theorem 3 we just refer the reader to the article [3] where the conditions $\left(I_{4}\right)$ and (I_{5}) have been established. In our setting the condition (SCe) is settled by the argument above.

REFERENCES

[1] D. G. Costa and C. A. Magalhães, A unified approach to a class of strongly indefinite functionals, J. Diff. Eqs. 125 (1996), 521-547.
[2] M. F. Furtado and E. A. B. Silva, Double resonant problems which are locally nonquadratic at infinity, Electron. J. Diff. Eqns. Conf. 06 (2001), 155-171.
[3] M. F. Furtado, L. A. Maia and E. A. B. Silva, Existence and multiplicity results for some superlinear elliptic problems on \mathbb{R}^{N}, Comm. PDE 27 (2002), 1515-1536.
[4] A. C. Lazer and S. Solimini, Nontrivial solutions of operators equations and Morse indices of critical points of min-max type, Nonlinear Anal. 12 (1988), 761-775.
[5] K. Perera and M. Schechter, Morse index estimates in Saddle Point theorems without a finite-dimensional closed loop, Indiana Univ. Math. J. 47 (1998), 1083-1095.
[6] P. H. Rabinowitz, Some minimax theorems and applications to nonlinear partial differential equations, in Nonlinear Analisys, Ed. Cesari, Kannan, and Weinberger, Academic Press, New York (1978), 161-177.
[7] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math. 65, AMS, Providence, RI, (1986).
[8] E. A. B. Silva, Critical point theorems and applications to differential equations, Ph.D. thesis, University of Wisconsin-Madison, (1988).
[9] E. A. B. Silva, Existence and multiplicity of solutions for semilinear elliptic systems, Nonlinear Diff. Eq. and Appl. 1 (1994), 339-363.
[10] E. A. B. Silva, Subharmonic solutions for subquadratic Hamiltonian systems, J. Diff. Eqs. 115 (1995), 120-145.
[11] E. A. B. Silva, Nontrivial solutions for noncooperative elliptic systems at resonance, Electron. J. Diff. Eqns. Conf. 06 (2001), 267-283.

E-mail address: liliane@dns.mat.unb.br

[^0]: 1991 Mathematics Subject Classification. 35J50, 35J55.
 Key words and phrases. Elliptic Systems, Nonquadraticity, Resonant Problems.
 The first author was supported by CAPES/Brazil. The second author was supported by Pronex:Eq. Dif. Parciais não Lineares and FINATEC. The third author was supported by CNPq/Brazil, Pronex:Eq. Dif. Parciais não Lineares and FINATEC.

