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Abstract

In this paper we investigate cyclic spaces of generalized derivations related to the sym-
metric functions, and its relation with a generalization of the Cauchy–Davenport Theorem. ©
2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

A classical approach to the study of the structure of a linear operator has been
through the understanding of its associated cyclic subspace. During the decade of
the 1980s, an interesting element was added to this theory, and some problems were
solved with results from Additive Number Theory (e.g. [13]). More recently, a two-
way path was established and results on Linear Algebra were used to solve problems
in Additive Theory, and the value of these methods was tested with the proof of a
longstanding conjecture of Erdös–Heilbronn (see [6]). In the last years other papers
appeared presenting results on Linear Algebra also with significance in Additive
Theory [3–5,7].
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In this paper we are going to investigate cyclic spaces of generalized deriva-
tions related to the symmetric functions, and its relation with a generalization of the
Cauchy–Davenport Theorem.

Let F be an arbitrary field of characteristic p, a prime number, if it is of finite char-
acteristic or p = ∞ otherwise. If b ∈ R, denote by �b� the greatest integer less than
or equal to b. Let r and n1, n2, . . . , nr , n be positive integers. We denote by �(n1,...,nr )

the set of all mappings α from {1, . . . , r} into N satisfying α(i) � ni, i = 1, . . . , r .
We abbreviate to �r,n the notation �(n, . . . , n︸ ︷︷ ︸

r times

). The set Qr,s is the subset of �r,s

of the strictly increasing mappings from {1, . . . , r} into {1, . . . , s}. Let m ∈ N and
let k ∈ N such that k � m. Let X1, . . . , Xm be m distinct indeterminates. The kth
elementary symmetric function on the indeterminates X1, . . . , Xm∑

ω∈Qk,m
Xω(1) ·Xω(2) · · ·Xω(k)

will be denoted by sk(X1, . . . , Xm) or by sk (if there is no ambiguity to avoid),
k = 1, . . . , m.

Let A1, . . . , Am be finite subsets of F. We denote by

sk(A1, . . . , Am)

the set

sk(A1, . . . , Am) := {sk(b1, . . . , bm) : (b1, . . . , bm) ∈ A1 × A2 × · · · × Am
}
.

Let Vi be a finite dimensional vector space of dimension ni over the field F. Let
L(Vi, Vi) be the F-algebra of linear operators on Vi . We denote by V1 ⊗ V2 ⊗ · · · ⊗
Vm the tensor product of V1, . . . , Vm. If T is a linear operator, we denote by PT the
minimal polynomial of T, by σ(T ) the spectrum of T (the n-tuple of characteristic
roots of T in F, the algebraic closure of F) and by I the identity linear operator.

Let A1, . . . ,Am be algebras over a commutative ring, and take ai ∈ Ai for i =
1, . . . , m. Let us denote by

�i = {ω ∈ Qk,m | i ∈ Im (ω)
}
.

Now, for ω∈Qk,m, define the map δω from A1 × · · · × Am to A1 ⊗ · · · ⊗ Am by

δω(a1, . . . , am) = u1 ⊗ u2 ⊗ · · · ⊗ um

where

ui =
{
ai if ω ∈ �i ,
1Ai

otherwise.

Consider Ti ∈ L(Vi, Vi) (1 � i � m) linear operators and denote by sk(T1, . . . , Tm)

the linear operator on V1 ⊗ · · · ⊗ Vm

sk(T1, . . . , Tm) :=
∑

ω∈Qk,m
δω(T1, . . . , Tm).
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Theorem 1. Let Ti be a linear operator on Vi and let (λi,1, . . . , λi,ni ) be the spec-
trum of Ti, i = 1, . . . , m. Then the spectrum of sk(T1, . . . , Tm) is

(sk(λ1,α(1), . . . , λm,α(m)))α∈�m,n .

Proof. This proof follows along the lines of Theorem 2.4 in [11, p. 233]. Let Ti ∈
L(Vi, Vi) be a linear operator and Si ∈ L(Vi, Vi) be invertible, i=1, . . . , m. Using
the elementary properties of the tensor product of linear operators we can easily see
that

S1 ⊗ · · · Sm(sk(T1, . . . , Tm))S
−1
1 ⊗ · · · ⊗ S−1

m )

= sk(S1T1S
−1
1 , . . . , SmTmS

−1
m ).

Then, considering Vi over F, i = 1, . . . , m, and making, if necessary, an extension
of the field of scalars, we can always assume that Ti is an upper triangular linear
operator with respect to the basis (ei1, . . . , eini ) of Vi , i = 1, . . . , m. Let Ti,ω = I

if ω �∈ �i and Ti,ω = Ti if ω ∈ �i . Then considering, ordered lexicographically, in
V1 ⊗ · · · ⊗ Vm, the basis (e⊗α ) = (e1,α(1) ⊗ · · · ⊗ em,α(m))α∈�m,(n1,...,nm)

induced by
the bases (ei1, . . . , eini )i=1,...,m we have

sk(T1, . . . , Tm)(e
⊗
α )=

∑
ω∈Qk,m

δω(T1, . . . , Tm)(e
⊗
α )

=
∑

ω∈Qk,m
T1,ω(e1,α(1))⊗ · · · ⊗ Tm,ω(em,α(m)).

We are assuming Ti to be an upper triangular operator, so
Ti(eij ) = λij eij + uij ,

where uij ∈ 〈ei1, . . . , ei,j−1〉 (the subspace of Vi spanned by {ei1, . . . , ei,j−1}), i =
1, . . . , n. Thus from the former equality we get

sk(T1, . . . , Tm)(e
⊗
α )

=
∑

ω∈Qk,m
e1α(1) ⊗ · · · ⊗ (λω(1),α(ω(1))eω(1)α(ω(1)) + uω(1)α(ω(1))

)

⊗ · · · ⊗ (λω(k)α(ω(k))eω(k)α(ω(k)) + uω(k)α(ω(k))
)⊗ · · · ⊗ em,α(m)

=

 ∑
ω∈Qk,m

k∏
t=1

λω(t)α(ω(t))


 e⊗α + Rα,

by multilinearity.
Since uij ∈ 〈ei1, . . . , ei,j−1〉, the tensors of the form e⊗β , β ∈ �m,n, that are present

in Rα , have the property β(t) � α(t), t = 1, . . . , m. Since β /= α, for at least one
j we must have that β(ω(j)) < α(ω(j)). Therefore β < α (by the lexicographic
order) and the matrix of sk(T1, . . . , Tm) is upper triangular with respect to the basis
(e⊗α )α∈�(n1,...,nm)

.



4 J.A. Dias da Silva, H. Godinho / Linear Algebra and its Applications 342 (2002) 1–15

The entry (α, α) of that matrix is then

∑
ω∈Qk,m

k∏
t=1

λω(t),α(ω(t)) = sk
(
λ1,α(1), . . . , λm,α(m)

)
. �

Corollary 1. Let Ai = {λi,1, . . . , λi,ni } be a subset of F, i = 1, . . . , m. Let Ti be a
diagonal linear operator on an ni-dimensional space Vi such that σ(Ti) = (λi,1, . . . ,

λi,n). Then the set of eigenvalues of sk(T1, . . . , Tm) is sk(A1, . . . , Am). Therefore

|σ(sk(T1, . . . , Tm))| = |sk(A1, . . . , Am)|.

Our goal is to present lower bounds for the degree of the minimal polynomial of
sk(T1, . . . , Tm) and for the cardinality of sk(A1, . . . , Am).

2. Auxiliary results

Let X1, . . . , Xm be indeterminates and consider the basis

Ei = {Xmi |m ∈ N0
}

of Z[Xi], i = 1, . . . , m. Now consider the basis E in Z[X1] ⊗ · · · ⊗ Z[Xm], induced
by the bases E1, . . . , Em.

Given Xs11 ⊗X
s2
2 ⊗ · · · ⊗X

sm
m ∈ E we call degree of Xs11 ⊗X

s2
2 ⊗ · · · ⊗X

sm
m to

the integer s1 + · · · + sm.

Proposition 1. Let �i as before and b = (
m
k
). Writing X = (X1, . . . , Xm), we have

in Z[X1] ⊗ · · · ⊗ Z[Xm], for t ∈ N,


 ∑
ω∈Qk,m

δω(X)



t

=
∑

(nω1 ,...,nωb )∈Nb

nω1+···+nωb=t

t !
nω1 !nω2 ! · · · nωb !

×X
∑
ω∈�1

nω

1 ⊗ · · · ⊗X

∑
ω∈�m

nω
m .

Proof. It is well known that if A is a commutative ring and a1, . . . , ab are elements
of A, we have

(a1 + a2 + · · · + ab)
t =

∑
(m1,...,mb)∈Nb

0
m1+m2+···+mb=t

t !
m1!m2! · · ·mb!a

m1
1 · am2

2 · · · ambb .

If we consider the tensor algebra Z[X1] ⊗ · · · ⊗ Z[Xm], we have
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
 ∑
ω∈Qk,m

δω(X)



t

=
∑

(nω1 ,...,nωb )∈Nb
0

nω1+nω2+···+nωb=t

t !
nω1 !nω2 ! · · · nωb !

δω1(X)
nω1 · · · δωb (X)nωb

=
∑

(nω1 ,...,nωb )∈Nb
0

nω1+···+nωb=t

t !
nω1 !nω2 ! · · · nωb !

X

∑
ω∈�1

nω

1 ⊗ · · · ⊗X

∑
ω∈�m

nω
m . �

Let N be a positive integer. A nonincreasing sequence of nonnegative integers
R = (r1, . . . , rt ) is a partition of N if r1 + · · · + rm = N . Identifying partitions of
N that differ only by a string of zeros, we can then represent (when convenient) any
partition of N by an N-tuple.

Let us define the conjugate partition R of N to be the partition R′ of N, R′ =
(r ′1, r ′2, . . . , r ′N), such that

r ′i = |{j ∈ {1, . . . , N} : rj � i}|, i = 1, . . . , N.

Given two partitions of N, R = (r1, . . . , rN ) and S = (s1, . . . , sN ) we say that R
dominates S and we write R � S if

r1 + · · · + ri � s1 + · · · + si, i = 1, . . . , N.

The following result can be found in [9, Lemma 1.4.11]:

R � S ⇔ S′ � R′.
If S = (s1, . . . , sN ) is a sequence of nonnegative integers, define the partition

S = (s1, . . . , sm) to be the reordering of (s1, . . . , sm) such that

s1 � s2 � · · · � sm.

The Gale–Ryser theorem [2] is useful in the sequel:

Theorem 2 (Gale and Ryser). Let

S = (s1, s2, . . . , sm) and R = (r1, r2, . . . , rt )

be nonnegative integral vectors. Assume that s1 � s2 � · · · � sm and r1 � r2 · · · �
rt . Assume that si � t, i = 1, . . . , m. Then there exists an m× t (0, 1)-matrix with
row sum vector S and column sum vector R if and only if R � S′.

Below we give a condition for an element Xs11 ⊗X
s2
2 ⊗ · · · ⊗X

sm
m , belonging to

the basis E of Z[X1] ⊗ · · · ⊗ Z[Xm], to occur in the expression of
(∑

ω∈Qk,m δω(X)
)t

referred in Proposition 1.
Let N0 be the set of nonnegative integers.
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Proposition 2. Let k, m and b be as before and t be a positive integer. Let S =
(s1, . . . , sm) be a sequence of nonnegative integers such that

s1 + · · · + sm = kt.

Then the system in the variables (xω1 , . . . , xωb)∑
ω∈�i

xω = si, i = 1, . . . , m, (1)

is solvable in N0 if and only if

si � t, i = 1, . . . , m. (2)

Proof. Let ω ∈ Qk,m.We are going to denote by Iω = (c
(ω)
i1 ) the (0, 1)-matrix of

type m× 1 over F, where

c
(ω)
i1 =

{
1 if i ∈ Im (ω) (i.e. ω ∈ �i),
0 otherwise.

Let us start by writing the system (2.1) in the matricial form[
Iω1Iω2 · · · Iωb

]
X = S,

where the coefficient matrix is a (0, 1)-matrix of type m× b, X is the column ma-
trix of the indeterminates xwj ’s and S is the column matrix of the sj ’s, which is
equivalent to

xw1Iω1 + xw2 Iω2 + · · · + xwbIωb = S. (3)

If (qω1 , . . . , qωb) is a solution of (2.1), then we can construct the following (0, 1)-
matrix

M =

Iω1 · · · Iω1︸ ︷︷ ︸

qω1

Iω2 · · · Iω2︸ ︷︷ ︸
qω2

· · · Iωb · · · Iωb︸ ︷︷ ︸
qωb




with vector row sum (s1, . . . , sm) (this follows from (2.3)). By assumption s1 +
· · · + sm = kt , and thus the matrix above has exactly kt entries equal to 1. Now each
of its columns Iωj has m lines and k entries equal to 1. Therefore M is an m× t

matrix (in particular,
∑
qωj = t).

Then since M has t columns inequalities (2) hold.
Suppose that inequalities (2) hold. Then we have

(s1, s2, . . . , sm) � (t, t, . . . , t︸ ︷︷ ︸
k times

).

Using Gale and Ryser theorem, we can conclude that there exists a (0, 1)-matrix,
M, of type m× t such that the sum of each column is k and the sum of row i is si ,
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i = 1, . . . , m. Therefore, for each column Ci of M there exists an ω ∈ Qk,m such
that Ci = Iω. Denote by qω the number of columns of M equal to Iω. It is now easy
to conclude that (qω1 , qω2 , . . . , qωb) is a solution of (1). �

Using the arguments of the former proof we can conclude the following theorem.

Theorem 3.
(a) Let k, m and b be as before and t be a positive integer. Let S = (s1, . . . , sm) be

a sequence of nonnegative integers such that s1 + · · · + sm = kt .
Then, the elementXs11 ⊗X

s2
2 ⊗ · · · ⊗X

sm
m of the basis E occurs in the expansion

of
 ∑
ω∈Qk,m

δω(X1, . . . , Xm)



t

if and only if the sequence S satisfies

si � t, i = 1, . . . , m.

(b) If the term X
s1
1 ⊗X

s2
2 ⊗ · · · ⊗X

sm
m does occur, its coefficient is equal to the

number of (0, 1)-matrices of type m× t with row sums equal to (s1, . . . , sm)
whose column sums are equal to k.

Proof. Statement (a) is an immediate consequence of Propositions 1 and 2. So now
we concentrate on (b).

Let

Qk,m = {ω1, . . . , ωb}.
It is easy to see that

 ∑
ω∈Qk,m

δω(X)



t

=
∑
α∈�t,b

δωα(1) (X1, . . . , Xm) · · · δωα(t) (X1, . . . , Xm).

Let α ∈ �t,b. Define

�α,i=
{
j ∈ {1, . . . , t} | i ∈ Im (ωα(j))

}
,

G={α ∈ �t,b | S = (|�α,1|, |�α,2|, . . . , |�α,m|) = (s1, . . . , sm)
}
,

and

Mt(S; k)= The set of all (0, 1)− matrices of type m× t with row sum

vector S and column sum vector (k, . . . , k︸ ︷︷ ︸
t times

).

Then, since
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δωα(1) (X) · · · δωα(t) (X) = X
|�α,1|
1 ⊗X

|�α,2|
2 ⊗ · · · ⊗X

|�α,m|
m ,

the coefficient of Xs11 ⊗X
s2
2 ⊗ · · · ⊗X

sm
m in the expansion of

(∑
ω∈Qk,m δω(X)

)t
is

equal to |G|.
From now on, assume S = (s1, . . . , sm) and define

� : G−→Mt(S; k)
α �−→�(α),

where

�(α) = [Iωα(1)Iωα(2) · · · Iωα(t)
]
,

with Iωi = (c
(ωi)
i1 ) as defined in the proof of the previous proposition.

This map � is well defined for the sum of the ith line of �(α) which is equal to

t∑
j=1

c
(ωα(j))

i1 = |{j |ωα(j) ∈ �i}| = |{j | i ∈ Im (ωα(j))}| = |�α,i |,

and each Iωi has exactly k entries equal to 1.
To conclude this proof, we need to show that � is a bijection. If α, β ∈ G and, for

some j, α(j) /= β(j), then Iωα(j) /= Iωβ(j) . So � is 1–1.
Now take B = [C1, . . . , Ct ] ∈ Mt(S; k). Since the sum of each column Cj is

equal to k, there exists a unique ωi such that Cj = Iωi . Now it is easy to define α
such that B = [Iωα(1) · · · Iωα(t)]. �

Theorem 4. Suppose that the term X
s1
1 ⊗X

s2
2 ⊗ · · · ⊗X

sm
m ∈ E occurs with a coef-

ficient Cs in the expansion of
 ∑
ω∈Qk,m

δω(X)



t

.

Then Xt−s11 ⊗X
t−s2
2 ⊗ · · · ⊗X

t−sm
m ∈ E occurs with the same coefficient Cs in the

expansion of
 ∑
ω∈Qm−k,m

δω(X)



t

.

Proof. Using Propositions 1 and 2 we see that Xs11 ⊗X
s2
2 ⊗ · · · ⊗X

sm
m occurs

in
(∑

ω∈Qk,m δω(X)
)t

if and only if X
t−s1
1 ⊗X

t−s2
2 ⊗ · · · ⊗X

t−sm
m occurs in(∑

ω∈Qm−k,m δω(X)
)t
. Using Theorem 3 we can see that it is enough to prove that

if S = (s1, . . . , sm),
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|Mt(S, k)| = |Mt((t − s1, . . . , t − sm),m− k)|
to conclude the proof.

Given a (0, 1)-matrixA = (aij ) denote byA = (aij ) the (0, 1)-matrix of the same
type than A such that aij = 1 − aij . It is easy to see that if A ∈ Mt(S, k), then A ∈
Mt((t − s1, . . . , t − sm),m− k).

Since the mapping fromMt(S, k) intoMt((t − s1, . . . , t − sm),m− k), A → A,

is an involution (A = A), then it is bijective and the theorem follows. �

For some special values of k, it is possible to determine explicitly the coefficient of
X
s1
1 ⊗X

s2
2 ⊗ · · · ⊗X

sm
m . These special cases are treated in the following proposition.

Proposition 3. Suppose that the term X
s1
1 ⊗X

s2
2 ⊗ · · · ⊗X

sm
m ∈ E occurs with a

coefficient Cs in the expansion of
 ∑
ω∈Qk,m

δω(X)



t

.

Then,
(a) if k = 1, we have

Cs = t !
s1!s2! · · · sm! ,

(b) if k = m− 1, we have

Cs = t !
(t − s1)!(t − s2)! · · · (t − sm)! .

Proof. For k = 1 we have Q1,m = {ω1, ω2, . . . , ωm} and �i = {ωi}. Hence (see
Proposition 1) there is only one solution for the system∑

ω∈�i

nω = si (i = 1, . . . , m)

that is, the solution nωi = si , which gives the result (a) above.
Case (b) follows from (a) and Theorem 4. �

Corollary 2. With the same notations presented in the proof of Theorem 3, we have
(a) |Mt(S; 1)| = t !

s1!s2!···sm! ,
(b) |Mt(S;m− 1)| = t !

(t−s1)!(t−s2)!···(t−sm)! .

So far we have established results in the Z-algebra Z[X1] ⊗ · · · ⊗ Z[Xm]. Next
we present a relation between this Z-algebra and the F-algebra F[X1] ⊗ · · · ⊗ F[Xm],
and how to interpret the previous results in this new algebra.

Let EF be the basis of F[X1] ⊗ · · · ⊗ F[Xm] induced by the bases{
Xni | n ∈ N0

}
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of F[Xi], i = 1, . . . , m. GivenXs11 ⊗X
s2
2 ⊗ · · · ⊗X

sm
m ∈ EF we call degree ofXs11 ⊗

X
s2
2 ⊗ · · · ⊗X

sm
m to the integer s1 + · · · + sm.

Denote by 1F the identity of F. Consider the Z-algebra homomorphism φ from Z

into F defined by

n �−→ 1F + 1F + · · · + 1F︸ ︷︷ ︸
n times

.

Let φi be its canonical extension from Z[Xi] into F[Xi]
aXmi �−→ φ(a)Xmi .

Then

� = φ1 ⊗ φ2 ⊗ · · · ⊗ φm

is a Z-algebra homomorphism [1, p. A.III.34] from Z[X1] ⊗ · · · ⊗ Z[Xm] into F[X1]
⊗ · · · ⊗ F[Xm].

Let us define

Dk,m(X1, . . . , Xm) = �


 ∑
ω∈Qk,m

δω(X1, . . . , Xm)


 .

The next lemma summarizes the important properties of Dk,m(X1, . . . , Xm), and is
a straightforward consequence of its definition.

Lemma 1. The following equalities hold:
(i) � (aS X

s1
1 ⊗X

s2
2 ⊗ · · · ⊗X

sm
m ) = φ(aS)X

s1
1 ⊗X

s2
2 ⊗ · · · ⊗X

sm
m .

(ii) �

((∑
ω∈Qk,m δω(X1, . . . , Xm)

)t ) = Dk,m(X1, . . . , Xm)
t .

(iii) Let S = (s1, . . . , sm) be a sequence of nonnegative integers satisfying s1 +
s2 + · · · + sm = kt . If CS is the coefficient of Xs11 ⊗X

s2
2 ⊗ · · · ⊗X

sm
m in the

expression of
(∑

ω∈Qk,m δω(X1, . . . , Xm)
)t

as linear combination of the el-

ements of E, then φ(CS) is the coefficient of Xs11 ⊗X
s2
2 ⊗ · · · ⊗X

sm
m in the

expression of Dk,m(X1, . . . , Xm)
t as linear combination of the elements of EF.

3. The cyclic subspace 〈sk(T1, . . . , Tm)t〉

It is well known that if {I, Ti, T 2
i , . . . , T

li−1
i } is a basis of the cyclic F-subalgebra

〈Ti〉 of L(Vi, Vi), i = 1, . . . , m, then li = deg PTi and

B = {T e1
1 ⊗ · · · ⊗ T emm | 0 � ej � li − 1 for i = 1, 2, . . . , m

}
is a basis of 〈T1〉 ⊗ 〈T2〉 ⊗ · · · ⊗ 〈Tm〉. If Z = T

e1
1 ⊗ · · · ⊗ T

em
m ∈ B, we say that∑m

i=1 ei is the weight of Z. Define 1 to be
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1=
⌊
l1 + l2 + · · · + lm −m

k

⌋
+ 1.

Let t be an integer less than or equal to 1−1, and l′i= min{t + 1, li}, i = 1, . . . , m.
Let ρt be the integer satisfying

(l′1 − 1)+ · · · + (l′ρt−1 − 1) < kt (4)

and

(l′1 − 1)+ · · · + (l′ρt − 1) � kt. (5)

Define (θt,1, . . . , θt,m) as a m-tuple of nonnegative integers such that

θt,i =


l′i − 1 if i < ρt ,

kt − (l′1 + · · · + l′ρt−1 − (ρt − 1)) if i = ρt ,

0 if i > ρt .

Let us define hk,t to be the number of (0, 1) matrices with row sums equal to
(θt,1, . . . , θt,m), and whose column sums are equal to k for t = 0, 1, . . . , 1− 1.

Now define

zt = X
θt,1
1 ⊗X

θt,2
2 ⊗ · · · ⊗X

θt,m
m

and

Zt = T
θt,1

1 ⊗ T
θt,2

2 ⊗ · · · ⊗ T θt,m, t = 0, . . . , 1− 1.

Our purpose is to decide if Zt belongs to the support of sk(T1, . . . , Tm) and get,
from this, information on the linear independence of families of type

I, sk(T1, . . . , Tm), . . . , sk(T1, . . . , Tm)
s.

Lemma 2. Zt is an element of B of weight kt for every t = 1, . . . , 1− 1.

Proof. Let us start by pointing out that the weight of Zt is θt,1 + θt,2 + · · · + θt,m =
kt . By construction we have θt,i � li − 1 and the lemma follows. �

Lemma 3. The element Zt occurs in the expression of sk(T1, . . . , Tm)
t as a linear

combination of B with φ(hk,t ) as its coefficient.

Proof. Let A = 〈T1〉 ⊗ 〈T2〉 ⊗ · · · ⊗ 〈Tm〉 (the subalgebra of L(V1, V1)⊗ · · · ⊗
L(Vm, Vm)). Let ψ be F-algebra homomorphism from F[X1] ⊗ · · · ⊗ F[Xm] into
A, obtained by

X
e1
1 ⊗ · · · ⊗Xemm �−→ T

e1
1 ⊗ · · · ⊗ T emm

(cf. [10, p. 98]). Let Ht be the set of elements ofEF of degree t and Wt the elements
of B of weight t. Let L = (l1 − 1, . . . , lm − 1), and denote by ΥL the set of all
elements Xs11 ⊗X

s2
2 ⊗ · · · ⊗X

sm
m of EF satisfying si � li − 1, i = 1, . . . , m. The

following can be easily obtained:
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(a) sk(T1, . . . , Tm)
t = ψ

(
Dk,m(X1, . . . , Xm)

t
)
,

(b) if z ∈ Ht ∩ ΥL, then ψ(z) ∈ Wt ,
(c) if z ∈ Ht ∩ (EF\ΥL), then ψ(z) ∈⋃t−1

i=0 Wi .

Let M = (t, . . . , t︸ ︷︷ ︸
m times

). Bearing in mind Theorem 3 and Lemma 1 we know that

(Dk,m(X1, . . . , Xm))
t =

∑
z∈Hkt∩ΥM

φ (Cz) z, (6)

with 0 /= Cz ∈ N.
Using (a), (b) and (c) we get

sk(T1, . . . , Tm)
t =ψ(Dk,m(X1, . . . , Xm)

t
)

=ψ

 ∑
z∈Hkt∩ΥL

φ(Cz)z +
∑

z∈Hkt∩(ΥM\ΥL)
φ(Cz)z




=
∑

z∈Hkt∩ΥL
φ(Cz)ψ(z) +

∑
z∈Hkt∩(ΥM\ΥL)

φ(Cz)ψ(z).

If we define Z = ψ(z), we get from these equalities the following:

sk(T1, . . . , Tm)
t =

∑
Z∈Wkt

φ(Cz)Z + Y, (7)

where Y is a linear combination of elements of B of weight less than t.
By construction, zt ∈ Hkt ∩ ΥM , hence it occurs inDk,m(X1, . . . , Xm)

t with the
coefficient φ(hk,m) (see (6)). Therefore Zt = ψ(zt ) occurs in sk(T1, . . . , Tm)

t with
the same coefficient (see (7)), concluding this proof. �

Theorem 5. Let 0 � s � 1− 1. If p (the characteristic of F) does not divide hk,t for
t = 0, . . . , s, then the degree of the minimal polynomial of sk(T1, . . . , Tm) is greater
than or equal to s + 1.

Proof. From the hypothesis we have that the coefficient φ(hk,t ) is different from
zero. Since every element of B that occurs in sk(T1, . . . , Tm) has weight less than or
equal to kt, we can deduce, from Lemmas 2 and 3, that for every t � s the support
of sk(T1, . . . , Tm) contains an element Zt ∈ B that does not belong to the support of
any other power (less than t) of sk(T1, . . . , Tm).

Hence we have that

I, sk(T1, . . . , Tm), sk(T1, . . . , Tm)
2, . . . , sk(T1, . . . , Tm)

s

are linearly independent inL(V1 ⊗ V2 ⊗ · · · ⊗ Vm, V1 ⊗ V2 ⊗ · · · ⊗ Vm). Therefore
the degree of the minimal polynomial of sk(T1, . . . , Tm) is greater than or equal to
s + 1. �
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Corollary 3. Let dk,m be the degree of the minimal polynomial of sk(T1, . . . , Tm).
Then,
(1) d1,m � min

{
p, degPT1 + degPT2 + · · · + degPTm −m+ 1

}
.

(2) dm−1,m � min
{
p,
⌊

degPT1+degPT2+···+degPTm−m
m−1

⌋
+ 1
}
.

Proof. Using the same type of arguments that have been used in the proof of The-
orem 5 and bearing in mind Proposition 3 where the coefficients for these special
cases are explicitly calculated, we conclude the corollary. �

Proposition 4. If ht,k | (kt)!, t = 0, . . . , 1− 1, then the degree of the minimal poly-
nomial of sk(T1, . . . , Tm) is greater than or equal to

min

{⌊p
k

⌋
,

⌊
degPT1 + degPT2 + · · · + degPTm −m

k

⌋
+ 1

}
.

Proof. Observe that if t < �p/k�, we have kt < p therefore p � |(kt)! Thus, by
hypothesis, p does not divide hk,t for t = 0, . . . ,min{�p/k� , �1�}. Now apply
Theorem 5. �

Lemma 4. Let

1′ =
⌊

degPT1 + degPT2 + · · · + degPTm −m

m− k

⌋
+ 1.

If hj,k | (kj)!, j = 0, . . . , 1− 1, then hj,m−k | (kj)!, j = 0, . . . , 1′ − 1.

Proof. This is a consequence of Theorem 4. �

Remark. There are reasons to think that the conditions of Proposition 4 hold or at
least happen very often. Although there are several results (e.g. [8,12]) on the number
of (0, 1)-matrices m× n with prescribed row and column sums (for instance in [8,
p. 204 Ex. 19] a formula is obtained that expresses this number in terms of the so
called Kostka numbers), the authors were unable to characterize the cases where the
conditions of Proposition 4 are implemented using this formula.

4. Additive results

We are now in a position to present lower bounds for the cardinality of the set

|sk(A1, . . . , Am)|.
These lower bounds are pointing to a generalization of the Cauchy–Davenport

Theorem, which in our notation can be written as
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|A1 + · · · + Am|=|s1(A1, . . . , Am)|
�min

{
p, |A1| + |A2| + · · · + |Am| −m+ 1

}
.

For the following results, we are assuming all the notations and definitions presented
in Section 3.

Theorem 6. Letm, k be positive integers and k � m. Assume that p does not divide
hk,t for t = 0, . . . , 1− 1. Let A1, . . . , Am be finite subsets of F. Then

|sk(A1, . . . , Am)| �
⌊ |A1| + |A2| + · · · + |Am| −m

k

⌋
+ 1.

Proof. Assume that |Ai | = li , i = 1, . . . , m. Let Ti be a diagonal linear operator
on a vector space Vi of dimension li over F, whose set of eigenvalues is Ai, i =
1, . . . , m. We know from Corollary 1 that

|σ(sk(T1, . . . , Tm))| = |sk(A1, . . . , Am)|.
Since sk(T1, . . . , Tm) is diagonal (see Theorem 1),

deg(Psk(T1,...,Tm)) = |σ(sk(T1, . . . , Tm))| = |sk(A1, . . . , Am)|.
Therefore, by Theorem 5, we conclude that

sk(A1, . . . , Am) | �
⌊ |A1| + |A2| + · · · + |Am| −m

k

⌋
+ 1. �

Theorem 7. Let m, k be positive integers and k � m. Assume that hj,k | (kj)!, j =
0, . . . , 1− 1. Let A1, . . . , Am be finite subsets of F. Then

|sk(A1, . . . , Am)| � min

{⌊p
k

⌋
,

⌊ |A1| + |A2| + · · · + |Am| −m

k

⌋}
+ 1.

Proof. The proof can be carried out by using Proposition 4 and arguments similar
to the ones used in Theorem 6. �

The following result presents a generalization of the Cauchy–Davenport theo-
rem for the symmetric polynomial sm−1(X1, . . . , Xm) applied on the family of sets
A1, . . . , Am. The first inequality follows also immediately from Cauchy–Davenport
by an induction argument.

Theorem 8. Let m be a positive integer. Let A1, . . . , Am be finite subsets of F. Then

|A1 + · · · + Am| � min
{
p, |A1| + |A2| + · · · + |Am| − (m− 1)

}
.

and

|sm−1(A1, . . . , Am)| � min

{
p,

⌊ |A1| + |A2| + · · · + |Am| −m

m− 1

⌋
+ 1

}
.
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Proof. The proof is a consequence of Corollary 2, using arguments similar to the
ones presented in Theorem 6. �
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