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In this article we use variational methods to study a strongly
coupled elliptic system depending on a positive parameter λ. We
suppose that the potentials are nonnegative and the intersection
of the sets where they vanish has positive measure. A technical
condition, imposed on the product of the potentials, allows us to
consider a setting where we do not assume any positive lower
bound for the potentials. Considering the associated functional,
defined on an appropriated subspace of D1,2(RN ) × D1,2(RN ), we
are able to establish results on the existence and multiplicity of
solutions for the system when the parameter λ is sufficiently large.
We also study the asymptotic behavior of these solutions when
λ → ∞.
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1. Introduction

The goal of this paper is to study the existence, multiplicity and asymptotic behavior of solutions
for the coupled elliptic system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�u + λa(x)u = p

p + q
|u|p−2u|v|q,

−�v + λb(x)v = q

p + q
|u|p|v|q−2v,

u, v ∈ D1,2(
R

N)
,

(Sλ)
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where N � 3, λ > 0 is a parameter, p,q > 1 and p + q < 2∗ := 2N/(N − 2). Our hypotheses on the
nonnegative potentials a and b are

(H1) a,b ∈ C(RN , [0,∞)), Ωa := int a−1(0) and Ωb := int b−1(0) have smooth boundaries, Ωa =
a−1(0), Ωb = b−1(0), and Ωa ∩ Ωb is a nonempty set;

(H2) there exists M0 > 0 such that the set F := {x ∈ R
N : a(x)b(x) � M0} has finite Lebesgue measure.

Note that we do not assume any positive lower bound for the potentials a and b. Hence we do
not expect to find solutions for (Sλ) in the Sobolev space H1(RN ). However, taking advantage of
the strong coupling of the system and the hypothesis (H2), we are able to use variational methods to
study (Sλ) by considering the associated functional defined in a proper closed subspace of D1,2(RN )×
D1,2(RN ). We also observe that the sets Ωa and Ωb may be unbounded and that the fact that Ωa ∩Ωb
is a nonempty set is essential for our results.

As in the scalar case [4], the main results in this article show that the semilinear elliptic system

⎧⎪⎨
⎪⎩

−�u = p
p+q |u|p−2u|v|q in Ωa,

−�v = q
p+q |u|p|v|q−2 v in Ωb,

u ∈ H1
0(Ωa), v ∈ H1

0(Ωb),

(L)

may be seen as a limit problem for (Sλ) when λ goes to infinity. It is worthwhile mentioning that,
although Ωa and Ωb may be distinct open sets, the system (L) is variational. We also note that con-
dition (H2) implies that Ωa and Ωb have finite Lebesgue measure. So, we have the Sobolev compact
imbedding H1(Ωa) × H1(Ωb) ↪→ Lr1(Ωa) × Lr2(Ωb), 1 � r1, r2 < 2∗ .

In order to state our results, we introduce the closed subspaces of D1,2(RN ) associated with the
potentials a and b:

Xa :=
{

u ∈ D1,2(
R

N)
:

∫
RN

a(x)u2 dx < ∞
}

,

and

Xb :=
{

u ∈ D1,2(
R

N)
:

∫
RN

b(x)u2 dx < ∞
}

.

For any given λ > 0, we consider the Hilbert space X := Xa × Xb endowed with the norm

∥∥(u, v)
∥∥2

λ
:=

∫
RN

(|∇u|2 + |∇v|2 + λa(x)u2 + λb(x)v2)dx.

Notice that ‖ · ‖0 is the usual norm of the space D1,2(RN ) × D1,2(RN ).
Associated with the problem (Sλ) we have the energy functional Iλ : X → R defined by

Iλ(u, v) := 1

2

∥∥(u, v)
∥∥2

λ
− 1

p + q

∫
RN

|u|p|v|q dx, (u, v) ∈ X .

In view of the hypotheses (H1) and (H2), the functional Iλ is well defined and of class C1. Further-
more, standard regularity theory implies that the critical points of Iλ are classical solutions of the
problem (Sλ) (see Section 2).
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In our first result we consider the existence and behavior of least energy solutions of (Sλ). We
recall that a least energy solution of our problem is a critical point of Iλ associated with the lowest
positive critical level of this functional. In our setting, once proved the existence of a least energy
solution, we may always find a positive least energy solution. Here we observe that we call z = (u, v)

a positive function if the functions u and v are positive almost everywhere in R
N .

Theorem 1.1. Suppose (H1) and (H2) hold. Then there is Λ > 0 such that, for all λ � Λ, the system (Sλ)

possesses a positive least energy solution zλ . Furthermore, if (λn) ⊂ R is such that λn → ∞ and (zλn ) is a
sequence of positive least energy solution of (Sλn ), then (zλn ) converges in D1,2(RN ) × D1,2(RN ) along a
subsequence to a positive least energy solution of (L).

In our next result we use the symmetry of our problem to establish multiplicity of solutions for
large values of λ. More specifically, we shall prove

Theorem 1.2. Suppose (H1) and (H2) hold. Then , for any given k ∈ N, there exists Λk > 0 such that, for each
λ � Λk, the system (Sλ) possesses at least k pairs of nonzero solutions.

As in the case of the least energy solutions found in Theorem 1.1, the solutions derived from
Theorem 1.2 have uniformly-bounded energy with respect to λ. This allows us to show that these
solutions converge in D1,2(RN ) × D1,2(RN ) toward solutions of (L) as λ → ∞. More generally, we
have the following concentration result.

Theorem 1.3. Let (λn) ⊂ R be such that λn → ∞ and (zλn ) be a sequence of solutions of (Sλn ) such that
lim infn→∞ Iλn (zλn ) < ∞. Then (zλn ) converges in D1,2(RN ) × D1,2(RN ) along a subsequence to a solution
of (L).

The results presented in this article are motivated by that obtained in [4,5] (see also [3]) for the
scalar case, where it is considered the potential cλ(x) = λc(x) + 1 with c being such that the set
{x ∈ R

N : c(x) � M0} has finite Lebesgue measure, for some M0 > 0. Concerning our multiplicity result
we follow a different approach from [5]. Instead of considering the Ljusternik–Schnirelmann category
of some set related with the limit problem, here we use the symmetry of the nonlinearity to derive
the existence of multiple solutions.

We observe that there exists an extensive bibliography in the study of elliptic systems on bounded
domains (see [15,16,19,9,17,8,11] and references therein). In the case of gradient systems in the whole
R

N , in [7] the author proves the existence of a nonzero solution for (P ) under the coercivity of the
potentials a and b, and a nonquadratic condition on the nonlinearity. A related result for noncoercive
potentials is proved in [12] (see also [14] for the superlinear case). We should also mention the
recent papers [13,1] where some existence results of positive solutions for weakly coupled system
are established. We would like to emphasize that, instead of the aforementioned works, the coupling
in our system (Sλ) allows us to consider potentials which are not bounded from below by positive
constants. We may have one of the potentials going to zero as |x| → ∞ provided the other one goes
to infinity at an appropriated rate.

The paper is organized in the following way. In Section 2 we present technical results which will
be used throughout the work. We also investigate the behavior of the Palais–Smale sequences when
λ goes to infinity. We prove Theorem 1.1 in Section 3. The final Section 4 is devoted to the proof of
Theorems 1.2 and 1.3.

2. Preliminaries

In this section we present some preliminaries for the proof of Theorem 1.1. In this paper, we denote
by B R the open ball in R

N of radius R > 0 and center at the origin. For any given set K ⊂ R
N , we

set K c := R
N \ K and we write L(K ) for the Lebesgue measure of K whenever this set is measurable.

C∞
0 (K ) denotes the set of all functions u : K → R of class C∞ with compact support contained in the
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open set K ⊂ R
N . If u ∈ Ls(K ), s � 1, we set u+ := max{u,0}, u− := max{−u,0} and write ‖u‖Ls(K ) for

the Ls-norm of u. In order to simplify the notation, we write
∫

K u instead of
∫

K u(x)dx. We also omit
the set K whenever K = R

N . Finally, we use the symbols ci , i ∈ N, to represent positive constants.
We start with two technical results.

Lemma 2.1. For any given measurable set K ⊂ R
N there exists a constant c > 0 such that

∫
K

|u|p|v|q � c
∥∥(u, v)

∥∥p+q−2+2∗t/r
0

(∫
K

|uv|
)β

, for all (u, v) ∈ X,

where r := 2∗/(2∗ − p − q + 2) > 1, and t ∈ (0,1) satisfies r = 2∗t/2 + (1 − t) and β := (1 − t)/r.

Proof. From the definition of r > 1 we have that

p − 1

2∗ + q − 1

2∗ + 1

r
= 1. (2.1)

Hölder’s inequality and the imbedding D1,2(RN ) ↪→ L2∗
(RN ) imply that

∫
K

|u|p|v|q �
∫
K

|u|p−1|v|q−1|uv|

�
(∫

K

|u|2∗
)(p−1)/2∗(∫

K

|v|2∗
)(q−1)/2∗(∫

K

|uv|r
)1/r

� c1
∥∥(u, v)

∥∥p+q−2
0

(∫
K

|uv|r
)1/r

. (2.2)

Since 1 < r < 2∗/2 there exists t ∈ (0,1) such that r = 2∗t/2 + (1 − t). By using Hölder’s inequality
with exponents 1/t , 1/(1 − t), and the imbedding D1,2(RN ) ↪→ L2∗

(RN ) again, we obtain

∫
K

|uv|r =
∫
K

|uv|2∗t/2|uv|(1−t)

�
(∫

K

|uv|2∗/2
)t(∫

K

|uv|
)1−t

�
(

1

2

∫
K

(|u|2∗ + |v|2∗))t(∫
K

|uv|
)1−t

� c2
∥∥(u, v)

∥∥2∗t
0

(∫
K

|uv|
)1−t

. (2.3)

Combining the last inequality and (2.2), we conclude the proof of the lemma. �
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Lemma 2.2. There exists a constant ĉ > 0 such that∫
|u|p|v|q � ĉ

∥∥(u, v)
∥∥p+q

1 , for all (u, v) ∈ X .

Proof. By Lemma 2.1 we have that

∫
|u|p|v|q � c

∥∥(u, v)
∥∥p+q−2+2∗t/r

0

(∫
|uv|

)(1−t)/r

. (2.4)

We recall that the set F given in (H2) has finite measure and a(x)b(x) > M0 in F c . Applying Hölder’s
inequality with exponents 2∗ , 2∗ , N/2 and using the imbedding D1,2(RN ) ↪→ L2∗

(RN ), we obtain∫
|uv| =

∫
F

|uv| +
∫
F c

|uv|

� ‖u‖L2∗
(F )‖v‖L2∗

(F )L(F )2/N + 1√
M0

∫
F c

√
a(x)|u|√b(x)|v|

� c1
∥∥(u, v)

∥∥2
0 + 1√

M0

(∫
F c

a(x)u2
)1/2(∫

F c

b(x)v2
)1/2

� c2
∥∥(u, v)

∥∥2
1.

The last inequality and (2.4) provide ĉ > 0 such that∫
up

+vq
+ � ĉ

∥∥(u, v)
∥∥p+q−2+2∗t/r

1

∥∥(u, v)
∥∥(1−t) 2

r
1

= ĉ
∥∥(u, v)

∥∥p+q−2+ 2
r (2∗t/2+(1−t))

1

= ĉ
∥∥(u, v)

∥∥p+q
1 ,

where we have used that r = 2∗t/2 + (1 − t). The lemma is proved. �
Since we are interested in positive solutions of (Sλ) we will work with a functional slightly differ-

ent from that defined in the introduction. More specifically, we consider Iλ : X → R given by

Iλ(u, v) := 1

2

∥∥(u, v)
∥∥2

λ
− 1

p + q

∫
up

+vq
+, (u, v) ∈ X .

In view of the above lemma, it is well defined. Moreover, we may use the above results and hypothesis
(H2) to show that Iλ ∈ C1(X,R) for any λ > 0.

Let E be a Banach space and I ∈ C1(E,R). We say that (zn) ⊂ E is a Palais–Smale sequence at
level c ((PS)c sequence for short) if I(zn) → c and I ′(zn) → 0. We say that I satisfies (PS)c if any (PS)c

sequence possesses a convergent subsequence.

Lemma 2.3. Let λ � 1 and (zn) ⊂ X be a (PS)c sequence for Iλ .

(i) (zn) is bounded in X ;
(ii) limn→∞ ‖zn‖2

λ = limn→∞
∫
(un)

p
+(vn)

q
+ = c( 1

2 − 1
p+q )−1;

(iii) if c �= 0, then c � γ0 > 0, for some γ0 independent of λ.
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Proof. We have that(
1

2
− 1

p + q

)
‖zn‖2

λ = Iλ(zn) − 1

p + q
I ′λ(zn) · zn = c + o(1)‖zn‖λ, (2.5)

as n → ∞, and therefore (i) holds. Moreover, as n → ∞, we have that(
1

2
− 1

p + q

)
‖zn‖2

λ = c + o(1)‖zn‖λ = Iλ(zn) − 1

2
I ′λ(zn) · zn

=
(

1

2
− 1

p + q

)∫
(un)

p
+(vn)

q
+,

from which follows (ii). We now observe that, in view of Lemma 2.2 and λ � 1,

I ′λ(z) · z = ‖z‖2
λ −

∫
up

+vq
+ � ‖z‖2

λ − ĉ‖z‖p+q
λ � 1

2
‖z‖2

λ,

whenever ‖z‖λ � (2ĉ)−1/(p+q−2) := √
δ. Suppose now that

c < δ

(
1

2
− 1

p + q

)
.

By (ii), there exists n0 ∈ N such that ‖zn‖λ <
√

δ for any n � n0. Thus,

1

2
‖zn‖2

λ � I ′λ(zn) · zn � o(1)‖zn‖λ as n → ∞,

and we conclude that zn → 0 in X . Hence, Iλ(zn) → 0 = c and it follows that (iii) holds for γ0 :=
δ( 1

2 − 1
p+q ). �

Lemma 2.4. Given ε > 0 and C0 > 0, there exist Λε = Λ(ε, C0) > 0 and Rε = R(ε, C0) > 0 such that, if
((un, vn)) ⊂ X is a (PS)c sequence for Iλ with c � C0 and λ � Λε , then

lim sup
n→∞

∫
Bc

Rε

(un)
p
+(vn)

q
+ � ε.

Proof. Since ‖ · ‖0 � ‖ · ‖λ , we may use Lemma 2.1 and Lemma 2.3(i) to obtain∫
Bc

R

(un)
p
+(vn)

q
+ � c1

(∫
Bc

R

|un vn|
)β

, (2.6)

for any R > 0. By Young and Hölder’s inequality, the imbedding D1,2(RN ) ↪→ L2∗
(RN ) and

Lemma 2.3(i), we get

∫
Bc

R∩F

|un vn| � 1

2

∫
Bc

R∩F

(|un|2 + |vn|2
)

�
L(Bc

R ∩ F )2/N

2

(‖un‖2
L2∗ + ‖vn‖2

L2∗
)

� c2 L
(

Bc
R ∩ F

)2/N
. (2.7)
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On the other hand, since ((un, vn)) is bounded and a(x)b(x) > M0 in Bc
R ∩ F c , we have

∫
Bc

R∩F c

|un vn| � 1

λM0

∫
Bc

R∩F c

√
λa(x)|un|

√
λb(x)|vn|

� 1

2λM0

∫ (
λa(x)u2

n + λb(x)v2
n

)
� c3/λ.

It follows from the above estimate, (2.7) and (2.6) that

∫
Bc

R

(un)
p
+(vn)

q
+ � c2

(
c1 L

(
Bc

R ∩ F
)2/N + c3/λ

)β
.

Since F has finite Lebesgue measure, we have that L(Bc
R ∩ F ) → 0 as R → ∞. Hence, for R and λ

sufficiently large, the right-hand side of the above expression is small. This concludes the proof. �
In the next lemma we verify that Iλ satisfies the Mountain Pass geometry.

Lemma 2.5. There exist α,ρ > 0 and z0 ∈ X, all of them independent of λ � 1, such that

(i) Iλ(z) � α for all ‖z‖λ = ρ ,
(ii) Iλ(z0) � Iλ(0) = 0 and ‖z0‖ > ρ .

Proof. By Lemma 2.2, we have that

Iλ(z) = 1

2
‖z‖2

λ − 1

p + q

∫
up

+vq
+ � 1

2
‖z‖2

λ − ĉ

p + q
‖z‖p+q

λ � 1

4
ρ2,

whenever ‖z‖λ = ρ := ((p + q)/4ĉ)1/(p+q−2) . Furthermore, if ϕ ∈ C∞
0 (Ωa ∩ Ωb) \ {0}, ϕ+ �≡ 0, we have

that a(x)ϕ ≡ b(x)ϕ ≡ 0 on R
N . Hence,

lim
t→∞ Iλ

(
t(ϕ,ϕ)

) = lim
t→∞

(
t2

∫
|∇ϕ|2 − t p+q

p + q

∫
ϕ

p+q
+

)
= −∞,

uniformly on λ. It suffices to set z0 := t0(ϕ,ϕ) with t0 > 0 sufficiently large. �
Remark 2.6. Let z0 be given by the above lemma. For each λ > 0 we may define the Mountain Pass
level of Iλ as

cλ := inf
γ ∈Γ

max
t∈[0,1] Iλ

(
γ (t)

)
,

where

Γ := {
γ ∈ C

([0,1], X
) : γ (0) = 0, γ (1) = z0

}
.

For future reference we observe that

0 < α � cλ � β0 := max
t∈[0,1] Iλ(tz0). (2.8)
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3. Least energy solutions

We devote this section to the proof of Theorem 1.1. Let ε > 0 to be chosen later, C0 := β0 given
in (2.8), and consider Λε, Rε provided by Lemma 2.4. In view of Remark 2.6 we obtain, for any fixed
λ � Λε , a sequence (zk) ⊂ X such that

Iλ(zk) → cλ � α and I ′λ(zk) → 0.

By Lemma 2.3(i) (zk) is bounded in X and therefore, up to a subsequence, we have that zk ⇀ zλ :=
(uλ, vλ) weakly in X .

We shall prove that I ′λ(zλ) = 0. Let ϕ ∈ C∞
0 (RN ) and denote by K the support of ϕ . Since D1,2(RN )

is compactly embedded in L p+q−1
loc (RN ), up to a subsequence, we have that

(uk, vk) → (uλ, vλ) strongly in Lp+q−1(K ) × Lp+q−1(K ),(
uk(x), vk(x)

) → (
uλ(x), vλ(x)

)
a.e. in K ,∣∣uk(x)

∣∣, ∣∣vk(x)
∣∣ � hK (x) ∈ Lp+q−1(K ) a.e. in K .

Hence, almost everywhere in K ,

(uk)
p−1
+ (vk)

q
+|ϕ| � |uk|p−1|vk|q|ϕ| � hp+q−1

K |ϕ| ∈ L1(K ).

It follows from the above convergences and the Lebesgue Dominated Convergence Theorem that

lim
k→∞

∫
(uk)

p−1
+ (vk)

q
+ϕ =

∫
(uλ)

p−1
+ (vλ)

q
+ϕ, ∀ϕ ∈ C∞

0

(
R

N)
. (3.1)

Analogously, we obtain

lim
k→∞

∫
(uk)

p
+(vk)

q−1
+ ψ =

∫
(uλ)

p
+(vλ)

q−1
+ ψ, ∀ψ ∈ C∞

0

(
R

N)
.

The two above limits and the weak convergence of (zk) imply that, for each (ϕ,ψ) ∈ C∞
0 (RN ) ×

C∞
0 (RN ), there hold

0 = lim
k→∞

I ′λ(zk) · (ϕ,ψ) = I ′λ(zλ) · (ϕ,ψ)

and therefore zλ is a critical point of Iλ .
Suppose that zλ ≡ 0. Since uk, vk → 0 in L2(B Rε ) we may use Lemma 2.1, the boundedness of (zk)

in X and Young’s inequality, to obtain

∫
B Rε

(uk)
p
+(vk)

q
+ � c1

( ∫
B Rε

|uk vk|
)β

� c2

( ∫
B Rε

|uk|2 + |vk|2
)β

→ 0, (3.2)

as k → ∞. So, it follows from Lemma 2.3(ii) and Lemma 2.4 that, for λ � Λε ,
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cλ

(
1

2
− 1

p + q

)−1

= lim
k→∞

∫
(uk)

p
+(vk)

q
+

= lim
k→∞

( ∫
B Rε

(uk)
p
+(vk)

q
+ +

∫
Bc

Rε

(uk)
p
+(vk)

q
+
)

� ε.

If we choose ε > 0 sufficiently small, we conclude that cλ = 0, contradicting (2.8). This shows that
zλ �≡ 0.

Applying Fatou’s Lemma we get

cλ = lim
k→∞

(
Iλ(zk) − 1

2
I ′λ(zk) · zk

)
= lim

k→∞

(
1

2
− 1

p + q

)∫
(uk)

p
+(vk)

q
+

�
(

1

2
− 1

p + q

)∫
up

λ vq
λ = Iλ(zλ) � cλ,

from which follows that Iλ(zλ) = cλ . Hence, zλ is a least energy solution.
Since I ′(zλ) · ((uλ)−, (vλ)−) = ‖((uλ)−, (vλ)−)‖2

λ = 0, we have that uλ, vλ � 0 in R
N . Furthermore,

by applying the Strong Maximum Principle in each equation of (Sλ) we conclude that uλ, vλ > 0 in
R

N . This proves the first part of Theorem 1.1.
We now consider the concentration behavior of the solutions. Suppose that (λn) ⊂ R is such that

λn → ∞ and let zλn = (uλn , vλn ) be the associated solution of (Sλn ) such that Iλn (zλn ) = cλn . In what
follows we write only zn , un and vn to denote zλn , uλn and vλn respectively.

First note that, in view of (2.8),

(
1

2
− 1

p + q

)
‖zn‖2

λn
= Iλn(zn) = cλn � β0. (3.3)

Thus, up to a subsequence, we have that zn ⇀ z := (u, v) weakly in D1,2(RN )× D1,2(RN ) and zn(x) →
z(x) almost everywhere in R

N . Given ϕ ∈ C∞
0 (Ωa), recalling that a ≡ 0 in Ωa and using (ϕ,0) as a

test function we get

∫
∇un∇ϕ = p

p + q

∫
(un)

p−1
+ (vn)

q
+ϕ.

Since ϕ has compact support, we may take the limit in the above expression and argue as in the
proof of (3.1) to get

∫
Ωa∪Ωb

∇u∇ϕ = p

p + q

∫
Ωa∪Ωb

up−1
+ vq

+ϕ, ∀ϕ ∈ C∞
0 (Ωa). (3.4)

Analogously, we have

∫
Ωa∪Ωb

∇v∇ψ = q

p + q

∫
Ωa∪Ωb

up
+vq−1

+ ψ, ∀ψ ∈ C∞
0 (Ωb). (3.5)

We claim that u ≡ 0 in Ωc
a . In order to see this we take j ∈ N, set

C j :=
{

x ∈ B j(0): a(x) >
1

j

}
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and notice that, by (3.3),

0 �
∫
C j

u2
n � j

λn

∫
C j

λna(x)u2
n � j

λn
‖zn‖2

λn
→ 0, as n → ∞.

Since C j is bounded and un → u in L2
loc(R

N ), we conclude that
∫

C j
u2 = 0 for all j ∈ N. Thus u ≡ 0

almost everywhere in Ωc
a = ⋃n

j=1 C j . Recalling that Ωa has smooth boundary we conclude that u ∈
H1

0(Ωa). Analogously, v ∈ H1
0(Ωb). Thus, (u, v) is a solution of the limit problem (L).

In order to verify that z �= 0 we define

m := inf
z∈N

J (z),

where J : H1
0(Ωa) × H1

0(Ωb) → R is given by

J (u, v) := 1

2

∫
Ωa∪Ωb

(|∇u|2 + |∇v|2) − 1

p + q

∫
Ωa∪Ωb

up
+vq

+

and N is the Nehari manifold of J , namely:

N := {
(u, v) ∈ H1

0(Ωa) × H1
0(Ωb): (u, v) �= (0,0), J ′(u, v) · (u, v) = 0

}
.

Since H1
0(Ωa) × H1

0(Ωb) can be viewed as a subspace of X , we have that cλ � m, for all λ. On the
other hand

m � cλn = Iλn(zn) − 1

2
I ′λn

(zn) · zn =
(

1

2
− 1

p + q

)∫
(un)

p
+(vn)

q
+.

Taking n → ∞, using Fatou’s Lemma and J ′(u, v) = 0 we obtain

m � lim
n→∞

(
1

2
− 1

p + q

)∫
(un)

p
+(vn)

q
+

�
(

1

2
− 1

p + q

) ∫
Ωa∪Ωb

up
+vq

+ = J (u, v) � m. (3.6)

Hence J (u, v) = m and therefore z �= 0 is a least energy solution of (L). By using (3.4) and (3.5)
we obtain ‖(u−, v−)‖0 = 0. Thus, u, v � 0 and it follows from the Strong Maximum Principle and
(3.4)–(3.5) that u > 0 in Ωa and v > 0 in Ωb .

In order to finish the proof we use the weak convergence of (zn), the fact that zn is a solution of
(Sλn ), (3.6) and (u, v) ∈ N to get

‖zn − z‖2
λn

=
∫ (|∇un|2 + |∇vn|2 + λna(x)u2

n + λnb(x)v2
n

) −
∫ (|∇u|2 + |∇v|2) + o(1)

=
∫

(un)
p
+(vn)

q
+ −

∫ (|∇u|2 + |∇v|2) + o(1)

=
∫

up
+vq

+ −
∫ (|∇u|2 + |∇v|2) + o(1) = o(1),
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as n → ∞. Since ‖ · ‖0 � ‖ · ‖λn it follows that zn → z in D1,2(RN ) × D1,2(RN ). This concludes the
proof of Theorem 1.1. �
4. Multiplicity of bound state solutions

In this section we present the proofs of Theorems 1.2 and 1.3. Since we are not interested in the
sign of the solutions, we redefine the functional Iλ by setting

Iλ(u, v) := 1

2

∥∥(u, v)
∥∥2

λ
− 1

p + q

∫
|u|p|v|q, (u, v) ∈ X .

As in Section 2, the functional is of class C1 and its critical points are the weak solutions of (Sλ).
For future reference we notice that, arguing as in the proof of Lemma 2.1 and Lemma 2.2, we obtain
c, ĉ > 0 such that∫

Bc
R

|u|p−1|v|q−1|φη| � c‖u‖p−1
L2∗

(Bc
R )

‖v‖q−1
L2∗

(Bc
R )

∥∥(φ,η)
∥∥2∗t/r

0

(∫
Bc

R

|φη|
)β

(4.1)

and ∫
Bc

R

|φη| � ĉ
∥∥(φ,η)

∥∥2
0 L

(
Bc

R ∩ F
)2/N + 1√

M0

( ∫
Bc

R∩F c

a(x)φ2
)1/2( ∫

Bc
R∩F c

b(x)η2
)1/2

, (4.2)

for any R > 0 and (u, v), (φ,η) ∈ X . Here r > 1, t ∈ (0,1) and β > 0 are given by Lemma 2.1.
In order to obtain multiple critical points for Iλ we shall use the following version of the Symmet-

ric Mountain Pass Theorem [2] (see also [18, Theorem 2.1]).

Theorem 4.1. Let E be a real Banach space and W ⊂ E a finite dimensional subspace. Suppose that I ∈
C1(E,R) is an even functional satisfying I(0) = 0 and

(i) there exists a constant ρ > 0 such that I|∂ Bρ(0) � 0;
(ii) there exists M > 0 such that supz∈W I(z) < M.

If I satisfies (PS)c for any 0 < c < M, then I possesses at least dim W pairs of nontrivial critical points.

Our first goal is to prove a local compactness condition for Iλ . We start with the following version
of Brezis–Lieb Lemma [6] (see also [10]).

Lemma 4.2. Let ((un, vn)) ⊂ X be such that (un, vn) ⇀ (u, v) weakly in X. Then

lim
n→∞

∫ (|un|p|vn|q − |un − u|p|vn − v|q) =
∫

|u|p|v|q.

Proof. Let An be the integral on the left-hand side of the above expression and notice that

An = −
∫ 1∫

0

d

dt

(|un − tu|p|vn|q + |un − u|p|vn − tv|q)dt dx

= p

∫ 1∫
fn(t, x)u dt dx + q

∫ 1∫
gn(t, x)v dt dx, (4.3)
0 0
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with

fn(t, x) := |un − tu|p−2(un − tu)|vn|q

and

gn(t, x) := |un − u|p|vn − tv|q−2(vn − tv).

Since ((un, vn)) is bounded in X and p + q < 2∗ , taking a subsequence if necessary, we may suppose
that

(un, vn) → (u, v) strongly in Lp+q
loc

(
R

N) × Lp+q
loc

(
R

N)
,(

un(x), vn(x)
) → (

u(x), v(x)
)

a.e. in R
N ,∣∣u(x)

∣∣, ∣∣v(x)
∣∣, ∣∣un(x)

∣∣, ∣∣vn(x)
∣∣ � hR(x) ∈ Lp+q(B R) a.e. in B R , (4.4)

for any R > 0.
The pointwise convergence implies that, for almost every (t, x) ∈ (0,1) × R

N ,

fn(t, x) → f (t, x) := (1 − t)p−1|u|p−2u|v|q, gn(t, x) → g(t, x) ≡ 0. (4.5)

We claim that

lim
n→∞

∫ 1∫
0

fn(t, x)u dt dx =
∫ 1∫

0

f (t, x)u dt dx (4.6)

and

lim
n→∞

∫ 1∫
0

gn(t, x)v dt dx =
∫ 1∫

0

g(t, x)v dt dx = 0. (4.7)

Assuming the claim, noticing that for any measurable set K ⊂ R
N , we have

∫
K

∫ 1
0 f u dt dx =

1
p

∫
K |u|p|v|q dx, and taking the limit in (4.3), we obtain

lim
n→∞ An = p

∫ 1∫
0

f (t, x)u dt dx =
∫

|u|p|v|q dx.

So, in order to prove the lemma, it suffices to verify (4.6) and (4.7).
In view of (H2), for any given 0 < ε < 1 we may choose R = R(ε) > 0 such that

max

{
1

p

∫
Bc

R

|u|p|v|q, L
(

Bc
R ∩ F

)2β/N
,

(∫
Bc

R

au2
)β/2

}
< ε, (4.8)

where β > 0 comes from Lemma 2.1. So, we have that
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∣∣∣∣∣
∫ 1∫

0

( fn − f )u dt dx

∣∣∣∣∣ �
∣∣∣∣∣
∫
B R

1∫
0

( fn − f )u dt dx

∣∣∣∣∣ +
∣∣∣∣∣
∫
Bc

R

1∫
0

fnu dt dx

∣∣∣∣∣ + ε. (4.9)

In view of (4.4) we have that∣∣( fn − f )u
∣∣ �

(|un − tu|p−1|vn|q + |u|p−1|v|q)|u| � c1hR(x)p+q ∈ L1(B R),

for almost every x ∈ B R . Hence, we can use (4.5) and the Lebesgue Dominated Convergence Theorem
to get

lim
n→∞

∣∣∣∣∣
∫
B R

1∫
0

( fn − f )u dt dx

∣∣∣∣∣ = 0. (4.10)

On the other hand,

∣∣∣∣∣
∫
Bc

R

1∫
0

fnu dt dx

∣∣∣∣∣ �
∫
Bc

R

1∫
0

|un − tu|p−1|vn|q|u|dt dx

� c2

(∫
Bc

R

(|un|p−1|vn|q|u| + |u|p|vn|q
))

. (4.11)

Since ((un, vn)) is bounded in X , we may use (4.1), (4.2) and (4.8) to conclude that

∫
Bc

R

|un|p−1|vn|q−1|uvn| � c3

(∫
Bc

R

|uvn|
)β

� c4ε

and ∫
Bc

R

|u|p|vn|q =
∫
Bc

R

|u|p−1|vn|q−1|uvn| � c5ε.

By replacing these expressions in (4.11) we get

∣∣∣∣∣
∫
Bc

R

1∫
0

fnu dt dx

∣∣∣∣∣ � c6ε.

The above estimate, (4.10) and (4.9) imply that

lim sup
n→∞

∣∣∣∣∣
∫ 1∫

0

( fn − f )u dt dx

∣∣∣∣∣ � c7ε.

Since 0 < ε < 1 is arbitrary, we conclude that (4.6) holds. The proof of (4.7) is analogous and it will
be omitted. The lemma is proved. �
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Lemma 4.3. Let (zn) = ((un, vn)) ⊂ X be a (PS)c sequence for Iλ . Then, up to a subsequence, zn ⇀ z := (u, v)

weakly in X, where z is a critical point of Iλ . Furthermore, (z̃n) := (zn − z) is a (PS)c′ sequence for Iλ , with
c′ = c − Iλ(z).

Proof. Since (zn) is bounded in X , up to a subsequence, zn ⇀ z := (u, v) weakly in X . Arguing as in
the proof of Theorem 1.1 we may show that I ′λ(z) = 0. The weak convergence of (zn) and Lemma 4.2
imply that

Iλ(zn − z) = 1

2
‖zn‖2

λ − 1

2
‖z‖2

λ − 1

p + q

∫
|un|p|vn|q + 1

p + q

∫
|u|p|v|q + o(1)

= Iλ(zn) − Iλ(z) + o(1) = c − I(z) + o(1),

as n → ∞.
It remains to show that I ′(zn − z) → 0. We first notice that, for any given (ϕ,ψ) ∈ X such that

‖(ϕ,ψ)‖λ � 1,

I ′λ(zn − z) · (ϕ,ψ) = I ′λ(zn) · (ϕ,ψ) − I ′λ(z) · (ϕ,ψ) − p

p + q

∫
fnϕ − q

p + q

∫
gnψ,

where

fn(x) := |un − u|p−2(un − u)|vn − v|q − |un|p−2un|vn|q + |u|p−2u|v|q

and

gn(x) := |un − u|p|vn − v|q−2(vn − v) − |un|p|vn|q−2 vn + |u|p v|v|q−2.

Since I ′(zn) → 0 and I ′(z) = 0, it suffices to show that

lim
n→∞ sup

‖ϕ‖Xa �1

∫
| fn||ϕ| = 0 = lim

n→∞ sup
‖ψ‖Xb

�1

∫
|gn||ψ |, (4.12)

where we are denoting

‖ϕ‖2
Xa

:=
∫ (|∇ϕ|2 + λa(x)ϕ2), ‖ψ‖2

Xb
:=

∫ (|∇ψ |2 + λb(x)ψ2).
Given 0 < ε < 1, we may choose R = R(ε) > 0 such that

max

{
‖u‖L2∗

(Bc
R ), L

(
Bc

R ∩ F
)2β/N

,

(∫
Bc

R

bv2
)β/2}

< ε, (4.13)

with β > 0 given by Lemma 2.1. Using Hölder’s inequality, the imbedding D1,2(RN ) ↪→ L2∗
(RN ) and

‖ϕ‖Xa � 1, we get

∫
B R

| fn||ϕ| �
(∫

B R

| fn|2N/(N+2)

)(N+2)/2N(∫
B R

|ϕ|2∗
)1/2∗

� c1

(∫
B

| fn|2N/(N+2)

)(N+2)/2N

. (4.14)
R
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Setting θ := (p + q − 1)2N/(N + 2) < 2∗, we may suppose that

(un, vn) → (u, v) strongly in Lθ (B R) × Lθ (B R),(
un(x), vn(x)

) → (
u(x), v(x)

)
a.e. in B R ,∣∣u(x)

∣∣, ∣∣v(x)
∣∣, ∣∣un(x)

∣∣, ∣∣vn(x)
∣∣ � hR(x) ∈ Lθ (B R) a.e. in B R(0).

Hence,

| fn| � |un − u|p−1|vn − v|q + |un|p−1|vn|q + |u|p−1|v|q � c2hp+q−1
R ,

and therefore | fn(x)|2N/(N+2) � c2hθ
R(x) ∈ L1(B R), almost everywhere in B R . Since fn(x) → 0 almost

everywhere in B R , the Lebesgue Dominated Convergence Theorem and (4.14) imply that

lim
n→∞

∫
B R

| fn||ϕ| = 0 uniformly for ‖ϕ‖Xa � 1. (4.15)

On the other hand, by adding and subtracting the term |un − u|p−2(un − u)|vn|q to fn , we have∫
Bc

R

| fn||ϕ| �
∫
Bc

R

sn|ϕ| +
∫
Bc

R

tn|ϕ| +
∫
Bc

R

|u|p−1|v|q−1|ϕv| (4.16)

with

sn := |un − u|p−1
∣∣|vn − v|q − |vn|q

∣∣
and

tn := ∣∣|un − u|p−2(un − u) − |un|p−2un
∣∣|vn|q.

Using (4.1), (4.2) and (4.13), we may estimate the last term in (4.16) as follows∫
Bc

R

|u|p−1|v|q−1|ϕv| � c3ε
p−1 for any ‖ϕ‖Xa � 1. (4.17)

Now, we proceed with the estimate of
∫

Bc
R

sn|ϕ|. Setting w(t) := |vn − tv|q , recalling that q > 1 and

using the Mean Value Theorem we obtain∣∣w(1) − w(0)
∣∣ = ∣∣|vn − v|q − |vn|q

∣∣ � q|vn − t0 v|q−1|v|

for some t0 ∈ [0,1]. The boundedness of ((un, vn)) in X , t0 ∈ [0,1], (4.1), (4.2) and (4.13) imply that∫
Bc

R

sn|ϕ| � q

∫
Bc

R

|un − u|p−1|vn − t0 v|q−1|ϕv| � c4ε for any ‖ϕ‖Xa � 1. (4.18)

The estimates for
∫

Bc
R

tn|ϕ| are more involved since we may have p − 1 < 1. We consider two

possible cases:
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Case 1. p � 2.

Suppose first p > 2 and define w(t) := |un − tu|p−2(un − tu). Applying the Mean Value Theorem
and proceeding as in (4.17) we obtain

∫
Bc

R

tn|ϕ| � (p − 1)

∫
Bc

R

|un − t0u|p−2|u||vn|q−1|ϕvn|

� c5

(∫
Bc

R

|u|p−1|vn|q−1|ϕvn| +
∫
Bc

R

|un|p−2|u||vn|q−1|ϕvn|
)

� c6

(
εp−1 +

∫
Bc

R

|un|p−2|u||vn|q−1|ϕvn|
)

. (4.19)

In order to estimate the last integral we apply Hölder’s inequality with

p − 2

2∗ + 1

2∗ + q − 1

2∗ + 1

r
= 1,

to get

∫
Bc

R

|un|p−2|u||vn|q−1|ϕvn| � c7‖u‖L2∗
(Bc

R )

(∫
Bc

R

|ϕvn|r
)1/r

� c8ε,

where we have used, in the last inequality, (4.13), ‖ϕ‖Xa � 1, the boundedness of (vn) in Xb , the
same calculation performed in (2.3) and (4.2). So,∫

Bc
R

tn|ϕ| � c9ε for any ‖ϕ‖Xa � 1.

If p = 2 the second integral in the second line of (4.19) does not appear and therefore the above
estimate holds in this case too.

Case 2. 1 < p < 2.

In this case the derivative of the function w defined in the first case can be singular, and we may
not apply the Mean Value Theorem directly. In order to overcome this difficult, we first set

hn(x) := |un − u|p−2(un − u) − |un|p−2un.

As before, we have that ∫
Bc

R

tn|ϕ| =
∫
Bc

R

|hn||vn|q−1|ϕvn|

� c10

(∫
Bc

|hn|2∗/(p−1)

)(p−1)/2∗

. (4.20)
R
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We claim that the last integral in the above inequality is small. Indeed, first note that

|hn| � c11|u|p−1 a.e. in the set
{|un| � 2|u|} ∪ {|u| = 0

}
. (4.21)

On the other hand, in the set {|un| > 2|u| > 0}, as in the first case, we may apply the Mean Value
Theorem for w(t) := |un − tu|p−2(un − tu) to get

|hn| =
∣∣w(1) − w(0)

∣∣ � c12|un − t0u|p−2|u| � c13|u|p−1,

for some t0 ∈ [0,1], since for |un| > 2|u| we have that |un − t0u| � |un| − |t0||u| � |u|. This, (4.21) and
(4.13) imply that

∫
Bc

R

|hn|2∗/(p−1) � c14

∫
Bc

R

|u|2∗ � c15ε
2∗

.

It follows from (4.20) that

∫
Bc

R

tn|ϕ| � c16ε
p−1 for any ‖ϕ‖Xa � 1.

All together, the two cases provide

∫
Bc

R

tn|ϕ| � c17ε
min{1,p−1} for any ‖ϕ‖Xa � 1.

Thus, we may use (4.15)–(4.18) and the above estimate to conclude that

∫
| fn||ϕ| =

∫
B R

| fn||ϕ| +
∫
Bc

R

| fn||ϕ| � c18ε
min{1,p−1},

for any ‖ϕ‖Xa � 1 and n � n0. Since ε > 0 is arbitrary we conclude that the first equality (4.12) holds.
The second one may be verified in a similar way and this concludes the proof of Lemma 4.3. �

In the sequel we follow [5] in order to obtain a local compactness property for the functional Iλ .

Proposition 4.4. For any given C0 > 0 there exists Λ = Λ(p,q, C0) > 0 such that Iλ satisfies (PS)c for any
c � C0 and λ � Λ.

Proof. Let γ0 be given by Lemma 2.3(iii) and fix ε > 0 such that

ε <
γ0

2

(
1

2
− 1

p + q

)−1

.

Fixed C0 > 0, let Λε and Rε be given by Lemma 2.4. We will prove that the proposition holds for
Λ := Λε . Let (zn) = ((un, vn)) ⊂ X be a (PS)c sequence for Iλ with c � C0 and λ � Λ. In view of
Lemma 4.3 we may suppose that (un, vn) ⇀ z := (u, v) weakly in X and z̃n := (un − u, vn − v) is



2394 M.F. Furtado et al. / J. Differential Equations 249 (2010) 2377–2396
a (PS)c′ sequence for Iλ , with c′ = c − Iλ(z). We claim that c′ = 0. If this is true, it follows from
Lemma 2.3(ii) that

lim
n→∞‖z̃n‖2

λ = c′
(

1

2
− 1

p + q

)−1

= 0,

that is, zn → z in X .
Suppose, by contradiction, that c′ �= 0. Lemma 2.3(iii) implies that c′ � γ0 > 0. Since ũn, ṽn → 0 in

L2(B Rε ), we may use Lemma 2.3(ii), Lemma 2.4, the same calculation of (3.2) and the choice of ε > 0,
to get

γ0

(
1

2
− 1

p + q

)−1

� c′
(

1

2
− 1

p + q

)−1

= lim
n→∞

∫
|ũn|p|ṽn|q

= lim
n→∞

( ∫
B Rε

|ũn|p|ṽn|q +
∫

Bc
Rε

|ũn|p|ṽn|q
)

� γ0

2

(
1

2
− 1

p + q

)−1

, (4.22)

which contradicts γ0 > 0. This contradiction finishes the proof. �
We are now ready to prove Theorems 1.2 and 1.3 as follows.

Proof of Theorem 1.2. We first take a bounded open smooth set Ω ⊂ Ωa ∩ Ωb . Given k ∈ N we set
W := span{(ϕ1,ϕ1), . . . , (ϕk,ϕk)}, where ϕi is an eigenfunction corresponding to the i-th eigenvalue
of (−�, H1

0(Ω)). For each i = 1, . . . ,k we have that

lim
t→∞ Iλ

(
t(ϕi,ϕi)

) = lim
t→∞

(
t2

∫
|∇ϕi |2 − t p+q

p + q

∫
|ϕi |p+q

)
= −∞,

uniformly on λ. Since W has finite dimension we obtain Mk > 0, independent of λ > 0, such that

sup
z∈W

Iλ(z) < Mk.

Moreover, as in the proof of Lemma 2.5 we may obtain ρ > 0, independent of λ > 0, such that

Iλ(z) � 0 for any ‖z‖λ = ρ.

In view of Proposition 4.4 there exists Λk > 0 such that Iλ satisfies (PS)c for any c � Mk and λ � Λk .
Thus, for any fixed λ � Λk we may apply Theorem 4.1 to obtain k pairs of nontrivial solutions. The
theorem is proved. �
Proof of Theorem 1.3. We first notice that(

1

2
− 1

p + q

)
‖zλn‖2

λn
= Iλn(zλn ) − 1

2
I ′λn

(zλn ) = Iλn(zλn ).

Since lim infn→∞ Iλ(zλn ) < ∞ we may suppose, taking a subsequence if necessary, that (zλn ) is
bounded. Thus, up to a subsequence, we have that
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zλn ⇀ z := (u, v) weakly in D1,2(
R

N) × D1,2(
R

N)
,

(un, vn) → (u, v) strongly in Lp
loc

(
R

N) × Lq
loc

(
R

N)
,(

un(x), vn(x)
) → (u, v) a.e. in R

N . (4.23)

As in the proof of the last statement of Theorem 1.1 we can show that u ∈ H1
0(Ωa), v ∈ H1

0(Ωb) and z
is a solution of (L).

Given ε > 0 we can argue as in the proof of Lemma 2.4 to conclude that, for some R > 0 large,
there holds

lim sup
n→∞

∫
B R (0)c

|un|p|vn|q � ε.

By taking R larger if necessary, we may suppose that
∫

B R (0)c |u|p|v|q � ε. Moreover, the local con-

vergence in (4.23) and the Lebesgue Dominated Convergence Theorem imply that
∫

B R (0)
|un|p|vn|q →∫

B R (0)
|u|p|v|q as n → ∞. Since

∣∣∣∣
∫ (|un|p|vn|q − |u|p|v|q)∣∣∣∣ �

∫
B R (0)c

|un|p|vn|q +
∫

B R (0)c

|u|p|v|q

+
∣∣∣∣

∫
B R (0)

(|un|p|vn|q − |u|p|v|q)∣∣∣∣,

it follows from the above estimates and convergences that

lim sup
n→∞

∣∣∣∣
∫ (|un|p|vn|q − |u|p|v|q)∣∣∣∣ � 2ε,

and therefore

lim
n→∞

∫
|un|p|vn|q =

∫
|u|p|v|q.

Thus, we can argue as in the final of the proof of Theorem 1.1 to conclude that ‖zλn − z‖0 �
‖zλn − z‖λn → 0 as n → ∞. Hence, zn → z strongly in D1,2(RN ) × D1,2(RN ) and the theorem is
proved. �
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