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1 Introduction

In this paper we further investigate cyclic spaces of generalized derivations re-
lated to the elementary symmetric functions. There are important correlations
between these derivations and problems in additive number theory, as described
in details in our previous paper [2]. Before presenting the problem addressed
here, some definitions are necessary.

Let m, k ∈ N such that k ≤ m. Denote by Qk,m the set of all strictly increas-
ing mappings from {1, · · · , k} into {1, · · · ,m} and let X1, . . . , Xm be m distinct
indeterminates. The kth elementary symmetric function on the indeterminates
X1, . . . , Xm may be written as

sk,m(X1, . . . , Xm) =
∑

ω∈Qk,m

Xω(1) ·Xω(2) · · ·Xω(k).

Let V be an n-dimensional vector space over the field F. Let L(V, V ) be
the F-algebra of linear operators on V and let T ∈ L(V, V ). We denote by
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⊗mV = V ⊗· · ·⊗V the mth-tensor power of V (the tensor product of m copies
of V ). If T is a linear operator, we denote by PT the minimal polynomial of T ,
and by I the identity linear operator on V .

Let A1, · · · ,Am be algebras over a commutative ring, and take ai ∈ Ai, for
i = 1, · · · ,m. Let us denote by

∆i = {ω ∈ Qk,m | i ∈ Im(ω)}.
Now, for ω ∈ Qk,m, define the map δω from A1×· · ·×Am to A1⊗· · ·⊗Am

by
δω(a1, . . . , am) = u1 ⊗ · · · ⊗ um

where

ui =
{

ai if ω ∈ ∆i

1Ai
otherwise.

We denote by sk,m(X) the element of ⊗mZ[X] = Z[X]⊗ · · · ⊗ Z[X] defined
as

sk,m(X) :=
∑

ω∈Qk,m

δω(X, . . . , X).

Let us denote by sk,m(T) the linear operator on ⊗mV

sk,m(T) :=
∑

ω∈Qk,m

δω(T, . . . , T ).

Let p be the characteristic of the field F. Then p is a prime number if the
characteristic is finite, or let p = ∞, otherwise. In [2] the authors discussed
the existence of a lower bound for the degree of the minimal polynomial of
sk,m(T), proving, among other results, one that contains, as a particular case,
the following theorem:

Theorem 1.1 Let m, k be positive integers and k ≤ m. Let T ∈ L(V, V ) and n
be the degree of PT . Then

deg(Psk,m(T)) ≥
⌊

m(n− 1)
k

⌋
+ 1, (1)

for p sufficiently large.

From [2, prop. 2.1], a trivial bound can be obtained to the sizes of the primes
p, that is p ≥ b`, where

b =
(

m

k

)
and ` =

⌊
m(n− 1)

k

⌋
.

But in general it seems to be a very difficult problem to describe precisely
for which p’s the theorem is not valid. It is a problem related to the number
of (0,1)-matrices with prescribed row sum vector and column sum vector. The
hypothesis “p sufficiently large” can be lifted in the spacial cases of k = 1 and
k = m− 1, giving the following result:
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Theorem 1.2 Let m, k be positive integers and k ≤ m. Let T ∈ L(V, V ) and n
be the degree of PT . Then

(i) deg(Ps1,m(T)) ≥ min {p, m(n− 1) + 1}.

(ii) deg(Psm−1,m(T)) ≥ min{p,

⌊
m(n− 1)

m− 1

⌋
+ 1}.

Our goal is to present some results on the structure of operators T , for
which the degree of the minimal polynomial of sk,m(T) is small. The techniques
involved come from Linear Algebra and Combinatorics, and their use for the
purpose of describing these polynomials seems to be new.

We say that an operator T ∈ L(V, V ) is critical if (see (1))

deg(Psk,m(T)) =
⌊

m(n− 1)
k

⌋
+ 1.

And we will call the minimal polynomial PT a critical polynomial if T is a
critical operator. We are now in position to state our main result.

Theorem 1.3 (Main Theorem) Let m, k be positive integers and k ≤ m.
Assume that m(n − 1) ≡ k − 1 (mod k), and p is sufficiently large. If PT is a
critical polynomial of degree n then

PT (X) = Xn −
r∑

i=1

An−ikXn−ik,

where r =
⌊

n
k

⌋
.

It is important to observe that for every k, m ∈ N, 1 ≤ k ≤ m, the polyno-
mials of the form Xn are critical. It is also interesting to mentioned that, for
k = m, one can prove that the polynomials,

Pi(X) = Xn −An−ikXn−ik,

for i = 1, . . . , r, are all critical. These proofs and some other examples are
presented at the final sections of this paper.

To prove the theorem above, we will study the powers of the operator
sk,m(T), and find conditions for the set

{I, sk,m(T), . . . , sk,m(T)`+1}

to be linearly dependent.
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2 Multilinear Algebra

Denote by 1F the identity of F. Consider the Z-algebra homomorphism φ from
Z into F satisfying φ(n) = 1F + 1F + · · ·+ 1F︸ ︷︷ ︸

n times

for all n ∈ N. Denote also by φ

the canonical extension of φ from Z[X] into F[X] satisfying

aXm 7−→ φ(a)Xm, m ∈ N0 = N ∪ {0}, a ∈ Z.

Then

Φ = φ⊗ φ⊗ · · · ⊗ φ

is a Z-algebra homomorphism from ⊗mZ[X] into ⊗mF[X].
It is well known that

E = {Xs1 ⊗ · · · ⊗Xsm | si ∈ N0, i = 1, . . . , m}
is a basis of the free Z-module, ⊗mZ[X] and,

EF = {Xs1 ⊗ · · · ⊗Xsm | si ∈ N0, i = 1, . . . ,m}
is a basis of the vector space ⊗mF[X], over F. Hence, if

z =
∑

(s1,...,sm)

c(s1,...,sm)X
s1 ⊗ · · · ⊗Xsm ∈ ⊗mZ[X]

is the expression of z as linear combination of the elements of E then

Φ(z) =
∑

(s1,...,sm)

φ(c(s1,...,sm))Xs1 ⊗ · · · ⊗Xsm

is the expression of Φ(z) as linear combination of the elements of EF.
Denote by Γm,N0 the set of all mappings from {1, · · · ,m} into N0 = N∪{0}.

We will identify the mapping α ∈ Γm,N0 with the m-tuple (α(1), · · · , α(m)).
Using Theorem 2.3 of [2] we can easily derive the following theorem.

Theorem 2.1 Let k and m be as before and t be a positive integer.
Then

(sk,m(X))t =
∑

(s1,...,sm)∈Λm,N0 (t)

C(s1,...,sm)X
s1 ⊗ · · · ⊗Xsm ,

where

Λm,N0(t) = {(s1, . . . , sm) ∈ Γm,N0 |
m∑

i=1

si = kt and si ≤ t, for 1 ≤ i ≤ m},

and C(s1,...,sm) is equal to the image by φ of the number of (0, 1)-matrices of
type m × t with row sum vector equal to (s1, . . . , sm) and whose column sum
vector is equal to (k, . . . , k).
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Definition 2.1 Let W be a vector space over the field F. Let E = {ei | i ∈ I}
be a basis of W . We say that ei E-occurs in w ∈ W if the coefficient of ei in the
expansion of w as a linear combination of the elements of E is different from
zero.

Corollary 2.1 Let (s1, . . . , sm) ∈ Γm,N0 and let (s′1, . . . , s
′
m) be a permutation

of (s1, . . . , sm). If the term Xs1 ⊗ · · · ⊗Xsm does EF-occur in the expression of
(sk,m(X)t then all the terms Xs′1 ⊗ · · · ⊗ Xs′m also EF-occur in (sk,m(X)t and
with the same coefficient.

It is easy to see that the mapping from Γm,N0 into EF

S = (s1, · · · , sm) ←→ Xs1 ⊗ · · · ⊗Xsm

is a bijection. Then we will identify S with Xs1 ⊗ · · · ⊗ Xsm . For S′ =
(s′1, · · · , s′m), we may define S + S′ to be the addition

Xs1 ⊗ · · · ⊗Xsm + Xs′1 ⊗ · · · ⊗Xs′m . (2)

Consider the action of Sym(m), the full symmetric group of degree m, on
Γm,N0 , (σ, S) → Sσ−1. Denote be OS the orbit of S by this action. We define
for S = (s1, · · · , sm),

((S)) = ((s1, · · · , sm)) :=
∑

S′∈OS
S
′
. (3)

Before continuing, we would like to open a parenthesis to define a linear oper-
ator on ⊗mV that will play a important role in the sequel. Let σ ∈ Sym(m), and
denote by PV (σ) the linear operator on⊗mV satisfying, for every v1, . . . , vm ∈ V
(see [3, p. 72]),

PV (σ)(v1 ⊗ · · · ⊗ vm) = vσ−1(1) ⊗ · · · ⊗ vσ−1(m).

These linear operators are related with the m-th powers of the linear mappings
as follows.

Proposition 2.1 Let V and W be vector spaces over F. Let D be a linear
mapping form V into W . Then the linear mapping D ⊗ · · · ⊗ D from ⊗mV
into ⊗mW satisfies the following equality

PW (σ)(D ⊗ · · · ⊗D) = (D ⊗ · · · ⊗D)PV (σ), (4)

for every σ ∈ Sym(m)

Proof: For v1, . . . , vm ∈ V we have

(D ⊗ · · · ⊗D)PV (σ)(v1 ⊗ · · · ⊗ vm) = D(vσ−1(1))⊗ · · · ⊗D(vσ−1(m))
= PW (σ)(D(v1)⊗ · · · ⊗D(vm))
= PW (σ)(D ⊗ · · · ⊗D)(v1 ⊗ · · · ⊗ vm).

Since the decomposable tensors v1⊗· · ·⊗ vm span the tensor product ⊗mV , we
get the equality (4). ¥
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Remarks 2.1 (i) Let S = (s1, . . . , sm) ∈ Γm,N0 , and define GS to be the
stabilizer of S by the action above described. Then (see (3))

∑

σ∈Sym(m)

Sσ−1 = |GS |
∑

S∈OS

S′

= |GS |((s1, . . . , sm)).
(5)

(ii) Observe that if S = (s1, . . . , sm) ∈ Γm,N0 , and considering the former
identification, we have

Sσ−1 = PF[X](σ)(Xs1 ⊗ . . .⊗Xsm).

Therefore, bearing in mind (5), we have

((s1, . . . , sm)) =
1

|GS |


 ∑

σ∈Sym(m)

PF[X](σ)


 (Xs1 ⊗ . . .⊗Xsm). (6)

(iii) If S′ = (s′1, . . . , s
′
m) ∈ OS then

((s′1, . . . , s
′
m)) = ((s1, . . . , sm))

and for every S = (s1, . . . , sm) ∈ Γm,N0 , there is one and only one de-
creasing m-tuple in OS (i.e. a partition of

∑
si).

Suppose that S = (s1, · · · , sm) has coefficient CS in the expansion of (sk,m(X))t

as a linear combination of the elements of EF. Then we can rewrite theorem 2.1
as

(sk,m(X))t =
∑

S∈Λm,N0 (t)

CS(s1, . . . , sm). (7)

Let Π be the set of partitions S = (s1, · · · , sm) of kt satisfying si ≤ t, for
i = 1, . . . , m,

Π = {(s1, . . . , sm) ∈ Λm,N0(t)) | t ≥ s1 ≥ s2 ≥ · · · ≥ sm}.
Grouping the right hand side of the equality (7) by the orbits of the action of
Sym(m) on Γm,N0 we have, by theorem 2.1 (observe that, if S ∈ Λm,N0(t) then
OS ⊂ Λm,N0(t)),

(sk,m(X))t =
∑

S∈Π

∑

S′∈OS

CS′(s′1, . . . , s
′
m).

Now using corollary 2.1 we have

(sk,m(X))t =
∑

S∈Π

CS

∑

S′∈OS

S′.

Therefore, we may write the expansion of (sk,m(X))t in (7) as (see theorem 2.1)
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Lemma 2.1 We have

(sk,m(X))t =
∑

S∈Π

CS((s1, · · · , sm)). (8)

From this we can easily see that sk,m(X)t belongs to the subspace of the
vector space ⊗mF[X], spanned by the linearly independent set

((EF)) = { ((s1, . . . , sm)) | (s1, . . . , sm) ∈ Π }.

2.1 The Algebra L(V, V )

Let T be a linear operator on V whose minimal polynomial has degree n and
〈T 〉 be the cyclic subalgebra of L(V, V ) spanned by T over F. Consider the basis
of ⊗m〈T 〉

B = {T b1 ⊗ T b2 ⊗ · · · ⊗ T bm | 0 ≤ bi ≤ n− 1, i = 1, . . . , m}.
Denote by Γm,n the subset of Γm,N0 of all mappings from {1, · · · ,m} into

{0, 1, · · · , n − 1}. In this setting and for convenience of the exposition we will
denote the m-tuple of α of Γm,n by [α(1), . . . , α(m)] or briefly by [α]. It is easy
to see that the correspondence

[b1, . . . , bm] → T b1 ⊗ T b2 ⊗ · · · ⊗ T bm

is a bijection from Γm,n onto B. As before we will identify [b1, . . . , bm] with
T b1 ⊗ · · · ⊗ T bm and give the meaning that follows from this identification to
the sum of m-tuples of Γm,n (see (2)).

We consider defined the action (σ,B) → Bσ−1 of Sym(m) on Γm,n. Let
B = [b1, . . . , bm] ∈ Γm,n, and let us use the notation (following the analogy with
((s1, · · · , sm)) )

[[B]] = [[b1, · · · , bm]] :=
∑

[b′1,...,b′m]∈O[b1,...,bm]

[b′1, . . . , b
′
m]

to describe the sum of the elements of the orbit of the element [b1, · · · , bm] of
the basis B.

Remarks 2.2 (i) Let B = [b1, . . . , bm] ∈ Γm,n, and define GB to be the
stabilizer of B by the action above described. Then

∑

σ∈Sym(m)

Bσ−1 =
∑

σ∈Sym(m)

[bσ(1), . . . , bσ(m)]

= |GB |
∑

[b′1,...,b′m]∈O[b1,...,bm]

[b′1, . . . , b
′
m]

= |GB |[[b1, . . . , bm]].

(9)
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(ii) Observe that if B = [b1, . . . , bm] (considering the former identification) we
obtain

Bσ−1 = P<T>(σ)(T b1 ⊗ . . .⊗ T bm),

where 〈T 〉 denotes the subalgebra of L(V, V ) spanned by T .

Using the item (i) above we get

[[b1, . . . , bm]] =
1

|GB |


 ∑

σ∈Sym(m)

P<T>(σ)


 (T b1 ⊗ . . .⊗ T bm). (10)

(iii) Again using the identification we can rewrite the basis B as

B = {[b1, . . . , bm] | 0 ≤ bi ≤ n− 1, i = 1, . . . ,m}.
Therefore,

[[B]] = {[[b1, . . . , bm]] | 0 ≤ bi ≤ n− 1, i = 1, . . . ,m}.
is a linearly independent set of ⊗mL(V, V ).

(iv) From the definition of [[b1, . . . , bm]], we can see that

[b′1, . . . , b
′
m] ∈ OB ⇐⇒ [[b′1, . . . , b

′
m]] = [[b1, . . . , bm]].

Let ψ be the homomorphism from F[X] into 〈T 〉, defined by ψ(f(x)) = f(T ).
Then Ψ := ψ⊗ · · ·⊗ψ is the algebra homomorphism form ⊗mF[X] into ⊗m〈T 〉
satisfying

Ψ(Xe1
1 ⊗ · · · ⊗Xem

m ) = T e1 ⊗ · · · ⊗ T em .

If z ∈ ⊗mF[X] we say that the image of z by Ψ is obtained by replacing X by
T and we use the notation zX=T for the image Ψ(z), in particular

(Xe1
1 ⊗ · · · ⊗Xem

m )X=T := Ψ(Xe1
1 ⊗ · · · ⊗Xem

m ) = T e1 ⊗ · · · ⊗ T em . (11)

Suppose that the minimal polynomial of T is

Xn −An−1X
n−1 − · · · −A1X −A0I.

Then we have

Tn = An−1T
n−1 + · · ·+ A1T + A0I. (12)

For each j ∈ N0, let A
(j)
n−1, . . . , A

(j)
0 be the elements of F such that

Tn+j = A
(j)
n−1T

n−1 + · · ·+ A
(j)
1 T + A

(j)
0 I, (13)

assuming A
(0)
j = Aj for j = 0, 1, · · · , n− 1 (see (12).

In the next lemma we give a complete description of how the image by Ψ of
the elements ((s1, · · · , sm)) can be written in terms of the elements [[b1, · · · , bm]].
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Lemma 2.2 Assume p is large enough. Let S = (s1, · · · , sm) be a partition
belonging to Π;

(i) If s1 ≥ n, take d = max{ j | sj ≥ n }. Then ((s1, · · · , sm))X=T is equal
to

∑

0≤b1,...,bd≤n−1

qb1,...,bd
A

(s1−n)
b1

. . . A
(sd−n)
bd

[[b1, . . . , bd, sd+1, . . . , sm]] (14)

where

qb1,...,bd
=
|G[b1,...,bd,sd+1,...,sm]|

|GS |
is a non-zero element of the prime field of F.

(ii) If s1 ≤ n− 1 then

((s1, · · · , sm))X=T = [[s1, . . . , sm]]. (15)

Proof: Since the item (ii) above is an immediate consequence of the definitions,
let us assume that s1 ≥ n. Writing d = max{ j | sj ≥ n }, we have

s1 ≥ s2 ≥ · · · ≥ sd ≥ n > sd+1 ≥ · · · ≥ sm. (16)

Using (6) and (11) we have

((s1, . . . , sm))X=T = Ψ


 1
|GS | (

∑

σ∈Sym(m)

PF[X](σ)


 (Xs1 ⊗ · · · ⊗Xsm)

=
1

|GS |Ψ

 ∑

σ∈Sym(m)

PF[X](σ)


 (Xs1 ⊗ · · · ⊗Xsm).

Using proposition 2.1 we obtain, from the previous equalities,

((s1, . . . , sm))X=T =
1

|GS |


 ∑

σ∈Sym(m)

P〈T 〉(σ)


 Ψ(Xs1 ⊗ · · · ⊗Xsm)

=
1

|GS |


 ∑

σ∈Sym(m)

P〈T 〉(σ)


 T s1 ⊗ · · · ⊗ T sm .

Bearing in mind (13) and (16) we get from the previous equalities that ((s1, . . . , sm))X=T

equals to

1
|GS |


 ∑

σ∈Sym(m)

P〈T 〉(σ)


 (

n−1∑

i=0

A
(s1−n)
i T i)⊗ · · · ⊗ (

n−1∑

i=0

A
(sd−n)
i T i)⊗ T sd+1 ⊗ · · · ⊗ T sm .
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Now, by multilinearity, we get ((s1, . . . , sm))X=T equals to

=
1

|GS |


 ∑

σ∈Sym(m)

P〈T 〉(σ)


 ∑

0≤b1,...,bd≤n−1

A
(s1−n)
b1

· · ·A(sd−n)
bd

(⊗BT )

=
1

|GS |
∑

0≤b1,...,bd≤n−1

A
(s1−n)
b1

· · ·A(sd−n)
bd


 ∑

σ∈Sym(m)

P〈T 〉(σ)


 (⊗BT )

where ⊗BT = T b1 ⊗ · · · ⊗ T bd ⊗ T sd+1 ⊗ · · · ⊗ T sm . From (10) follows that
((s1, . . . , sm))X=T is equal to

1
|GS |

∑

0≤b1,...,bd≤n−1

A
(s1−n)
b1

· · ·A(sd−n)
bd

|G[b1,...,bd,sd+1,...,sm]|[[b1, . . . , bd, sd+1, . . . , sm]].

Defining

qb1,...,bd
=
|G[b1,...,bd,sd+1,...,sm]|

|GS | ,

we see that the coefficients qb1,...,bd
are quotients of integers numbers (factors of

m!), hence they belong to the prime field of F. The hypothesis of p large enough
guarantees that all coefficients qb1,...,bd

are nonzero, completing the proof. ¥
It follows from (8)

(sk,m(T))t = Ψ((sk,m(X))t)
=

∑

S∈Π

CS((s1, . . . , sm))X=T . (17)

An immediate consequence is that (sk,m(T))t belongs to the subspace spanned
by [[B]], that is

Lemma 2.3

(sk,m(T))t =
∑

[[b1,...,bm]]∈[[B]]

H[[b1,...,bm]][[b1, . . . , bm]],

with H[[b1,...,bm]] ∈ F.
Definition 2.2 Let S = (s1, · · · , sm), be a partition and let [[b1, . . . , bm]] ∈ [[B]].

(i) We say that ((s1, · · · , sm)) is an ascendent of [[b1, . . . , bm]], if the follow-
ing conditions hold:

(a) For some t, ((s1, . . . , sm)) ((EF))-occurs in sk,m(X)t, i.e.

s1 + · · ·+ sm = kt and si ≤ t, i = 1, . . . ,m.

In this case we will say that ((s1, . . . , sm)) is at level t.
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(b) [[b1, · · · , bm]] [[B]]-occurs in ((s1, · · · , sm))X=T .

(ii) An element ((s1, · · · , sm)) is said to have weight w if
∑

sj = w.

Remark 2.1 Let d = max{j | sj ≥ n}, and assume that ((s1, · · · , sm)) is an
ascendent of [[b1, · · · , bm]]. Then by lemma 2.2 and remark 2.2(iv), there exists
a σ ∈ Sym(m) such that

[bσ(1), · · · , bσ(m)] = [b′1, · · · , b′d, sd+1, . . . , sm].

The coordinates bσ(1), · · · , bσ(d) will be called generated coordinates of [[b1, · · · , bm]]
with respect to ((s1, · · · , sm)).

3 Powers of T

Bearing in mind (12) and (13) we have for all j ∈ N0,

Tn+j+1 =
n−1∑

i=0

(AiA
(j)
n−1 + A

(j)
i−1)T

i,

where we make the convention A
(j)
−1 = 0. And immediately we have for j ∈ N0

A
(j)
n−i = An−iA

(j−1)
n−1 + A

(j−1)
n−i−1, (18)

for i = 1, · · · , n.

Lemma 3.1 The following relations between the coefficients hold

A
(l)
n−t =

l∑

j=1

A
(l−j)
n−1 An−t−j+1 + An−t−l, l ∈ N, t = 1, . . . , n.

where Ar = 0 if r < 0 and A
(0)
i = Ai, i = 0, . . . , n− 1.

Proof: (Induction on l). The case l = 1 and t = 1, · · · , n follows directly from
(18). So assume this is true for all s ≤ l. By (18) we have

A
(l+1)
n−t = An−tA

(l)
n−1 + A

(l)
n−t−1,

and by induction hypothesis

A
(l)
n−t−1 =

l∑

j=1

A
(l−j)
n−1 An−t−j + An−t−l−1,

which gives

11



A
(l+1)
n−t = An−tA

(l)
n−1 + A

(l)
n−t−1

= An−tA
(l)
n−1 +

l∑

j=1

A
(l−j)
n−1 An−t−j + An−t−1−l

= An−tA
(l)
n−1 +

l+1∑

j=2

A
(l+1−j)
n−1 An−t−j+1 + An−t−(l+1)

=
l+1∑

j=1

A
(l+1−j)
n−1 An−t−j+1 + An−t−(l+1).

¥

Corollary 3.1 In particular

A
(l)
n−1 = An−1(A

(l−1)
n−1 + An−l) +

l−1∑

j=2

A
(l−j)
n−1 An−j + An−l−1

Theorem 3.1 Let s ∈ N, such that s = qk + r, with 1 ≤ r ≤ k − 1. Suppose
that

An−t = 0, ∀t ∈ {1, · · · , s} and t 6≡ 0 (mod k).

Then
A

(l)
n−1 = 0 for 0 ≤ l ≤ s− 1, l 6≡ k − 1 (mod k), (19)

and, for v = 1, . . . , q,

A
(vk−1)
n−1 =

v−1∑

i=1

A
((v−i)k−1)
n−1 An−ik + An−vk. (20)

Proof: (Induction on q). If q = 0 then s = r ≤ k − 1. So, from corollary 3.1
above follows that A

(l)
n−1 = 0 for l ≤ r − 1.

Now suppose q = 1, then s = k + r and

An−1 = · · · = An−k+1 = An−k−1 = · · · = An−s = 0. (21)

From lemma 3.1 we have

A
(l)
n−1 =

l∑

j=1

k 6 | j

A
(l−j)
n−1 An−j + A

(l−k)
n−1 An−k + An−l−1. (22)

Assuming l ≤ s− 1 we have

l − k ≤ (s− 1)− k ≤ r − 1 ≤ k − 2.

12



Then we can use the case q = 0 above to have A
(l−k)
n−1 = 0. Replacing (21) and

A
(l−k)
n−1 = 0 in (22) gives

A
(l)
n−1 = An−(l+1) =

{
0 if l 6= k − 1
An−k if l = k − 1,

proving the theorem also for the case q = 1.
Let us assume that the theorem is true for all q ≤ u and let s = (u+1)k + r.

Again, from corollary 3.1, follows that

A
(l)
n−1 =

l∑

j=1

k 6 | j

A
(l−j)
n−1 An−j +

u+1∑

i=1

A
(l−ik)
n−1 An−ik + An−l−1.

Assuming l ≤ s− 1 we have

l − ik ≤ (u + 1)k + r − ik = (u + 1− i)k + r ≤ uk + r,

thus, using the induction hypothesis, either (19) or (20) holds for A
(l−ik)
n−1 , that

is

A
(l−ik)
n−1 =

{
0 if l − ik 6≡ k − 1 (mod k)
A

(tik−1)
n−1 if l − ik ≡ k − 1 (mod k).

It is important to observe that if l − ik ≡ k − 1 (mod k) for some i, then
l − ik ≡ k − 1 (mod k) for all i, and l ≡ k − 1 (mod k).

Hence, for l ≤ s− 1, we must have (together with the hypothesis) either

A
(l)
n−1 = 0 if l 6≡ k − 1 (mod k)

or

A
(vk−1)
n−1 =

v−1∑

i=1

A
((v−i)k−1)
n−1 An−ik + An−vk

if l = vk − 1 (i.e. l ≡ k − 1 (mod k)), concluding this proof. ¥

4 Genealogy of Bj

Let us start by recalling our assumptions that k,m, n ∈ N, 2 ≤ k ≤ m, V is a
vector space over F, and T ∈ L(V, V ), a linear operator. We are denoting by
PT is its minimum polynomial, and n = deg(PT ). Hence {I, T, . . . , Tn−1} is a
linearly independent set over the field F, and, as before, write

Tn = An−1T
n−1 + · · ·+ A1T + A0I.

Let

` =
⌊

m(n− 1)
k

⌋
. (23)
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In [2, thm.3.5], the authors proved that the set

{I, sk,m(T), · · · , sk,m(T)`} (24)

is linearly independent over F, provided p is large enough.
Here we are interested in finding conditions to the extended set

S = {I, sk,m(T), . . . , sk,m(T)`+1} (25)

to be linearly independent over F, or equivalently, conditions when this set is
linearly dependent over F. In general this seems to be a difficult problem and
here, and in what follows we will be assuming the extra hypothesis

m(n− 1) ≡ k − 1 (mod k).

This, together with (23), gives that

k` = m(n− 1)− k + 1. (26)

The main strategy is the determination of the list of ascendents of some special
elements of the basis B, in order to find conditions for sk,m(T)`+1 not to be
written as a linear combination of the smaller powers of sk,m(T).

Definition 4.1 For j = 0, . . . , n− 1, let us define

Bj = [n− 1, · · · , n− 1, n− 1− j],

and the sum of its coordinates to be δj which is equal to m(n− 1)− j.

Clearly Bj is an element of the basis B.
Next we present, without proof, two basic and immediate propositions that

will be useful later in the text.

Proposition 4.1 Assume that

{I, sk,m(T), · · · , sk,m(T)`}
is linearly independent and that B = [[b1, . . . , bm]] [[B]]-occurs in sk,m(T)`+1

and does not [[B]]-occur in sk,m(T)t for any t = 0, . . . , `. Then S is linearly
independent.

Proposition 4.2 Let [[b1, . . . , bm]] ∈ [[B]] and δ =
∑m

j=1 bj. Assume that
((s1, . . . , sm)) is an ascendent of [[b1, . . . , bm]] such that bij are generated co-
ordinates, for every j = 1, . . . , d. Then the weight of ((s1, . . . , sm)) is δ +∑d

j=1(sj − bij ) (see definition 2.2 and remark 2.1).

The following lemmas give information on the ascendents of

[[Bj ]] = [[n− 1, · · · , n− 1, n− 1− j]], j = 0, . . . , n− 1.

14



Lemma 4.1 Let j ∈ {0, . . . , n− 1}, j 6≡ (k− 1) (mod k). If ((s1, . . . , sm)) is an
ascendent of [[Bj ]], then s1 ≥ n.

Proof: It follows from the hypothesis that j = qk + r with r ≤ k − 2. By
proposition 4.2, definition 4.1 and (26) we have

m∑

i=1

si ≥ δj = k(` + 1− q)− (r + 1).

Since
∑m

i=1 si is a multiple of k (see definition 2.2) and 1 ≤ r + 1 ≤ k − 1, we
have

m∑

i=1

si > δj . (27)

If s1 ≤ n− 1, then lemma 2.2(ii) tells us that

((s1, . . . , sm))X=T = [[b1, . . . , bm]] = [[Bj ]],

in particular,
m∑

i=1

si = δj

contradicting inequality (27). ¥

Lemma 4.2 Assume that p is large enough. Let j 6≡ k − 1 (mod k). Then,

((Ssp)) = ((n, n− 1, · · · , n− 1))

is the only ascendent of Bj at level at most (` + 1), for which n − 1 − j is a
generated coordinate of [[Bj ]] for j = 0, 1, . . . , n− 1. Moreover

((n, n− 1, . . . , n− 1))X=T =
n−1∑

j=0

qj An−1−j [[Bj ]], (28)

where the qj’s are nonzero elements of F, j = 0, . . . , n− 1.

Proof: The formula (28) follows from (14). Now let ((s1, . . . , sm)) be an ascen-
dent of [[Bj ]] satisfying the requirements of the hypothesis. Hence lemma 4.1
tells us that s1 ≥ n. By proposition 4.2

∑m
i=1 si = (m(n− 1)− j) + (s1 − (n− j − 1)) +

∑d
j=2(sj − n− 1)

= m(n− 1) +
∑d

j=1(sj − n− 1).

Since we are assuming that ((s1, . . . , sm)) is at level at most (`+1) (see definition
2.2), we have

m∑

i=1

si = m(n− 1) +
d∑

j=1

(sj − (n− 1)) ≤ k(` + 1) = m(n− 1) + 1.

15



The last equality follows from (26). Thus, since s1 ≥ n, we must have d = 1
and s1 = n. ¥

From now on we start a list of results that give necessary conditions for the
set S to be linearly independent.

Lemma 4.3 The set S = {I, sk,m(T), · · · , sk,m(T)`+1} is linearly independent
if An−1 6= 0, provided p is large enough.

Proof: Assume that ((s1, . . . , sm)) is an ascendent of B0 (see definition 4.1) at
level at most (` + 1). By lemma 4.1 we must have s1 ≥ n. Therefore n − 1 is
a generated coordinate of [[B0]] with respect to ((s1, . . . , sm)). Now, by lemma
4.2 we have that ((s1, . . . , sm)) = ((Ssp)) and, from (14) and (28),

((Ssp))X=T =
|GB0 |
|GSsp

| An−1 [[B0]] +
n−1∑

j=1

qj An−1−j [[Bj ]]. (29)

From (17) we have

(sk,m(T))t = CSsp((Ssp))X=T +
∑

S 6=Ssp

CS((s1, . . . , sm))X=T (30)

Since ((Ssp)) is the only ascendent of [[B0]] at level (`+1), we can use (29) and
(30) having that

(sk,m(T))`+1 = CSsp

|GB0 |
|GSsp |

An−1[[B0]] +R

where R ∈ 〈[[B]] | [[B]] ∈ [[B]]− [[B0]]〉. It is very simple to see that |GB0 | = m!
and |GSsp | = (m− 1)!, hence

(sk,m(T))`+1 = mCSspAn−1[[B0]] +R.

The hypothesis of p large enough guarantees that mCSsp 6= 0, thus [[B0]] [[B]]-
occurs in sk,m(T)`+1 if An−1 6= 0. On the other hand [[B0]] does not have any
ascendent at levels 0, 1, . . . , `. Therefore it cannot [[B]]-occur in sk,m(T)t for
t = 0, 1, . . . , `. Now the result follows from proposition 4.1. ¥

Theorem 4.1 Suppose k ≤ m, and m(n − 1) ≡ (k − 1) (mod k). Then, for p
large enough, if the set

S = {I, sk,m(T), · · · , sk,m(T)`+1}
is linearly dependent then An−s = 0, for all s satisfying 1 ≤ s ≤ n, s 6≡
0 (mod k).

Proof: Consider the following property:
Property P = Pw: If S is linearly dependent then

An−t = 0, t 6≡ 0 (mod k) and 1 ≤ t ≤ w.
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The theorem is equivalent to the statement that Pw is true for w ∈ {1, . . . , n}.
We are going to prove this last statement by induction on w.

The case w = 1 was treated in lemma 4.3. So assume (induction hypothesis),
property Pw−1 is true.

Observe that if w ≡ 0 (mod k) then

{t | t 6≡ 0 (mod k) and t ≤ w} = {t | t 6≡ 0 (mod k) and t ≤ w − 1}.

Then, by induction hypothesis,

An−t = 0, t 6≡ 0 (mod k) and 1 ≤ t ≤ w,

and Pw holds.
Now assume that w 6≡ 0 (mod k), and let r = w − 1. Observe that if

Pr+1 is not true then An−r−1 6= 0. We are going to prove that if An−r−1 6= 0
then there are ascendents of [[Br]] only at level ` + 1, and they are ((Ssp))
and ((Sr)) = ((n + r, n − 1, . . . , n − 1, n − r − 1)). This will lead to the linear
independence of S, contradicting the hypothesis.

Suppose that ((S)) = ((s1, . . . , sm)) is an ascendent of [[Br]] at one of the
levels 0, 1, . . . , ` + 1. By lemma 4.1 we have s1 ≥ n. Let d = max{j | sj ≥ n}.

If the coordinate (n− r− 1) of Br is a generated coordinate with respect to
((S)) then, by lemma 4.2, ((S)) = ((Ssp)). So assume that n − r − 1 is not a
generated coordinate of [[Br]] with respect to ((S)). Hence (see remark 2.1)

((S)) = ((s1, . . . , sd, n− 1, . . . , n− 1, n− r − 1)). (31)

Let
li = si − n, i = 1, . . . , d.

We will finish the proof by considering the following three cases:

(A) li ≡ k − 1 (mod k), i = 1, . . . , d.

(B) There exists an i ≤ d such that li ≤ r − 1 and li 6≡ k − 1 (mod k).

(C) There exists an i ≤ d such that li ≥ r and li 6≡ k − 1 (mod k).

Assume (A) holds. So

li + 1 = vik, i = 1, . . . , d (32)

for some nonnegative integers v1, . . . , vd.
By definition of ((s1, . . . , sm)), (s1, . . . , sm) is a partition of uk, for some

nonnegative integer u. Then using (31)

uk =
m∑

i=1

si =
d∑

i=1

(li + 1) + m(n− 1)− r.

17



Using equalities (32) we get from the previous equalities

uk = (
d∑

i=1

vi)k + m(n− 1)− r.

Now (26) implies that k(` + 1) = m(n− 1) + 1, therefore

r = (
d∑

i=1

vi)k + k(` + 1)− 1− uk.

Thus r + 1 ≡ 0 (mod k). A contradiction, since we are assuming w = r + 1 6≡
0 (mod k).

Assume that (B) holds. The induction hypothesis says that

An−t = 0, t 6≡ 0 (mod k) and 1 ≤ t ≤ r.

Then, from theorem 3.1, we get

A
(l)
n−1 = 0, for 0 ≤ l ≤ r − 1, l 6≡ (k − 1) (mod k). (33)

Using the assumptions of case (B), we obtain, from the previous equalities

A
(li)
n−1 = 0

for some i ≤ d. Therefore, from (14), we see that ((S)) cannot be an ascendent
of [[Br]] (see definition 2.2 of ascendent). A contradiction.

Hence, if (n− r − 1) is not a generated coordinate of [[Br]] with respect to
((S)), we must have that case (C) holds, that is,

li ≥ r and li 6≡ (k − 1) (mod k), (34)

for some i ≤ d.
Then, using (31) we have (since we are assuming that ((S)) is at one of the

levels 0, 1, . . . , ` + 1)

k(` + 1) ≥
m∑

i=1

si ≥ (
d∑

j=1

(lj + 1)) + m(n− 1)− r.

Therefore, using (34), we obtain

k(` + 1) ≥ (
∑

j 6=i

lj + 1) + (m(n− 1) + 1) + (li − r).

Since m(n − 1) + 1 = k(` + 1), we must have
∑

j 6=i lj + 1 = 0 and li = r.
Thus d = 1, s1 = n + r and

((Sr)) = ((n + r, n− 1, . . . , n− 1, n− r − 1)).
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Hence we have proved that there are only ascendents of [[Br]] at level ` + 1
and they are

((Ssp)) and ((Sr)).

From (14) we have

((Ssp))X=T = q1An−r−1[[Br]] +R1 (35)

and
((Sr))X=T = q2A

(r)
n−1[[Br]] +R2 (36)

with R1, R2 ∈ 〈[[B]] | [[B]] ∈ [[B]]− {[[Br]]}〉, and

q1 =
|GBr

|
|GSsp

| , q2 =
|GBr

|
|GSr

| .

A simple calculation gives

|GSr
| = (m− 2)!, |GSsp

| = (m− 1)! and |GBr
| = (m− 1)!.

Hence q1 = 1 and q2 = (m−1). As we have seen, (33) follows from the induction
hypothesis and theorem 3.1. And this, together with corollary 3.1 give that

A
(r)
n−1 = An−r−1.

Therefore (see (17))

sk,m(T)`+1 =
∑

S∈Π

CS((s1, . . . , sm))X=T

= CSsp((Ssp))X=T + CSr ((Sr))X=T +
∑

S 6=Ssp,Sr

CS((s1, . . . , sm))X=T .

Since [[Br]] has only ((Sr)) and ((Ssp)) as ascendents, and substituting (35)
and (36) above, one has

sk,m(T)`+1 = (CSsp + (m− 1)CSr )An−r−1[[Br]] +R3

where R3 ∈ 〈[[B]] | [[B]] ∈ [[B]]− {[[Br]]}〉. Hence, for p large enough, (CSsp +

(m−1)CSr ) 6= 0 (in fact, for p ≥ m
(
m
k

)`). Thus, if An−r−1 6= 0, then [[Br]] [[B]]-
occurs in sk,m(T)`+1. And since [[Br]] has only ascendents at level `+1, it does
not [[B]]-occur in sk,m(T)t for t ≤ `. Then, by proposition 4.1, if An−r−1 6= 0
then S is linearly independent. ¥.

Theorem 4.2 (Main Theorem) Let m, k be positive integers and k ≤ m.
Assume that m(n − 1) ≡ k − 1 (mod k), and p is sufficiently large. If PT is a
critical polynomial of degree n then

PT (X) = Xn −
r∑

i=1

An−ikXn−ik,

where r =
⌊

n
k

⌋
.
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Proof: Now observe that if S = {I, sk,m(T), · · · , sk,m(T)`+1} is linearly depen-
dent then

deg(Psk,m(T)) ≤ ` + 1.

Since we have proved that (see (24))

deg(Psk,m(T)) ≥ ` + 1,

we must have that

“S linearly dependent over F ⇐⇒ deg(Psk,m(T)) = ` + 1.” (37)

Now the conclusion of this proof follows from the theorem 4.1 above. ¥

5 Examples

Here we are going to present some examples of critical polynomials, for special
values of k and m.

5.1 The case PT = Xn

Assume p large enough. By Theorem 2.1, for any nonnegative integer t there
exist a family of nonnegative integers (CS)S∈Λm,N0(t) such that

(sk,m(X))t =
∑

(s1,...,sm)∈Λm,N0 (t)

C(s1,...,sm)X
s1 ⊗ · · · ⊗Xsm .

Let T be a linear operator on V with minimal polynomial PT = Xn. Since
for t ≥ ` + 1 we have

s1 + · · ·+ sm ≥ k(` + 1) ≥ m(n− 1) + 1, ∀S = (s1, . . . , sm) ∈ Λm,N0(t).

Then, for S = (s1, . . . , sm) ∈ Λm,N0(t), there exists i ∈ {1, . . . , m} such that

si ≥ n.

Therefore deg Psk,m(T) ≤ ` + 1. Using now Theorem 1.1 we conclude that

deg(Psk,m(T)) = ` + 1.

5.2 The case k=m

Let us assume that k = m, and prove (as stated in the introduction) that the
polynomials

Pi(X) = Xn −An−ikXn−ik

are all critical. Let Ti ∈ L(V, V ) such that PTi(X) = Pi(X). Observe that, for
t ≥ 0,

Sk,k(X)t = ((t, · · · , t)).
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Therefore

((0, . . . , 0))X=Ti = [[0, . . . , 0]]

((1, . . . , 1))X=Ti = [[1, . . . , 1]]

...

((n− 1, . . . , n− 1))X=Ti
= [[n− 1, . . . , n− 1]]

((n, . . . , n))X=Ti = Ak
n−ik[[n− ik, . . . , n− ik]].

Hence, it follows at once that

S = {I, sk,m(Ti), · · · , sk,m(Ti)n}
is linearly dependent over F. But since

` =
⌊

m(n− 1)
k

⌋
= n− 1,

this proves that the degree of Psk,m(Ti)(X) is ` + 1, for i = 0, 1, . . . ,
⌊

n
k

⌋
(see

(37)). ¥

5.3 The case k=n=2

Lemma 5.1 Let k = 2 and suppose PT (X) = X2 − a2. Then, for any m ∈ N,
m ≥ 2, and p sufficiently large, the set

S = {I, sk,m(T), · · · , sk,m(T)`+1}
is linearly dependent over F.

Proof: From the hypothesis we have that n = 2 and, for s ≥ 1,

T s =
{

asI if s is even
as−1T if s is odd.

(38)

Let us define

d2t = [ 1, · · · , 1︸ ︷︷ ︸
2t times

, 0, · · · , 0, ]

an element of the basis B (see remark 2.2(iii)).
Suppose that ((s1, · · · , sm)) ((EF))-occurs in the expansion of s2,m(X)t (see

(8)), then we must have
∑

sj = 2t, hence the number of odd entries sj is even.
Therefore, from (38) we get (see (14) with n = 2)

((s1, · · · , sm))X=T = K [[dr]]
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with K ∈ F and where r is the number of odd entries sj . But this implies that,
for any t

s2,m(T)t ∈ 〈[[d0]], [[d2]] · · · , [[d2`]]〉 for ` =
⌊m

2

⌋
(see (23)).

And from this follows the result of this lemma.

Corollary 5.1 PT (X) = X2 − a2 is a critical polynomial, for any m ≥ 2.

5.4 The Case: k=2 and m=n=3

Since we are now assuming k = 2 and m = n = 3, we have

` =
⌊

m(n− 1)
k

⌋
= 3.

Let us write
T 3 = A2T

2 + A1T + A0I,

hence
T 4 = (A2

2 + A1)T 2 + (A2A1 + A0)T + A2A0I.

From (8), we have for every t

(s2,3(X))t =
∑

S∈Π

CS ((s1, s2, s3))

where Π is the set of all partitions of 2t, having sj ≤ t, and CS is the number
of (0,1)-matrices of type 3× t, with row sum vector equal to (s1, s2, s3), whose
column sums are equal to 2 (see theorem 2.1). For this particular case, this
number can be easily calculated, and we refer the reader to [2, cor.1, prop.2.3]
to have

CS =
t!

(t− s1)!(t− s2)!(t− s3)!
.

Now we can explicitly write the expression (s2,3(X))t for 1 ≤ t ≤ ` + 1 = 4

(s2,3(X))0 = ((0, 0, 0))
(s2,3(X))1 = ((1, 1, 0))
(s2,3(X))2 = ((2, 2, 0)) + 2 ((2, 1, 1))
(s2,3(X))3 = ((3, 3, 0)) + 3 ((3, 2, 1)) + 6 ((2, 2, 2))
(s2,3(X))4 = ((4, 4, 0)) + 4 ((4, 3, 1)) + 6 ((4, 2, 2)) + 12 ((3, 3, 2))

(39)

A simple use of lemma 2.2 (or via a tour of force) we have
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((0, 0, 0))X=T = [[0, 0, 0]]

((1, 1, 0))X=T = [[1, 1, 0]]

((2, 2, 0))X=T = [[2, 2, 0]]

((2, 1, 1))X=T = [[2, 1, 1]]

((2, 2, 2))X=T = [[2, 2, 2]]

((3, 3, 0))X=T = A2A1[[2, 1, 0]] + 2A2A0[[2, 0, 0]] + 2A1A0[[1, 0, 0]]
+A2

1[[1, 1, 0]] + 3A2
0[[0, 0, 0]] + A2

2[[2, 2, 0]]

((3, 2, 1))X=T = 2A2[[2, 2, 1]] + A0[[2, 1, 0]] + 2A1[[2, 1, 1]]

((4, 4, 0))X=T = (A2
2 + A1)2[[2, 2, 0]]

+(A2
2 + A1)(A2A1 + A0)[[2, 1, 0]]

+2(A2
2 + A1)A2A0[[2, 0, 0]]

+2(A2A1 + A0)A2A0[[1, 0, 0]]
+(A2A1 + A0)2[[1, 1, 0]] + 3A2

0A
2
2[[0, 0, 0]]

((4, 3, 1))X=T = 2A2(A2
2 + A1)[[2, 2, 1]] + A0(2A2

2 + A1)[[2, 1, 0]]
+2A2A

2
0[[1, 0, 0]] + 6(A1A2 + A0)A1[[1, 1, 1]]

+2(2A2
2A1 + A2

1 + A2A0)[[2, 1, 1]]
+2(2A0A1A2 + A2

0)[[1, 1, 0]]

((3, 3, 2))X=T = 3A2
2[[2, 2, 2]] + 2A2A1[[2, 2, 1]] + A1A0[[2, 1, 0]]

+A2
0[[2, 0, 0]] + 2A0A2[[2, 2, 0]]

+A2
1[[2, 1, 1]]

((4, 2, 2))X=T = 3(A2
2 + A1) [[2, 2, 2]] + (A2A1 + A0)[[2, 2, 1]]

+A0A2[[2, 2, 0]].
+A2

1[[2, 1, 1]]

((4, 2, 2))X=T = 3(A2
2 + A1) [[2, 2, 2]] + (A2A1 + A0)[[2, 2, 1]]

+A0A2[[2, 2, 0]].

(40)

In order to continue this investigation we need a closer look at list (40) of
possible ascendents at the levels 1,2,3,4, of the elements

[[1, 0, 0]], [[1, 1, 1]], [[2, 0, 0]], [[2, 1, 0]], [[2, 2, 1]], [[2, 2, 2]].

There are only 6 possible ascendents at the list (40) above, thus from in-
spection we can make a list of possible ascendents for the group above:
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[[1, 0, 0]] possible ascendents: ((3, 3, 0)), ((4, 4, 0)), ((4, 3, 1));
[[1, 1, 1]] possible ascendents: ((4, 3, 1));
[[2, 0, 0]] possible ascendents: ((3, 3, 0)), ((4, 4, 0)), ((3, 3, 2));
[[2, 1, 0]] possible ascendents: ((3, 3, 0)), ((4, 4, 0)), ((4, 3, 1)), ((3, 2, 1)), ((3, 3, 2));
[[2, 2, 1]] possible ascendents: ((3, 2, 1)), ((4, 3, 1)), ((4, 2, 2)), ((3, 3, 2));
[[2, 2, 2]] possible ascendents: ((4, 2, 2)), ((3, 3, 2)), ((2, 2, 2)).

Lemma 5.2 For p ≥ 5, the set

S = {I, s2,3(T), (s2,3(T))2, (s2,3(T))3, (s2,3(T))4}
is linearly independent if A1(A2A1 + A0) 6= 0.

Proof: Looking at (40) we can see that [[1, 1, 1]] has only one ascendent,
((4, 3, 1)), and it is at level 4. From (39) and (40) it follows that

(s2,3(T))4 = 24 A1(A2A1 + A0) [[1, 1, 1]] +R
with R ∈ 〈[[B]] | [[B]] ∈ [[B]] − {[[1, 1, 1]]}〉. Hence [[1, 1, 1]] [[B]]-occurs in
(s2,3(T))4 if A1(A2A1 + A0) 6= 0, since we are assuming p ≥ 5. The conclusion
of the lemma follows now from proposition 4.1. ¥
Lemma 5.3 Suppose p ≥ 7 and A2A1 + A0 = 0. If A0 · A1 · A2 6= 0 then the
set S is linearly independent.

Proof: Let α0, α1, α2, α3 ∈ F, and suppose we can write:

(s2,3(T))4 =
3∑

i=0

αi (s2,3(T))i.

In particular, looking at (39) and (40), we have that [[2, 1, 0]], [[2, 2, 2]] and
[[2, 2, 1]] [[B]]-occur only at levels 3 and 4. Therefore (since A2A1 + A0 = 0)

α3(A2A1 + A0 + 2A0) [[2, 1, 0]] = (4A0(2A2
2 + A1) + 12A1A0) [[2, 1, 0]] =⇒

2A0α3 = 16A0A1 + 8A0A
2
2 =⇒

α3 = 8A1 + 4A2
2,

6α3 [[2, 2, 2]] = (36A2
2 + 18(A2

2 + A1)) [[2, 2, 2]] =⇒
α3 = 9A2

2 + 3A1.

From these two equations we have

A2
2 = A1 and α3 = 12A1. (41)

Now

6α3 A2 [[2, 2, 1]] = (24A2A1 + 8A2(A2
2 + A1)) [[2, 2, 1]] =⇒

3α3 = 4A2
2 + 16A1.

Replacing A2
2 = A1 in the equation above we have 3α3 = 20A1, which implies

16A1 = 0, by (41). This is a contradiction for p ≥ 7 and A1 6= 0, hence the set
S must be linearly independent. ¥
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Lemma 5.4 If p > 23, T 3 6= 0 and A1 = 0 then the set S is linearly indepen-
dent.

Proof: With this hypothesis applied to (40) we see that the element [[1, 0, 0]]
only appears at level 4 with coefficient 10A2A

2
0 (see (39) also). If A2 = 0, then

the term [2, 0, 0] will only occur at level 4 with coefficient 12A2
0. Since we can not

have A2 = A1 = A0 = 0 (for T 3 6= 0), the set S must be linearly independent.
Now suppose A0 = 0 and A2 6= 0. As in the proof of the previous lemma, let
us try to write (s2,3(T))4 as a linear combination of the smaller powers. If it
happens (with the hypothesis of A1 = 0) we must have

6α3 [[2, 2, 2]] = (36A2
2 + 18A2

2) [[2, 2, 2]] =⇒
α3 = 9A2

2,

and
6α3 A2 [[2, 2, 1]] = 8A3

2 [[2, 2, 1]] =⇒
3α3 = 4A2

2.

But this implies that 23A2 = 0, a contradiction. Hence the set S is linearly
independent.

¥
Lemma 5.5 Suppose p ≥ 7 and zero is not a double root of PT (X). If A1 = 0
then the set S is linearly independent.

Proof: From the proof of lemma 5.4 above, the hypothesis A1 = 0 implies
that if 10A2A

2
0 6= 0 then S is linearly independent. Furthermore, the condition

A2 = 0 also gives that S is linearly independent. So assume A0 = 0. But this,
together with A1 = 0, tell us that PT (X) = X3 − A2X

2, which has zero as
a double root contradicting the hypothesis. Hence we must have A2.A0 6= 0,
which gives that the set S is linearly independent.

¥

Lemma 5.6 If p ≥ 5 and A2 = A0 = 0 then the set S is linearly dependent.

Proof: With these hypothesis we can easily calculate:

((3, 3, 0))X=T = A2
1[[1, 1, 0]] ((3, 2, 1))X=T = 2 A1 [[2, 1, 1]]

((4, 4, 0))X=T = A2
1[[2, 2, 0]] ((4, 3, 1))X=T = 2A2

1[[2, 1, 1]]

((3, 3, 2))X=T = A2
1[[2, 1, 1]] ((4, 2, 2))X=T = 3A1 [[2, 2, 2]].

Now we can write (see (39)), for p ≥ 5:

(s2,3(T))4 = A2
1[[2, 2, 0]] + 20A2

1[[2, 1, 1]] + 18A1[[2, 2, 2]]
(s2,3(T))3 = A2

1[[1, 1, 0]] + 6A1[[2, 1, 1]] + 6[[2, 2, 2]].

Hence we can write

(s2,3(T))4 = 3A1(s2,3(T))3 + A2
1(s2,3(T))2 − 3A3

1(s2,3(T))1,

which gives the result. ¥
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Theorem 5.1 Suppose that either

(i) p > 23 or

(ii) p ≥ 7 and zero is not a double root of PT (X).

Then the set

S = {I, s2,3(T), (s2,3(T))2, (s2,3(T))3, (s2,3(T))4}

is linearly dependent if and only if A2 = A0 = 0.

Proof: If A2 = A0 = 0 then the lemma 5.6 tells us that S is linearly dependent.
Conversely, suppose S is linearly dependent. Then we must have A1 6= 0,
otherwise lemma 5.5, together with the hypothesis would prove that the set
S is linearly independent. But now lemma 5.2 shows that A2A1 + A0 = 0. If
A2.A0 6= 0, then lemma 5.3 would prove that S is linearly independent. Hence
we must have A2A1 + A0 = 0 and either A2 = 0 or A0 = 0. But this implies
A2 = A0 = 0 as desired.

¥

Corollary 5.2 Assuming the same conditions as in the theorem above, the poly-
nomial PT (X) = X3−A2X

2−A1X−A0 is critical if and only if A2 = A0 = 0.

¥
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