On Artin’s conjecture, I:
Systems of diagonal forms

J. Bridern and H. Godinho*

1. Introduction. As a special case of a well-known conjecture of Artin,
it is expected that a system of R additive forms of degree £, say

N
Y ayzi=0 (1<j<R) (1)
=1

with integer coefficients a;;, has a non-trivial solution in Q, for all primes p
whenever
N > Rk’ (2)

Here we adopt the convention that a solution of (1) is non-trivial if not all the
x; are 0. To date, this has been verified only when R = 1 by Davenport and
Lewis [4], and for odd £ when R = 2 by Davenport and Lewis [5]. For larger
values of R, and in particular when £ is even, more severe conditions on N
are required to assure the existence of p-adic solutions of (1) for all primes
p. In another important contribution, Davenport and Lewis [6] showed that
the conditions

N > 9R%klog(3Rk) (k odd), N > 48R?k*log(3Rk®) (k > 2 even)

are sufficient. There have been a number of refinements of these results.
Schmidt [13] obtained N > R?*k*logk, and Low, Pitman and Wolff [10]
improved the work of Davenport and Lewis by showing the weaker constraints

N > 2R%klogk (k> 1o0dd), N >48Rk’log(3Rk*) (k> 2)

to be sufficient for p-adic solubility of (1).
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A noticeable feature of these results is that for even £ one always encoun-
ters a factor k° log k, in spite of the expected k% in (2). In this paper we show
that one can reach the expected order of magnitude k2.

THEOREM 1. Let k > 3 and R > 3. Then the system of equations (1)
has a non-trivial solution in Q, for all primes p provided that

N > R3?

unless R =3 and k is a power of 2 in which case the condition on N has to
be replaced by N > 36k2.

For small values of R or k£ our analysis can be considerably refined. We
shall discuss in greater detail the case of pairs of equations R = 2. In
the light of the aforementioned result of Davenport and Lewis, only even k
deserve attention. Davenport and Lewis [5] showed that for even k, the pair

of equations
N N
Z a;z¥ = Z bzt =0 (3)
i=1 i=1

with a;, b; € Z has a non-trivial p-adic solution for all primes p when N > 7k3,
and this remained unimproved until very recently when Godinho [9] obtained
bounds on N which are dependent on the prime factorisation of the degree.
However, it does not follow from the work of [9] that a condition like N > Ck?
with some constant C suffices to guarantee solubility of (3) in all Q,. Our
second theorem provides such a bound with C' = 16.

THEOREM 2. If k is of the form
k=2-5" or k= (p—1)p for some primep > 2 (4)
then the pair (3) has a non-trivial solution in all p-adic fields whenever
N > 6k(k —1).
If k is not of the form (4) but
k=ke2" withko=1o0r3orbor7 (5)

then the same conclusion holds if N > 16k%ky" — 4k.
If k is neither of the form (4) or (5) but takes the shape

k=2p"(p—-1), (6)
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then for N > 3k(k — 2) the equations (3) have a non-trivial solution in all p-
adic fields. When k is neither of the forms (4), (5) or (6), then the condition
N > 2k? + 1 suffices.

Godinho [8] considered pairs of degree k = 27, and obtained the slightly
superior sufficient condition

N > 16k? — 26k + 1.

Our approach follows earlier work in all preparatory steps. We shall be-
gin with the p-normalisation process. This amounts to finding a system of
equations (1) which is equivalent to the given one but has additional proper-
ties to faciliate the later analysis. Then we reduce the problem to finding a
non-singular solution to an auxiliary congruence. This part is standard and
will be quoted from the literature in §2. We then dismiss primes not dividing
the degree in §3 by a simple application of Chevalley’s theorem. For primes
dividing the degree, congruences to prime power modulus have to be consid-
ered, and in §4 we apply a result of Olson [12] in combinatorial group theory
to solve them. Theorem 1 will then be immediate, and in the last section
Theorem 2 will be deduced by a finer analysis, but based on the same ideas.

Olson’s powerful theorem provides, in a certain sense, a suitable substi-
tute for Chevalley’s theorem when prime power moduli occur. This is our
main source for improvement. Baker and Schmidt [2] have also used Olson’s
theorem in related problems, but its use for the present problem appears to
be new.

We mention in passing that for very large primes p the number of variables
required for the existence of p-adic solutions reduces to N > 2Rk. See
Atkinson, Briidern and Cook [1] and Meir [11] for work in this direction.

2. Normalisation. In this section we briefly recall the concept of p-
normalisation introduced by Davenport and Lewis [6]. Let A = (a;;) be the
matrix of coefficients of (1), and write a; = (a;;)1<i<r to denote the j-th
column of A. Let

6(A) = H det(a; ay, ... a;,).

1<41<i2<...<ir<N

For a fixed prime p, suppose we wish to investigate whether or not the system
(1) admits a non-trivial p-adic solution. Then, in (1) we may replace the



original equations by any R independent linear combinations thereof (this
corresponds to row operations applied to A). Moreover, since Q, is a field
of characteristic 0, we may replace a variable z; with pYz;, for any v € N,
and then divide the resulting equations by any power of p which divides all
coefficients. Two systems of equations (1) are called p-equivalent if one can
be obtained from the other by a finite succession of these processes. A system
(1) is called p-normalised if (A) # 0 and the power of p dividing 0(A) is
minimal among all systems which are p-equivalent to the given one.

LEMMA 1. Let k > 2, N > R and suppose that (1) admits non-trivial p-
adic solutions for all p-normalised systems. Then, (1) has non-trivial p-adic
solutions for any choice of integer coefficients.

Proof. See Davenport and Lewis [6], §4.

Following Davenport and Lewis [5] in spirit, we say that the variable z;
is at level [ if p'la; but p"*! Ja;. If a system is p-normalised, all variables
are at a level less than k. To see this suppose that z; is at level [ > k. Then
p~*a; has integral components, and therefore the substition z; = pz; changes
the f-value of A by a factor p~™* for some M > 0.

Suppose that (1) is p-normalised, and let n denote the number of variables
at level 0. By Lemma 11 of Davenport and Lewis [6], one has

n > N/k. (7)

We may renumber the variables of (1) to arrange that z1,s,...,z, are the
variables at level 0, and we denote the submatrix of A, consisting of the first
n columns, by Ay. We consider Ay as a matrix with coefficients in the finite
field I, of p elements. For 1 < v < R the invariant g, is defined as the
minimum number of non-zero columns in any v linear combinations of the
rows of Ay which are independent over IF,. Again by Lemma 11 of Davenport
and Lewis [6],

¢, > vN/(Rk) (1<v<R). (8)

Now let p(d) be the maximal number of columns of Ay which lie in a
d-dimensional linear subspace of Fjf. Then

g +u(R—v)=n (9)

for 1 <v < R. Low, Pitman and Wolff [10] observed that the invariants p(d)
control non-singular R x R submatrices of Ay. From a combinatorial result
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on matroids they deduced that for any ¢ € N, the matrix Ay will contain ¢
disjoint R X R submatrices with determinant not divisible by p, if and only
if,

n—u(d) >t(R—d) forall0<d<R
(this is Low, Pitman and Wolff [10], Lemma 1). By (9), this is equivalent
with ¢, > tv for 1 < v < R, and by (8), we may conclude as follows.

LEMMA 2. Suppose that (1) is p-normalised and has n variables at level
0. Then the n X R matriz Ay contains at least [N/(Rk)] disjoint R X R
submatrices with determinant not divisible by p.

As a final preparation for our approach to the theorems, we reduce the
question of p-adic solubility to congruences. Let v > 1. A solution of the
system of congruences

N
Y ayzf=0modp” (1<j<R) (10)

i=1
is called non-singular if there are i,...,1g with

T Tiy - Tip det(ail Ca aiR) :7_£ 0 mod yB
For a given k we define 7 via p” || k and write

T+2 ifp=2,7>0,
7+ 1 otherwise.

7=%hm={ (11)

LEMMA 3. Suppose that the congruences (10) have a non-singular solution
when v 1is given by (11). Then the equations (1) have a non-trivial solution

in Q.

This is a version of Hensel’s Lemma, see Davenport and Lewis [6], Lemma
9.

3. Congruences modulo primes. In this section we provide non-
singular solutions to the system of congruences when v = 1, and as a corollary
obtain a version of Theorem 1 for all primes p Jk. We begin by recalling a
classic result of Chevalley [3].



LEMMA 4. Let k > 1 and p be a prime. Let § = (k,p—1). Let ¢;; be any
integers and m > Ro6. Then the system of congruences

D cyzF=0modp (1<j<R) (12)
i=1

admits a primitive solution.

Recall that a solution of congruences is called primitive if not all its
coordinates are divisible by p.

Simple examples show that all solutions of (12) may be singular. However,
the following corollary yields non-singular solutions.

LEMMA 5. Let k,p, 0, cij be as in the previous Lemma. Suppose that
m > R*(6 — 1) + 2R, (13)

and that the m x R matriz (c;;) contains R(d —1)+2 disjoint R x R matrices
with determinant not divisible by p. Then the system of congruences (12)
admits a non-singular solution.

Proof. By renumbering the columns c¢; of (¢;;) we may suppose that the
R x R matrices (¢jpy1-..Cuqyr) for 0 < 1 < R(6 — 1) + 1 are all non-
singular. We may now assume that m = R?(§ — 1) + 2R (take z; = 0 for
i > R?(§ — 1) + 2R otherwise). Put

(I+1)R

i=lR+1

and consider the system of congruences

(6—1) m
Z by + Z c;z; =0modp (1<j<R) (15)
1=0 i=m—R+1

This involves R§ + 1 variables and therefore has a primitive solution by
Lemma 4. Since the columns ¢,,_gr1,...,Cy, are linearly independent (mod
p), any primitive solution of (15) must have at least one of the y; not divisible
by p. By taking

zi=y for IR<i<(I+1)R,0<I<R(6-1)
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we obtain a solution of (12) which is non-singular.

It is now easy to deduce a result on p-adic solubility when p Jk. In this
case Lemma 3 is applicable with v = 1. By Lemmas 2 and 5 we may conclude
as follows.

THEOREM 3. Let p be a prime, p Jk and N > Rk(R(k,p—1) — R+2).
Then the system of equations (1) admits a non-trivial solution in Q,.

A result very similar to this occurs inter alia in Davenport and Lewis
[6]. We have preferred to present the above approach which is somewhat
different from previous techniques, and can serve as a model for the more
original arguments in the next section. It would be very interesting to weaken
the condition (13). When R = 2, Davenport and Lewis [5] established the
following result.

LEMMA 6. Let k > 2, p be prime and § = (k,p — 1). Let a;,b; € Z
(1 < i < m) and suppose that m > 2§ + 1. Further suppose that any
linear combination of the rows (a;), (b;) with coefficients not both divisible
by p contains at least & + 1 eniries not divisible by p. Then the pair of

congruences
m m
E a;x¥ = E b;z¥ = 0 mod p
i=1 i=1

has a non-singular solution.

One may easily deduce that for R = 2, the equations (1) have a non-trivial
solution in Q, when N > 2k*+1 and p Jk. However, when R = 3, the natural
generalisation of Lemma 6, with m > 30 +1, ¢, > vd+1 (v =1,2), is false.
See Davenport and Lewis [7], p. 344, for details and further comments.

4. Primes dividing the degree. We complete the proof of Theorem
1 in this section by considering primes p|k. In this case we shall solve the
congruences (10) with the aid of combinatorial group theory. We begin with
recalling a result of Olson [12]. Let G be a an (additive) finite abelian p-
group. Then G is isomorphic to

Z/pZ X ... x L/p* L



for suitablee; € N. If g1,...,9, € G and

s> Z(pej - 1)
j=1

then, by Olson’s theorem, there are ¢; € {0,1}, not all 0, with e;g1 + ... +
€s9s = 0. We need this result only when all e; are equal, and reformulate it
in the language of congruences when G = (Z/pZ)~.

LEMMA 7. Let bj; € Z (1 <i < s,1<j < R). Letp be a prime and
t > 1. Then, provided that s > R(p* — 1), there are ¢; € {0,1}, not all 0,
such that

Zeibij =0modp* (1<j<R).
=1

It is now easy to modify the arguments of the previous section to establish
the following result.

THEOREM 4. Let p be a prime with plk and define v by (11). Then,
provided that
N > RE(R(p" —2)+2) (16)

the equations (1) have a non-trivial solution in Q,.

Proof. By Lemma 2, we may suppose that the variables z; with 1 < <mn
are at level 0 where n > R*(p” — 2) + 2R, and that the matrices

(Rrt1 - --A041)R) (17)

with 0 <1 < R(p” — 2) + 1 are all non-singular (mod p). We define b;; by
(14). The system of congruences

R(p7 -2 R%(p7—2)+2R

)
Z biyi + Z a;zf =0mod p” (1< j<R)
=0 i=R?(p7—2)+R+1

involves R(p” — 1) + 1 variables and therefore has, by Lemma 7, a solution
with y, € {0,1}, z; € {0,1}, not all 0. As in the previous section we see



that at least one y; is non-zero, and this yields a non-singular solution of the

system
R%(p7—2)+2R

Z ai;z¥ =0mod p?” (1< j<R),
i=1
as required in Lemma 3 to complete the proof of the theorem.

We have included Theorem 4 mainly for use with very small primes where
it proves to be highly effective. It also has a certain interest on its own right.
If the prime factorisation of £ is “neat enough”, then one may deduce from
(16) much better bounds then available from Theorem 1. For example, if p? <
k holds for all p|k then (1) is soluble in all @, whenever N > R%*k?. However,
one cannot expect to deduce Theorem 1 from Theorem 4. If k¥ = 2p for some
odd prime p, then v = 2 and in (16) about 1R?k® variables are required.
Fortunately there is an alternative approach through contractions, a term
coined by Davenport and Lewis [4]. This will keep the bounds quadratic in
k, but at the price of an extra factor R.

THEOREM 5. Let p # 2 and suppose that p™ || k, § = (k,p —1). Then,
provided that
N>RE(R(6—1)+2)(R(p™—1)+1),

the equations (1) have a non-trivial p-adic solution in Q.

We begin by describing the contraction argument. Suppose that the sys-
tem (1) is p-normalised and that the matrix Ay of the columns at level 0
contains T' disjoint blocks of R x R submatrices which are non-singular (mod
p). Put H = R(6—1)+2 and suppose that T = Ht with some ¢ € N. We may
then assume that the matrices (17) with 0 <1 < T — 1 are all non-singular
(mod p). By Lemma 5, the congruences

> auf =0modp (1<j<R) (18)
hHR<i<(h+1)HR

have a non-singular solution for any choice of 0 < h < ¢ — 1. We then write

Z aijui'c = pbhj (19)

RHR<i<(h+1)HR



with integers by;, and consider the congruences

t—1

Z bhjen =0mod p” (1< j < R), (20)
h=0

to be solved with ¢, € {0,1}. If ¢ > R(p™ — 1) + 1 such a solution exists with
not all e, = 0. By suitable renumbering, we may assume that (20) holds with
e, =1for0 < h< H; and ¢, =0 for H; < h <t —1, with some H; > 0.
From (19) we now deduce that

Z Z ai;uf =0 mod p™Tt,

h=0 hHR<i<(h+1)HR

and the solution is non-singular by construction. For p # 2 we have v = 7+1,
and this establishes the non-singular solubility of (10).

Theorem 5 is now available. Take t = R(p™" —1)+1 and T = Ht as above.
If N > RKT, the matrix Ay will contain the required T disjoint non-singular
blocks for any p-normalised system (1). Theorem 5 now follows from Lemmas
1 and 3.

When R = 2, the result can be refined by injecting Lemma 6 in place of
Lemma 5 in the above argument. If m = 26+ 2 and the matrix (3’ );<m splits
into 0 4+ 1 disjoint 2 x 2 matrices which are non-singular (mod p), then for
any A, u not both divisible by p, the numbers A\a; + ub; will contain at least
0 + 1 numbers not divisible by p. Hence, the congruences in Lemma 6 have
a non-singular solution. Consequently, in the preceeding argument, we may
take H = 0 + 1, and then proceed as before to deduce the following.

THEOREM 6. Let p, k and § be as in Theorem 5. Then the pair of equa-
tions (3) with integer coefficients admits a non-trivial p-adic solution provided
that

N >2k(6+1)(2p" — 1).

Theorem 1 is now a simple corollary. For all primes p fk the required
conclusion is immediate from Theorem 3, and when p|k, p # 2, Theorem 5
yields the required result. When p = 2 and 2|k, we write k = 27k, with
odd ky. By Theorem 4, the equations (1) have a non-trivial 2-adic solution
whenever

N > 2RE(R(27' — 1) + 1),
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which is more than required unless R = 3 and ky = 1 in which case the
condition N > 36k? certainly suffices.

5. Pairs of equations. We shall now deduce Theorem 2. We may
suppose that k is even since otherwise N > 2k% + 1 suffices by Theorem 1
of Davenport and Lewis [5]. When £ is even, Davenport and Lewis [5] have
shown the following.

LEMMA 8. Let k be even and suppose that p™ || k, 6 = (k,p—1). If T=0
and N > 2k? 4+ 1, the pair of equations (3) has a non-trivial p-adic solution.
If6 < 3(p—1), or 6 = 3(p—1) > 3, then again the equations (3) have a
non-trivial p-adic solution whenever N > 2k + 1.

Proof. The first statement follows from Lemma 6. For the second state-
ment, see Davenport and Lewis [5], sections 6 and 7.
It now remains to discuss the following cases:

plk, d=p—-1 (21)

and )
ok, 6= 5(p—1)<3. (22)

Note that (22) implies that p < 7, and since k is even, the cases p = 2 and 3
cannot occur. Hence (22) occurs only for p = 5, when 5|k and 6 = (4, k) = 2.
This means 2 || £, and we may write k = 2 - 57kq with (10, %) = 1. In this
particular case, Theorem 6 yields 5-adic solubility for

N > 6k(kky' —1).

If kK = 1, this is one of the exceptional cases in Theorem 2, and ky > 1
implies kg > 3. In this last case, N > 2k? + 1 will suffice.

We can now concentrate on the case (21). We can then write k = p™(p —
1)ko. First suppose that p # 2. Then, by Theorem 6, we see that the
equations (3) have a p-adic solution whenever

4p k?
N >2kp(2p" — 1) = —— — — 2kp. 23
> 2kp(2p” — 1) o (23)
Note that p/(p — 1) < 3/2. Hence, if kg > 3, then N > 2k? + 1 will certainly
suffices to to guarantee p-adic solubility of (3). When ko = 2, we use p > 3
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in (23) to see that N > 3k(k — 2) suffices. Finally, when ko = 1, the same
reasoning shows that N > 6k(k — 1) is enough to guarantee solubility of (3)

in Q,.

Finally we discuss 2-adic solubility. Here we write k£ = 27k, with odd kg

and apply Theorem 4 with R = p = 2. This shows that (3) admits non-trivial
p-adic solutions whenever N > 16k2%k; " — 4k.

Theorem 2 is now immediate.
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