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Introduction

In the pages that follow, I present the notes of the course I gave in the XVI
Escola de Algebra, held in Brasilia in July of 2000. The aim of this course is
to introduce the reader to the beautiful theory of finite p-groups, with special
emphasis on two important families: those of regular p-groups and of p-groups
of maximal class. The course is addressed to postgraduate students and the
only prerequisite assumed is some basic knowledge of Group Theory. These
notes consist of five parts, each corresponding to a lecture day, and for this
reason | will refer to these parts as “lectures”. Due to the length of the course
and with the purpose of making it more readable, every one of the lectures has
been further divided into sections.

The wild behaviour of finite p-groups is well-known and it prevents any
attempt at a general classification. In fact, only the p-groups of order at most
p° have been completely classified for a general prime p (see [9]). This can
be extended [23] to the groups of order less than or equal to 2® in the case
p = 2. This situation has naturally led to restricting the study of p-groups to
particular families. For this reason, after introducing the most basic properties
of general finite p-groups in Lecture 1, I have decided to focus on the two
families mentioned above as a way of getting the flavour of how one works
with p-groups. The choice of these two specific families has been more than a

matter of personal taste. On the one hand, we have nowadays quite complete
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theories for both regular p-groups and p-groups of maximal class. Even if these
theories are not elementary at all, it is possible to develop them from scratch in
a course of this length and level. On the other hand, these two types of groups
have played an important role in the theory of finite p-groups, since the results
obtained for them have suggested generalizations that have contributed to a
better understanding of arbitrary p-groups. Thus the knowledge of the classical
families of regular p-groups and p-groups of maximal class is a good starting
point for any student interested in doing research in finite p-groups, before going
into more recent achievements, such as the theory of powerful p-groups or the
study of p-groups according to their coclass. There is a third reason to include
these two families together in a course like this, which is that the development
of the theory of p-groups of maximal class depends essentially at some critical
points on properties of regular p-groups. This will be clear in Lecture 4.

Although the results presented in the course are well-known, the organiza-
tion of the material reflects the particular viewpoint of the author and differs
at some places from the exposition of this subject that is currently available in
textbooks or research papers. Moreover, several proofs have been modified or
rewritten. Among them, I would like to point out the proof of Theorem 3.2,
which has been substantially shortened. Also, an emphasis has been laid on
trying to substitute the use of an associated Lie ring for cumbersome group
commutator calculations. All of this results, I believe, in a simplified account
of these important theories. On the other hand, I have included at the end
of every lecture a set of exercises intended for the reader to practise the new
concepts that have been introduced. I strongly recommend trying to do these
exercises.

I would like to take this opportunity to thank the organizers of the XVI
Escola de Algebra for inviting me to give this course and for their hospitality
during my visit to Brasilia. 1 would also like to express my thanks to my
colleagues Andrei Jaikin-Zapirain and Leire Legarreta for reading parts of the

manuscript and drawing some errors to my attention.
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1 Fundamental facts about p-groups and cen-

tral series

1.1 Finite p-groups

Recall that a finite p-group is a group whose order is a power of p, where p is
a prime. The key to the fundamentals of the theory of finite p-groups is the

following fact, which will allow us to use inductive arguments in the proofs.

Theorem 1.1. Let GG be a finite p-group and N a non-trivial normal subgroup
of G. Then NN Z(G) # 1. In particular, the centre of a non-trivial p-group is

non-trivial.

Proof. Since N is normal in &, G acts on N by conjugation. We have that
| Orbg(n)| = |G : Cg(n)| for any n € N and G is a p-group, hence the length of
each orbit is a power of p. Furthermore, the orbits of length one correspond to
the elements in NV which commute with every element in 7, that is, to NNZ(G).

Since N is the disjoint union of its orbits, it follows that
[N =[N0 Z(G)+ Y | Orbg(ni)],
i=1

where nq,...,n, are representatives of the orbits of length greater than one.
By reducing this last equality modulo p and taking into account that | V| > 1,
we get that

INNZ(G)| =0 (mod p)
and consequently N N Z(G) # 1. O

Corollary 1.2. Let G be a finite p-group. Then any normal subgroup of G of

order p is central in G.

The following consequence of Theorem 1.1 has also great importance in the

theory of finite p-groups.

Theorem 1.3. Let G be a finite p-group.
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(i) If H < G then H < Ng(H). (The normalizer condition.)
(ii) If M is a mazimal subgroup of G then M is normal in G and |G : M| = p.

Proof. (i) We argue by induction on |G|. The result is obvious when |G| =
p, so we suppose that |G| > p. If Z((G) is not contained in H then H <
HZ(G) < Ng(H) and we are done. So we may assume that Z(G) < H. Since
Z(G) # 1, the induction hypothesis yields that H/Z(G) < Ng/za)(H/Z(G)) =
Ne(H)/Z(G) and consequently H < Ng(H).

(ii) If M is maximal in (G, we obtain from (i) that Ng(M) = G, that is,
M < G. Then the factor group G/M is a p-group without non-trivial subgroups.
It follows that GG/M has order p and |G : M| = p. O

Our next result shows that the subgroups of a p-group are rather well situ-

ated.
Theorem 1.4. Let GG be a finite p-group of order p™.

(i) If N is a normal subgroup of G of order p*, then there is a series
=Gy <G <+ <Gpy=N<-- <G, =G (1)

such that G; < G and |Gy : G;| = p for all 1. In particular, a p-group

has normal subgroups of every possible order.
(ii) If H is a subgroup of G of order p*, then there is a series
1= Go< G SG=H< <Gp=0G (2)

such that G; < Giyy and |Gigy 2 G;| = p for all i. Thus every subgroup of

a p-group is subnormal.

Proof. (i) We argue by induction on |G|. Suppose first that N # 1. Then
Theorem 1.1 yields that Z = N N Z(G) # 1. Choose any subgroup G in Z of
order p. Then (G is normal in G and the result follows by applying the induction
hypothesis to G/G; for the normal subgroup N/G;. Finally, if N = 1 then we

may take (1) to be any of the series obtained from the previous argument.
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(ii) We use induction on |G|. If H = (G then we may use part (i) to obtain
the series we seek. Otherwise H is contained in a maximal subgroup M of ¢¢
and the induction hypothesis yields a series such as (2) whose last term is M.

Since we know from Theorem 1.3 that M < (&, the proof is complete. O

For a finite group (G, the intersection of its maximal subgroups is called the
Frattini subgroup of GG and is denoted by ®((). Since the image of a maximal
subgroup under an automorphism of (7 is again a maximal subgroup, ®(G) is
a characteristic subgroup of (G. One of the reasons why this subgroup plays an

important role is the following result.

Theorem 1.5. Let GG be a finite group and x4, ... ,x, € G. Then we have that
G = (x1,...,2,) if and only if G/O(G) = (21P(G), ..., 2, P(G)).

Proof. Clearly, it suffices to prove the “if” part of the theorem. If (xy,...  z,)
does not equal G then it is contained in a maximal subgroup M of G. But then
(£19(G), ..., 2,9(G)) is contained in M/®((), which is a proper subgroup of
G/®(G). Thus necessarily G = (xy,...,x,). O

When (G is a finite p-group, the Frattini subgroup determines the minimal

number of generators of G.
Theorem 1.6 (Burnside’s Basis Theorem). Let G be a finite p-group. Then:

(i) G/®(G) is an elementary abelian p-group and consequently it may be

viewed as a veclor space over [F,.

(ii) The set {x1,... x4} is a minimal generating set of G if and only if

{xlq)(G)v
S, x2q®(G)} is a basis of G/P(G).

(iii) The minimal number d of generators of the group G coincides with the

dimension of G/®(G) as an F,-vector space. In other words, |G : ®(G)| =

pt.
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Proof. (i) We have to prove that 2®(G)y®(G) = y®(G)2P(G) and (2®(G))? =
®(G) for all z,y € G, that is, that z7'y~'zy, ¥ € ®(G). By the definition of
(), it suffices to see that z~'y~'zy, 2 € M for any maximal subgroup M of
G. This is obvious since, according to Theorem 1.3, G/M is a group of order p.

(ii) From the previous theorem we have that S = {zy,... , 24} is a generating
set of GG ifand only if S = {,®(G), ... ,z,®(G)} is a generating set of G/® ().
Hence S is a minimal generating set if and only if S is, which amounts to S
being a basis of G/®(G).

(iii) This is immediate from (ii). O

If GG is a finite group, we will denote by d(G) the minimal number of gener-

ators of (.

1.2 Commutators and commutator subgroups

The commutator of two elements z, y of a group G is defined by

[z,y] = 27y ey = 27 a?,

so that z and y commute if and only if [z,y] = 1. For commutators of length

greater than 2, we keep the left-normed convention, so that

['1;17 L2, X35+ 3 Tpn—1, :L’n] = [[ e [[‘7717 '1;2]7 $3]7 s 7517n—1]7 :Cn]
More generally, higher commutators in zy,...,x, are defined recursively as
follows:
(i) Commutators in z1,... ,z, are higher commutators.

(ii) Any commutator whose components are higher commutators is also a

higher commutator.

The length of a higher commutator is the number of its components, that is,
the length of the list of elements z; that one gets after deleting brackets in the

higher commutator. Thus

[z, yl, [y, 2],2]  and  [z,[y,[y, 2], 2]]
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are higher commutators of length 5 in z, y, z.
We define the commutator subgroup of two subgroups H and K of G by

means of
(H, K| =([h,k] | h € H, k € K),

and similarly for [Hy, Hy, ..., H,] and higher commutator subgroups. We col-
lect the main properties of commutators and commutator subgroups in our next

result.

Theorem 1.7. Let G be a group, x,y,z € G and H, K, L < G. Then:

(i) [y, 2] = [z, y]7"

(ii) [z,y]" = [27,y°] for any homomorphism o : G — G*.
(iil) [y, 2] = [z, 2], 2, ylly, 2] and [z, yz] = [z, 2][z, y][2,y, 2].
(iv) [z,y™ ' 2y, 27 2] [z, 27 y]" = 1. (Witt’s Identity.)
(v) [H, K] = [K, H].

(vi) K normalizes H if and only if [H, K] < H, and K centralizes H if and
only if [H, K] = 1.

(vii) [H, K] = [H?, K?] for any homomorphism o : G — G*. In particular,
the commutator subgroup of two characteristic (normal) subgroups of G is

again characteristic (normal).
(viii) If N is a normal subgroup of G then [HN/N, KN/N| = [H, K|N/N.
(ix) If HK is a subgroup of G and H normalizes L then [HK, L] = [H, L|[K, L].

Proof. Parts (i) through (iv) are easily checked by expanding the commutators
involved. As for (v), note that

[K,H] = ([k,h] | ke K, h e H) =([h,k]"" | ke K, h € H)
= (lh,k]|he H, k€ K)=[H, K].



162 G. A. FERNANDEZ-ALCOBER

Now (vi) is obvious and (vii) is a consequence of (ii). Also, (viii) is immediate

from (vii) if we consider o to be the natural epimorphism from G onto G//N.
So we are only left with proving (ix). It is clear that [H, L|[K, L] < [HK, L].

For the reverse inclusion, let us first see that [H, L][K, L] is a subgroup. Observe

that, for any £k € K and [,I' € L,
(k0" = [k, [k, 1,1 = [k, ] [k, 1] € [K, L],

by part (iii). Hence L normalizes [K, L]. Since H normalizes L, [H, L] also
normalizes [K, L] and, in particular, [H, L][K, L] is a subgroup. Now that we
know this, in order to prove that [H K, L] is contained in this subgroup, it suffices
to see that any generator [hk,[] lies there. Since [hk,l] = [h,l]|[h,[, k][k,[] and
[h,l,k] € [H,L,K] <[L, K] = [K, L], the result follows. O

Theorem 1.8 (Three subgroup lemma). Let H, K and L be subgroups of
G and N a normal subgroup of G. If [H, K, L],[K, L, H] < N then [L,H, K] <
N.

Proof. We may work in the factor group G/N and thus assume that N = 1.
Since [H, K, L] = [K, L, H] = 1, it follows from Witt’s Identity that [[, A~ k] =
1forall h € H, k € K and [ € L. By substituting A~! for h we obtain that
[[,h,k] = 1. Since [L, H] is generated by the commutators [/, k], it follows that
[L,H K] =1. O

The lower central series of a group (G is defined inductively by means of
11(G) = G and 7,41 (G) = [7(G), G]. 1t follows from (vii) in Theorem 1.7 that
7i(G) is characteristic in G for all o. The following is one of the most important

properties of this series.
Theorem 1.9. For any group G, [vi(G),v;(G)] < 7i+;(G).

Proof. We argue by induction on ¢. The result for : = 1 is a consequence of the
definition of the lower central series. When ¢ > 2 the induction hypothesis yields
that [yi-1(G),%;(G), G < [yi4j-1(G), G] = 7i44(G) and [5(G), G, yia (G)] =
[Vi+1(G),7i—1(G)] < 74i4;(G). Then we deduce from the three subgroup lemma
that [vi(G),%(@)] =[G, %1 (G), 1 (G)] < 5igs () a
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Corollary 1.10. Let G be a group. Then any higher commutator of elements
of G whose length is i lies in the subgroup v;(G).

Proof. This is clear from Theorem 1.9 and the definition of higher commuta-

tors, by induction on 1. O

We will very frequently use the following consequence of (viii) in Theorem

1.7.

Theorem 1.11. Let G be a group and let N be a normal subgroup of G. Then
vi(G/N) =~ (G)N/N for all v > 1.

1.3 Nilpotent groups

A group (i is called nilpotent if 4.41(G) =1 for some ¢. The smallest such ¢ is
then called the nilpotency class of GG. For instance, the nilpotent groups of class
one are precisely the abelian groups. From the definition of the lower central
series, it is clear that the higher the class of a nilpotent group is, the further
the group is from being abelian.

Next we see that the property of being nilpotent may be characterized in
terms of a different series of G, which is called the upper central series of G and
is defined recursively by means of Zo(G) = 1 and 7,11 (G)/7:(G) = Z(G|Z;(G)).
Observe that [H, G| < Z;(G) if and only if H < Z;11(G).

Lemma 1.12. Let (¢ be a nilpotent group of class c. Then v.41-;(G) < Z;(G)
for all 0 <1 <ec.

Proof. This follows by induction on ¢. If i =0 then v.41(G) = 1 = Zy(G) and
the result holds. On the other hand,

[76+1—i(G)7 G] = 76+1—(i—1)(G) < Zi—l(G)v
by the induction hypothesis, and consequently ~.41-,(G) < Z;(G). O

Theorem 1.13. A group G is nilpotent of class ¢ if and only if 7.(G) = G and
Z.1(G) £ G.
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Proof. First of all, observe that Z.(G) = GG implies that v2(G) = [Z.(G), G] <
Z._1(G), v3(G) < [Z.21(G), G < Z._5((G), and eventually ~v.41(G) < Zy(G) =
1. Thus G is nilpotent of class < ¢. On the other hand, according to the
previous lemma, if G is nilpotent of class ¢ then (&) is contained in Z,(G)

and therefore Z.(G') = . Now the result follows from these two remarks. [

Thus the class of a nilpotent group is the length of both its upper and lower

central series.
Corollary 1.14. Any finite p-group is nilpotent.

Proof. Let GG be a finite p-group. Suppose that, for some index 7, we have that
Zi(G) # G. Then G/Z;(G) is a non-trivial p-group and Theorem 1.1 yields that
Z(G]Z;(GQ)) = Zix1(G) ] Z;(G) is also non-trivial. Hence Z;(G) < Z;41(G). So,
as far as it does not reach (&, the upper central series is strictly increasing. Since
(7 1s finite, this means that this series must reach G some time and, according

to Theorem 1.13, (G is nilpotent. O

If G has order p™, the proof of the previous corollary shows in fact that ¢

has nilpotency class < m. This can be sharpened a bit as follows.
Theorem 1.15. Let G be a p-group of order p™ > p?. Then:

(i) The nilpotency class of G is at most m — 1.

(ii) If G has nilpotency class ¢ then |G : Z._1(G)| > p*.

(i) |G : G| > p.

Proof. Let ¢ be the nilpotency class of G. We begin by proving (ii). Suppose
by way of contradiction that |G : Z._1(G)| = p. If ¢ = 1 this means that

|G| = p, contrary to our assumption. Hence ¢ > 2 and

G/ZC—Q(G) _ G/ZC—Q(G) ~ G

Z(GZer(@)  Zees(@)]Zewa(G) — Zeer (G)
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is a cyclic group. Consequently G/ Z._(() is abelian™ and Z._;(G) = G, which
is a contradiction. This proves (ii). Now (iii) is a consequence of Lemma 1.12,
which assures that ' < Z._(G).

Finally, since the series

has ¢ steps, it follows from (ii) that p™ = |G| > p°*'. Hence ¢ < m — 1 and (i)
holds. O

Corollary 1.16. Let GG be a p-group and let N be a normal subgroup of G of
index p* > p?. Then v(G) < N.

Proof. The group G//N has order p* > p?. It follows from part (i) of Theo-
rem 1.15 that G//N has class < i — 1 and consequently +;(G/N) = 1. Since
vi(G/N) = ~v,(G)N/N, this proves that v,(G) < N. O

Definition 1.17. We say that a p-group of order p™ > p? is a p-group of

maximal class if it has nilpotency class m — 1.

Of course, any group of order p? and any non-abelian p-group of order p*
have maximal class. We provide more examples of groups of maximal class in
Exercise 1.7. The final part of this course will be devoted to the study of the
p-groups of maximal class and we will be able to give rather precise information

about their general structure.

1.4 The Lie ring associated to the lower central series

The difficulty in the study of groups comes mainly from the fact that the mul-
tiplication need not be commutative. Nevertheless, as part (iii) in Theorem
1.7 shows, commutation is close to being bilinear. Also, part (iv) in the same
theorem resembles the Jacobi identity. This suggests a way of relating groups

to Lie rings. We first recall the definition of a Lie ring.

*Remember that a group G is abelian if G/Z(G) is cyclic.
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Definition 1.18. Let L be a set endowed with two operations, written + and

[, ]. We say that (L,+,[, ]) is a Lie ring if the following conditions hold:
(i) (L,+) is an abelian group.

(ii) [, | is bilinear: [z 4+ y, 2] = [z, 2] + [y, 2] and [z,y + 2] = [z,y] + [z, 2] for
all z,y,z € L.

(iii) [z,2] =0 for any = € L.

(iv) The Jacobi identity holds: [z,y, z]+[y, z, z]+[z,z,y] = O for all z,y. z € L.
(The product of more than two elements is defined via the left-normed

convention.)

Moreover, if L is a vector space over a field K and [Az,y] = Az, y] = [z, Ay] for
all A € K, xz,y € L, we say that L is a Lie K-algebra.

We refer to |, | as the Lie product or Lie commutator in L. Observe that,

as a consequence of (ii) and (iii),
0=lz+y,z+yl =z 2]+ [z,y]+ [y 2] + [y, y] = [z, y] + [y, ]

and hence [y, z] = —[z,y] for any =,y € L.

Let us now explain how we may associate to any group G a Lie ring L(G)
by using the lower central series. Set L; = 7;(G)/vi41(G) for @ > 1, which
is an abelian group, since v,(G)" < [v(G),G] = 441(G). We use additive
notation in this group, instead of the more natural multiplicative one. Thus
27%i+1(G) + yvi41(G) = 2yvi41(G). Then we may define a product [, | in the

direct sum

L(G) = @iz L

in the following way. Define first the product of two elements zv;11(G) € L;,
yv;+1(G) € L; by means of

[2%i41(G), Y741 (G)] = [, y]Vizrj01(G) € Liy;.
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(Observe that [z,y] € 4i4+;(G) according to Theorem 1.9.) This definition does

not depend on the choice of the representatives x and y of the cosets, since

[z, yul = [z, yul[z, yu, t[1, yu] = [z, yu]
[z,

][:c,y][x,y,u] = [.I',y] (mOd 7i+]'+1(G))

for any t € 7i41(G), u € vj4+1(G). Then we extend the definition of [, | to all
of L(G) by linearity.
We say that an element in L((G) is homogeneous if it belongs to some L;,

that is, if it is of the form zv;11(G) with 2 € ~;,(G).
Theorem 1.19. Let G be any group. Then L(G) is a Lie ring.

Proof. We have to prove conditions (ii), (iii) and (iv) in the definition of a Lie
ring. Let us begin by (ii). Choose arbitrary homogeneous elements zv;11(G),
yYi+1(G) € L; and zv,41(G) € L;. Then

[2%i+1(G) + yyi41(G), 2941 (G)] = [2y7i1(G), 2741 ()]

= [zy, 2]¥it41(G)
z, 2|z, 2, ylly, 2]viei01(G)
2, 2)[y, 2]¥itj+1(G) (3)
, 2[Yitj+1(G) + [Y, 217441 (G)
2%i+1(G), 279+ (G)] +
+ [y (G), 294(G)];

since [z, 2,y] € [%i(G),7(G), %(G)] < 7it41(G). Analogously,

=
=
=
=

[29541(G), 27vi41 (G) + yyit (G)] = [29j41(G), 2%i41 (G)] +

(4)
+ [27+1(G), yyip (G)].

Now for generic elements a,b, ¢ € L(G), we can decompose them as the sum of
their homogeneous components and the relations [a + b, ¢] = [a, ] + [b, ¢] and
[c,a + b] = [¢,a] + [c,b] follow immediately from (3), (4) and the definition of
the Lie product in L(G).
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For the proof of (iii), we observe that
[2%i4+1(G), 2%i41(G)] = [z, 2] 12041 (G) = 72041 (G) = 0
and

(251 (G, 97541 (G = [2,y17i4i41(G) = [y, 2] i (G) = — [y 2]y (G)
= —[y7+1(G), 2741 (G)]

for any = € v;((), y € v;,(G). Then we can decompose any a € L(G) as the

sum of its homogeneous components, a = )., a;, to get that

aval = | D e Y a] = (o a] = Y (lana) + lag,al) + > faal = 0.

i>1 i>1 ii>1 i<j i>1

In order to prove the Jacobi identity, it also suffices to consider homogeneous
elements. Take zv;11(G) € Li, yyj41(G) € L; and zyp41(G) € L. Witt’s
Identity yields that

1 -1

1=[z,y " 2][z,y”"

1 -1 -1

7$7Z]|:Z7$ ,y][Z,l’ 7y7$:|

2 ylly, 27 2y, 2

(5)

= [;L’, y_17 Z] [y7 Z_lv {L’][Z, x_la y] (mOd Vitjt+k+1 (G))
On the other hand, the bilinearity of the Lie product shows that

[2,y™ Titi+1 (G) = [2741(G), y ™ 7541 (G)] = (27501 (G), —y7i01(G)]
= —[z, y]¥i+j+1(G)
and consequently
[z, 57" 2 viriren1 (G) = [[2, 9™ i1 (G), 27041 (G))]
= [z, y]Yi401(G), 2941 (G)] = =2, Y, 2]Yigjrs1 (G).
Hence (5) yields that
0 = [2,y, 2[Yirjrrr1(G) + [y, 2, 2] Vigjrnr1 (G) + [2, 2, Yl vigjns1 (G)

= [279i41(G), y¥j+1 (@), 2701 (G)] + [Y7541(G)s 29541 (G), 27041 (G)]
+ (2741 (G), 2741 (G), y 701 (G)],

which proves the Jacobi identity. O



AN INTRODUCTION TO FINITE p-GROUPS: 169

The Lie ring L(() is especially important when the group G is nilpotent: in

that case 7.41(G) = 1 for some ¢ and therefore

There are many applications of the ring L(() to problems related to nilpotent
groups; E.I. Khukhro’s book [10] and Chapter VIII of the book [8] by B. Huppert
and N. Blackburn are good references. The advantage of passing from a group
(¢ to its associated Lie ring L(G) comes from the fact that it is easier to work
with the Lie product in L(G) than with commutators in G. We give a couple
of easy examples of this method in Exercises 1.10 and 1.11. The results there
could also be obtained directly, but it is simpler to prove them by working in

the associated Lie ring.
Exercises
1.1. Prove that any group of order p? is abelian.
1.2. Let G be a finite p-group of order > p?.
(i) Prove that |Cg(z)| > p* for any z € G.

(ii) Prove that |Cg(z)| > |Can(zN)| for any z € G. (Hint: Write the order
of the centralizer as the quotient of the order of the group by the size of

the corresponding conjugacy class.”)
(iii) Deduce that the property of having an element z such that |Cg(z)| = p?

is hereditary for factor groups of order > p?.

1.3. Let G be a group and let X be an arbitrary generating set of G. Prove
that

G'=([z,y)’ |z,y € X, g € G).

(Hint: Call N the subgroup to the right of the equality above. Then N is
normal in G and G/N is abelian.)

*We are showing in fact that this property holds in any finite group.
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1.4. Let GG be a group and H a subgroup of G such that G' = H'. Prove that
vi(G) = v(H) for all 1 > 2. (Hint: Argue by induction on i. Observe that
Yit1(G) = [vi=1(H), H, ] and use the three subgroup lemma.)

1.5. Let G be a finite group. In this problem we prove that
vi(G) = ([x1, ..., 2] | x1,...,2, € G) (6)
for all 7z > 1.
(i) Prove that N; = ([z1,... ,2;] | #1,... ,2; € G) is a normal subgroup of G.

(ii) Suppose that (6) holds for . Prove that ~;(G//N;41) is central in G/N; 4
and deduce that 7,41(G) is contained in N;41. Conclude that (6) holds

also for 2 + 1. Hence the result is always true.
1.6. Prove by induction on 7 that
Zi(G)={g9g€G|lg,z1,...,x;] =1 forall zy,... ,2; € G}.
1.7. Prove that the following 2-groups have maximal class:
(i) The dihedral groups: Dym = (a,b | = =1, b = a™t), m>3.

(ii) The semidihedral groups: SDgm = (a,b | T =02 =1, ¢ = a_1+2m_2>,
m > 4.

(iii) The generalized quaternion groups: Qam = (a,b | a7 =1, a7 =

b2, a®=a1), m>3.

1.8. We say that a Lie ring L is abelian if [z,y] =0 for any x,y € L. If G is a
group, prove that L((G) is abelian if and only if v,(G) = v3(G). Deduce that if
(i is nilpotent then L(() is abelian if and only if G is abelian.

1.9. Let GG be any group and L(G) = @;»1 L; its associated Lie ring. Prove
that [L;, L1] = Liz1 for all « > 1. (If A and B are subgroups of a Lie ring
L, [A, B] is defined as the subgroup generated by all Lie products [a, b] where
a€Aand b€ B.)
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1.10. Let G be a group. If G/G' = (x:G', ... ,2,G") and v (G)/viq1 (G) =
(Y17%i41(G)s - - YY1 (G)) then

7i+1(G)/’7i+2(G) = <[$J'7yk]7i+2(G) |.7 = 17' PP k= 17' .. 7t>‘

(Hint: Work in L(G) and use Exercise 1.9. Produce also a proof without con-
sidering L((G).)

1.11. Let GG be any group.

(i) Suppose that every element in the factor group =;,(G)/vi+1(G) has or-
der a divisor of n. Prove that the same is true for all the quotients
vi(G)/7j+1(G) for 7 > 4. (Hint: Working in the Lie ring L((), it suffices
to see that nL; = 0. By Exercise 1.9, L; is generated by elements of the
form [a,b] where @ € L;_1, b € Ly. Use induction on j. How does the

proof read if we do not use the associated Lie ring?)

(ii) If G is nilpotent and is generated by elements of p-power order, deduce
from (i) that every element in (G has p-power order. Does this property

hold for soluble groups?

1.12. Let G be a nilpotent group generated by elements zq,..., x4 of finite
order. In this exercise we prove that (G is then finite. (Observe that this is

obvious if G is abelian.)

(i) Let n be the least common multiple of the orders of zy,...,z4. Prove
that any element of v;(G)/7i+1(G) has order dividing n for any ¢ > 1.

(Recall the previous exercise.)

(ii) Deduce that all the quotients ~;(G)/7i+1(G) are finite. (Hint: According
to Exercise 1.10, v;,(G)/vi+1(G) is a finitely generated abelian group.)

(iii) Use the nilpotency of G to deduce that G is finite.

(iv) What is the maximum possible order of a nilpotent group of class 3 gen-

erated by two elements of order p?
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(v) Prove that the group
Doo - <$7y | y2 = 17 r? = $_1>

is an infinite soluble group generated by 2 elements of order 2.

2 Basic properties of regular p-groups

2.1 The subgroups Q,;(G) and U;(G)

In this section we introduce two series of subgroups which are meaningful in
the study of the power structure of a p-group. The subgroups of these series

are defined as follows.
Definition 2.1. Let GG be a finite p-group. For any ¢ > 0 we define
0(G) =(z e |2 =1),
that is, the subgroup generated by the elements of G whose order is < p' and

Ui(d) = (2

z € G).

(The symbol U is read “agemo”, that is, the letters of the word “omega” in

reverse order, which reflects what happens with the symbols.)

It is clear that both Q,(G) and U;(() are characteristic subgroups of G. On
the other hand, according to Theorem 1.6, G/®(() is an elementary abelian
group and consequently z? € ®(G) for any x € GG. Thus U1(G) < ®(G). Our
next result clarifies the relation between ®(G) and U4(G).

Theorem 2.2. Let GG be a finite p-group. Then:
(1) (@) is the smallest subgroup N of G such that G /N is elementary abelian.

(i) ®(G) = G'T1(G).
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Proof. (i) We already know from Theorem 1.6 that G/®(() is elementary
abelian. Suppose now that the quotient G/N is elementary abelian. Then
G//N may be viewed as an F,-vector space and consequently the intersection of
its maximal subgroups is trivial (for any non-zero vector v there is a maximal
subspace not containing v). Since a maximal subgroup of G//N is of the form
M/N with M maximal in G, it follows that the intersection of the maximal
subgroups of ¢ containing N equals N. This proves that ®(G) < N.

(ii) A factor group GG/N is elementary abelian if and only if [z,y] € N and
z? € N for any x,y € (G, that is, if and only if G'G,(G) < N. It follows from
(i) that ®(G) = G'G4(G). O

Recall that the exponent of a group GG, written exp (7, is the least common
multiple of the orders of its elements. In the case of a p-group, this is simply
the maximum order of the elements of Gi. If exp G = p° then z?° = 1 for all

z € (G, so that Q.(G) = G. Thus we have an ascending series

1= 06(G) < U(G) <+ < Qi (G) < Q(G) = G, (7)

which we call the Q-series of G. Similarly, U.(G) = 1 and we have the following

descending series,
G =0o(G) 2 061(G) 2 -+ 2 Bea (G) 2 B(G) = 1, (8)

which is referred to as the U-series of (.

The U-series of a p-group is strictly decreasing, since
Bi1(G) < 01(0:(G)) < 0(04(G)) < Bi(@)

as long as U;(G) # 1. Thus the U-series of a p-group of exponent p° has
exactly e steps. Nevertheless the inclusions in the -series need not be proper.
Consider for instance the dihedral 2-group Dym = (a,b | T =02 =1, 4 =
a=') for m > 3. It may be generated by two elements of order 2, ab and b,
whence Q;(Dym) = Dym and the Q-series of Dym reduces to two terms, even if

exp Dom = 2771,
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When the p-group G is abelian, the subgroups ;(G) and U;(G) are partic-
ularly well behaved.

Theorem 2.3. Let GG be a finite abelian p-group. For any ¢ > 0 we have that:
(i) Q(G) ={z e G|z =1}.
(i) U(G) = {a” | z € G}.

(iii) |G : Q(G)] = |0;(G)| (and consequently also |G : B;(G)] = |Qu(G)]).

Proof. The map f: G — G defined by f(z) = 2 is a homomorphism, since
( is abelian. The set {z € G | e 1} is the kernel of f and is consequently a
subgroup of GG. Since ©;(() is generated by this set, we deduce that (i) holds.
Part (ii) follows similarly by observing that the image of f is a subgroup. Finally,
by the first isomorphism theorem |G : Ker f| = |Im f| and this proves (iii). O

The first isomorphism theorem shows in fact that G/Q;(G) = U,;(G) in any
abelian p-group. In Exercise 2.1 we will prove that G/U;(G) = Q;((G) also holds.

None of the statements in the last theorem remains true for general finite p-
groups. We have already mentioned that Q(Dym) = Dym, while not all elements
of Dym have order 2. On the other hand, if G = (a,b | a* = b* =1, a®* = a™1)
then the set of squares of the elements of G is {1, @, b*}, which is not a subgroup.
Note also that part (iii) need not hold even if (i) and (ii) are true: we have
that |Qs : 1 (Qs)] =4 # |01(Qs)| = 2. In Exercises 2.3 and 2.4 and in Section
3.2 of the next lecture we provide examples like these for any prime.

Let us end this section by indicating two general properties of the subgroups

Theorem 2.4. Let (G be a finite p-group.
(i) If exp G = p° then U;(G) < Q._;(G).

(ii) For any N <4 G, U,(G/N) = G,(G)N/N.
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Proof. (i) It suffices to observe that any generator 2" of U,(G) has order
S pe—i.
(ii) Use the bar notation in G = G//N. Then

Gi(G) =@ |ze@ =" |zeq)=0i(G),

that is, 5;(G/N) = U;(G)N/N. 0

2.2 Phillip Hall’s compilation formula

The key to the proof of Theorem 2.3 is the fact that z"y” = (zy)” in any
abelian group. Of course, this equality does not hold in general, but there is a
remarkable formula of Phillip Hall that relates 2"y" to (zy)” in any group by

using commutators in z and y. To begin with, let us consider the case n = 2.

We have that

2’y’ = a(zy)y = 2(yzle,y)y = zyayle, yllz,y,y] = (2y)’[z, yllz, v, 9], (9)
where we have used twice the identity ab = ba[a,b]. This simple fact is the key
to any compilation formula: the effect of moving an element b one position to
the left is the appearance of a commutator involving b. Note that (9) may be
written as z%y? = (zy)?cy, where ¢; € (z,y)".

For n = 3, we observe that

2’y = x(2’y*)y = 2(zy) ey = z(zy) yealer y) (10)

= (zy)’[(zy)*, ylealca, Y.

By Theorem 1.7, we have that [zy,y| = [z,y][z,y,y] = ¢ and consequently

[(zy)*, y] = ealez, zyles = c3les, wylles, 2y, cal.

It follows from (10) that 2*y® = (zy)3c;cs for some element ¢z € y3((z,y)).
These calculations show the difficulty of handling the general case with an
arbitrary value of n, at least with the same approach as with n = 2 and 3.

Nevertheless we will be able to obtain an expression relating z"y" to (zy)"
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thanks to a very ingenious argument, which we take from Chapter 6 in [6] and
which is based on the general rearrangement principle in Lemma 2.5 below.
Let X = {z,...,2,} be a finite sequence of elements in a group and let
p = x ...z, be their product. (Just for this section p is not a prime!) Even
if there may be repetitions among the elements x;, we consider them to be
distinguishable because of their different symbolic names.” We partition X
into subsets Xy,...,X,, and we want to reorder the elements in the product
p so that the elements belonging to X; appear in the first place, then they
are followed by the elements from X5, and so on. This requires moving some
elements to the left with changes of the form ab = ba[a, b], which means that,
apart from the elements z1, ... , z,, themselves, in the expression for p there will
appear commutators whose components are some of the z;. For any subset S
of R={1,... ,n} with more than one element, denote by Xg the set of higher
commutators whose components are exclusively drawn from the X; with ¢ € S
and which have at least one component from each of these subsets. Then we

have the following result.

Lemma 2.5. Order the non-emply subsets of R = {1, ... ,n} according lo their
size and, among the subsels of the same size, lexicographically. Then
p= H qs,
@#SCR
where the factors occur in the given ordering of the subsets of R and each qs is

a product of elements in Xs.

Proof. We begin by collecting to the left the elements in X;. As observed
above, this has the effect of producing commutators of the form [a,b], where b

belongs to X7 and a does not. That is, [a,b] € X;; for some ¢ > 2. (We drop

*For those with an acquaintance with the theory of free groups, it should be said that
the natural setting for the result that follows is in fact the free group F' freely generated by
Z1,...,Z,m. This makes clearer the argument in the text, since the elements in the product
p = Z1...Z, are really different in that case. Then any rearrangement formula we derive
for the product p can be transferred to products of elements in an arbitrary group, since the
subgroup that these elements generate is a homomorphic image of F'. This shows by the way
that the formulas we obtain are universal, the same for all groups.
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the brackets and the comma from the set {1,7} for an easier notation.) Hence
we may write p = ¢p', where ¢, is the product of the elements in X; and p’ is
a product of elements from the sets Xy,... , X, Xi2,..., X1,.

We continue by collecting to the left the elements in X; and next with the
rest of the subsets Xg, according to the order established for the subsets S of
R. Suppose that, at some stage, we have already moved left all the elements
corresponding to the subsets Xt for the 7" C R which are “smaller” than S.
Then our next step is to collect the elements in Xg. For this purpose, we will
have to carry out changes of the form ab = ba[a, b], where b € Xg and a € X7
for some T' “greater” than S. The new element appearing in the product p is the
commutator [a, b], which belongs to Xsyr. Since the subset S U T is posterior

to S in the ordering we have chosen for the subsets of R, we can ensure that:

(i) These changes do not alter the collection of elements we had obtained so

far.

(ii) No new element of Xg arises when collecting to the left an element of Xg.
Consequently the elements in Xg can be collected in a finite number of

steps.

Since R has a finite number of subsets, this procedure eventually ends and we

get the formula in the statement of the lemma. O

The proof of the lemma shows clearly that the elements ¢,...,q, in the
above formula are the products of the elements in Xi,...,X,, respectively,
multiplied in the same order as they appear in the product p = z;...x,,.

Nevertheless, it is impossible in practice to obtain general expressions for all of
the ¢s.

For any non-empty subset S of R, let ps denote the product of the elements
in the sets X;, ¢ € S, in the same order as in p = z; ... x,,. Equivalently, pg is

the result of substituting 1 in p for the elements in the sets X;, 1 € 5. Observe
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that, by Lemma 2.5,
ps = H qr, (11)
P#TCS
since any higher commutator which has a component equal to 1 is itself equal
to 1.

We may now proceed to prove the main result in this section.

Theorem 2.6 (Hall’s Compilation Formula). Let G be a group and z,y €
(. Then there exist elements ¢; = ¢;(x,y) € vi((z,y)) such that

ARG

n_.n
37 ... Cp

z"y" = (:cy)”cg
for all n € N.

Proof. We compile the elements in the product p = z"y™ by choosing the set
X1 to consist of the first x and the first y appearing in p, X, of the second x
and second y, and so on up to X,,. Set R = {1,... ,n}. According to Lemma
2.5 we may write
2yt = I as=(v)" ] o (12)
@#SCR SCR, |S|>2
Let S be any subset of R with i elements. We have that pg = z'y* depends
only on 7 and not on S. It follows from (11) and induction on ¢ that the
same is true for the gs: all the ¢s such that |S| = ¢ take a common value ¢;.
Furthermore, this value depends clearly only on ¢ and not on n. Lemma 2.5
shows that ¢; is a product of higher commutators in z, y of length at least 1.
It follows from Corollary 1.10 that ¢; € v;((z,y)). Now R has (7;) subsets with
i elements, hence each ¢; appears this number of times in the expression (12).

Since these occurrences of ¢; are consecutive, we conclude that

a"y" = (xy)ncgg)cgg) .. .cgz),

as desired. O

It follows from the comment in the footnote in page 172 that the formula
in the previous theorem is universal and does not depend on the elements x, y,

nor on the group G.
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2.3 Definition and first properties of regular p-groups

Hall’s compilation formula is specially meaningful when we use it with a prime
exponent p, since the binomial coefficients (f) are divisibleby pfor 1 <1 < p—1.
Consequently, we may write 2Py? = (zy)Pzc¢, for some element z which is a p-th

power in (z,y)’. This suggests the following definition.

Definition 2.7. Let GG be a finite p-group. We say G is a regular p-group if
zPy? = (2y)? (mod Uy((x,y)")) for every x,y € G. (Equivalently, if ¢,(x,y) €
Ui((z,y)") for every z,y € G.)

The condition in the definition of a regular p-group is local, since it only
involves the subgroup generated by = and y. Hence all subgroups and quotient
groups of regular p-groups are again regular. Surprisingly, we will see in Exercise
2.7 that regularity is not maintained when taking direct products. The theory
of regular p-groups is almost fully developed in P. Hall’s fundamental paper
on p-groups [5], where he introduces this concept. Other references for regular
p-groups are Section 10 in Chapter III of Huppert’s book [7] and Section 3 in
Chapter 4 of Suzuki’s second volume [26].

Of course, all abelian p-groups and all groups of exponent p are regular.
If we want to produce further examples of regular p-groups, we run into the
problem that the condition in their definition has to be checked for every pair
of elements in the group, what may lead to cumbersome calculations. Our next
result comes to our help and shows that, at least for odd p, the family of regular

p-groups consists of many other groups than the ones mentioned above.
Theorem 2.8. Let G be a finite p-group.

(i) If the class of G is less than p then G is reqular. In particular, any p-group

of order < p? is reqular.

(i1) If vp-1(G) is cyclic then G is regular. Hence if p > 2 and G' is cyclic then

G is reqular.

(iii) A regular 2-group is abelian.
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Proof. (i) If GG has class less than p then 7,(G) = 1. Hence 7,((z,y)) = 1 and
¢y(z,y) =1 for any z,y € G, which proves the regularity of G.

(ii) Assume that ~,_1(G) is cyclic. If p = 2 then G = ~;(G) is cyclic and
the result is obvious. Suppose now that p > 2. Choose any two elements
z,y € G and put H = (z,y). Then ~,_1(H) is also cyclic. If y,_;1(H) # 1 then
Yo(H) < 4p—1(H) and consequently

W (H) < Bi(yp1 (H)) < Ty (HY).

Hence ¢,(x,y) € U1(H') in this case. Otherwise v,_1(H) = 1 and ¢,(z,y) €
v,(H) = 1. We conclude that (i is a regular p-group.

(iii) Suppose G is a regular 2-group. Let z,y € GG and write H = (z,y). We
have from (9) that

ey = (xy) [z, Y]z, y,y] = (xy)’[z, y]"
and the regularity of G yields that [z,y]Y € U1(H’). Since U1(H') is normal
in H, we also have that [z,y] € B1(H'). Then H/G,(H') is abelian and conse-

quently
H' <U,(H") <®(H),

by using Theorem 2.2. But this may only happen if H' = 1. Hence any two

elements of ¢ commute and G is abelian. O

We will provide examples in Lecture 3 showing that a group of order p?*!
need not be regular.

In the rest of this section we prove the most basic properties of regular p-
groups, which illustrate some similarities with abelian p-groups. In particular,
Theorem 2.3 also holds for regular p-groups. These properties will be needed in

Lecture 4 when we study the structure of the p-groups of maximal class.

Lemma 2.9. Let GG be a reqular p-group and let x,y € G. Then x? = y? if and
only if (z7'y)P = 1.
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Proof. We argue by induction on |G|. Set H = (z,y). Since G is regular,
we may write 7 Py? = (z7'y)Pz for some element z € U;(H'). Hence the
equivalence claimed in the statement of the lemma will be proved if we show
that U;(H') = 1 whenever 2z = y” or (z7'y)? = 1. Of course, if H is abelian
then there is nothing to prove, so we may assume that H is non-abelian.
Suppose first that = = y?. Then y and z” commute and consequently
xP = (2P)¥ = (2¥)?. Since H is not cyclic, there is a maximal subgroup M of H
containing x. But M is normal in H, so it also contains z¥. By applying the
induction hypothesis to M, we deduce that [z,y]? = (z7'2¥)? = 1. Now, we
know from Exercise 1.3 that H' is generated by the elements of the form [z, y]"
where h € H, all of which have order dividing p. By the induction hypothesis,
the lemma holds in H' and in particular the product of two elements of H' of
order dividing p has again order dividing p. Hence U;(H’) = 1 in this case.

I we obtain that also

Assume now that (z7'y)? = 1. Conjugating by z~
(yz=1)? = 1. Then the implication already proved gives that (zy~'z~'y)? =1,
that is, [z, y]? = 1. Since H = (™', y), we conclude as above that U;(H’) =

1.

O

Theorem 2.10. Let G be a reqular p-group. Then:

(i) For any x,y € G and any 1 > 0, we have that 27 = y? if and only if
(a7'y)" = 1.
(ii) For anyi >0, Q(G) ={z e G |a" =1}.
(i) For anyi >0, U;(G) = {a” | z € G}.

(iv) Foranyi >0, |G : Q;(G)| = |0;(G)| (and consequently also |G : B;(G)] =
€ (G)])-

Proof. First of all, observe that if (i) holds for a particular value of 7, then the
set {z € G| 27" =1} is a subgroup and consequently it coincides with Q;(G).
Hence (ii) follows from (i). Also, all the results are obvious for ¢ = 0, so we may

assume 7 > 1.
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(i) By the previous lemma, we already know that this result holds when
i = 1. Let us use induction on i. Then 27" = y?' is equivalent to (m_pyp)pi_l = 1.
Put G = G/Q;-1(G). Since we are assuming that (i) holds for ¢ —1, we also have
that (ii) is valid for 1 — 1 and Q;_;(G) consists exactly of the elements whose

order divides p'~'.

Hence 27 = ypi amounts to ¥ = y”. By using the result
again for ¢ = 1, this is equivalent to (z~'y)? = 1, that is, to (z7'y)? € Q,_,(G).
Thus we conclude that 2?" = ypi if and only if (Qz_ly)pi =1, as desired.

(iii) We argue again by induction on i. Let us see that, given any z,y € G,
there exists z € (& such that zPy? = zP. This is clearly equivalent to (iii) for
1= 1.

We use induction on |G|. Set H = (z,y) and K = (zy,®(H)). f K = H
then H is cyclic and there is nothing to prove. So we may assume that K < H.
Since (7 is regular, we have that 2Py? = (zy)Pc for some ¢ € U;(H') < U;(K).
Then (zy)Pc is a product of two elements in U1 (K') that, applying the induction
hypothesis to K, can be written in the form 2zP. Thus x2y? = 2P and we are

done.

For general 7, observe that

B1(Bim1(G) = {a” | 2 € Bimy(G)} = {a”

r € G}

is a subgroup of . Then necessarily U;(G) = {z?' |z € G}

(iv) It follows from parts (i) and (ii) that 2” = y?" if and only if 271y €
(@), that is, if and only if 2Q,;(G) = yQ(G). Hence the map from G/Q;(G)
to U;(G) given by 2Q,(G) — 27" is well-defined and injective. But by part (iii)
it is also surjective, hence a bijection. It follows that |G : Q,(G)| = |6;(G)]. O

It must be noted, however, that neither of the isomorphisms G/Q;(G) =
U,(G) and G/U;(G) = Q;(G) need hold in a regular p-group. (See Exercise
2.6.)

Corollary 2.11. If a reqular p-group G is generated by elements of order < p°
then exp G < p°.
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Proof. Let G = (xy,...,x4), where each z; has order < p°. Then zq,... ,24 €
Q. (G) and consequently GG = Q.((). Since (i is regular, it follows from part (ii)
in Theorem 2.10 that every element in G has order < p® and exp G < p*. [

Corollary 2.12. Let G be a reqular p-group. Then the sequence of indices of
the consecutive terms of the Q- and U-series of G are the same, but in reverse

order.

Proof. Observe that

Q41 (G) - Q(G)] = %

by part (iv) in Theorem 2.10. O

= [0i(G) : Bia (G)],

2.4 Commutators and p-powers in regular p-groups

In this final section we show that there is a close relation between the commu-
tator structure and the power structure in a regular p-group G. More precisely,
we prove Theorem 2.14 below, which says that “agemos” (that is, p-powers)
may be taken out of commutator subgroups of normal subgroups. In fact, we
prove this result under the weaker condition that all proper (equivalently, max-
imal) subgroups of G are regular. This precision will be important in Section
3.1 of Lecture 3, where we provide a regularity criterion which is fundamental
in the theory of p-groups of maximal class. The theorem relies on the following

lemma.

Lemma 2.13. Let G be a p-group all of whose proper subgroups are reqular

and let x,y € G. Then for any 1,7 > 0 we have that [:L'pi,yp]] =1 if and only if

[,y = 1.

Proof. First of all, observe that
[xpi,y] _ x—p‘(xp‘)y _ x—pi(l,y)pi_
Now

<$7$y> = <$7 [:z:,y]> < <‘T7G/>

A
®
=
2
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and this last subgroup is proper in GG by Theorem 1.5 (unless G is cyclic, in
which case the result holds trivially). Hence (z,z?) is a regular p-group and
we may use part (i) in Theorem 2.10 to obtain that [:L‘pi, y| = 1 if and only if
[z, y]" = (:v_l;vy)pi = 1. Since taking the inverse of a commutator interchanges
its two components, the same result holds if the p-power appears in the second
component of the commutator. Now the lemma follows easily:

2 t+3

[,y =1 oyl =16 [yl =16 [y =1

O

Theorem 2.14. Let GG be a p-group all of whose proper subgroups are reqular
and let M, N be normal subgroups of G. Then

[G:(M),T5;(N)] = Biy;([M, N])
for any 1,5 > 0.

Proof. Consider the factor group G = G/U;y;([M, N]). In order to prove the
inclusion C, it suffices to see that the image of [U;( M), U;(N)] in G reduces to
the trivial subgroup. This amounts to saying that the generators of U;(M) and
U,;(N) commute modulo U,4;([M, N]), in other words, that [Wi,ﬁp]] = 1. But,

according to Lemma 2.13, this is equivalent to [, ﬁ]pw = 1, which is obviously

true.

Let us see that the reverse inclusion also holds. Set G = G/[U;(M), T;(N))].
In this quotient group we have that [Wé,ﬁpj] =1forany m € M, n € N, so
we deduce from Lemma 2.13 that [m,n]?*’ = T. Tt follows that the com-

mutator subgroup [M, N] is generated by elements of order < p'*/. Since
[M, N] is a proper subgroup of (7, it is regular and then Corollary 2.11 proves
that exp[M, N] < p'*t7. Consequently Uy ;([M, N]) C [G:(M),5;(N)], as de-
sired. 0

Exercises

2.1. Let GG be an abelian p-group. Prove that G/U;(G) = Q,(G) for any 1 > 0.

(Hint: Use the structure theorem for finite abelian groups.)
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2.2. Hall’s compilation formula is very useful as a theoretical tool, since it
applies to any group. However, under some particular conditions on the group,
there may be more interesting formulas that give an explicit expression for the
elements ¢;(z,y) in that case. This exercise gives a formula of that type.

Let G be a group and let z,y € . Write H = (z,y) and assume that the
subgroup (y, H') is abelian.

(i) Prove that

(zy)" =2"y" y" .y Yy
for any n € N. (Observe that this holds without any conditions.)

(ii) Deduce that
(zy)" = 2"y"[y, "y, 2" 7% ... [y, %[y, z].

(iii) Prove by induction on ¢ that

[y, 2] = [y, z|'[y, z, J;](;)[y, ;z;,;z;,;z:](;) oyt :C](‘)

(iv) Prove the following relation for binomial coefficients:
n—1 .
(1) = ()
— k k41

(Hint: Argue by induction on n > k+1 and recall the identity (Z) + (k—?—l) =

(ki1)-)
(v) Conclude that

n n

(zy)" = 2"y" [y, ;L'](2)[y, z, :L'](S) ey, .1‘77:‘._.1,.1](2). (13)

(vi) Reread the proof of Hall’s compilation formula and adapt it to give an
alternative proof that (13) holds under the condition imposed that (y, H')
is abelian. (Hint: Choose the sets Xi,..., X, as in Theorem 2.6 in order
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to rearrange the product z"y™. Since (y, H') is abelian, a careful analysis
of the proof of Lemma 2.5 shows that the only commutators arising from
the collecting process are of the form [z,y,z,...,z]. Moreover, all the
components in such a commutator belong to different sets X;. Hence
qs = [z,y,z,'=2, z] for any subset S of R = {1,... ,n} withi > 2 elements.
Deduce (13) from this.)

2.3. Let G = H[N]| be the semidirect product of H = (b) = ()2 and N =
(ar) x (agz) x -+ x (ap_1) = Cp x Cp x - -+ x C, with respect to the action given
by

b

b _ b __ — -p
a; = a1Gg, Ay = A203, ... , ap—l = Up_10ay" .

(i) Prove that G' = (as,... ,ap_1,a;") and note that exp G’ = p. Calculate
the rest of the terms of the lower central series and deduce that GG has

class p.

(ii)) Let 2 € G. Then z can be written in the form z = uv, with u = bia{ and

v € (. Show that z? = «”. (Hint: Use part (v) of Exercise 2.2.)

i11) Prove that b? and a? are central elements in (G. Deduce that the value of
1

u” only depends on the residue classes of 7 and 5 modulo p.

(iv) Prove that (ba;)? = b?. Use this and (iii) to derive that the number of
different powers z? is greater than p and smaller than p?. Hence the set

{z? | x € G} is not a subgroup of G.

2.4. Let GG be the group with the same defining relations as the one in the

previous exercise, but with 67° = 1 changed to b” = a}. This is a group of order

pp+1.

(i) Prove that U;(G) = (a}). Hence U;1(G) coincides with the set of p-th
powers of the elements of . (Hint: The group G//(a}) has order p? and

is generated by elements of order p.)
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(ii) Asin Exercise 2.3, G' = (ag,... ,a,-1,a;") has exponent p. Then Q;(G) =
(" and, as a consequence, () is the set of the elements z € G such
that ¥ = 1. (Hint: Observe that Q(G) = (©;(M) | M is maximal in G).
Now the maximal subgroups of i are either (a;)G" or of the form (ba)G'.
Since o(a;) = p* and, as in the previous exercise, (ba{)p = b?, we derive
that |51(M)| > p for any maximal subgroup M of GG. Deduce from the
regularity of the maximal subgroups that Q;(M) = G’ and conclude that

N(G)=aG")
(iii) However, it follows from (i) and (ii) that |G : Q;(G)| # |O1(G)].

2.5. Let GG be a regular p-group and suppose that G = H[N] is a semidirect
product of two of its subgroups. Then Q;(G) = Q;(H)Q(N) and U;(G) =
U;(H)U;(N) for all ¢ > 0. (Hint: The inclusion Q;( H)Q,;(N) C Q;(G) is obvious.
In order to obtain the equality, prove that |Q;(H)Q;(N)| > |Q;(G)| by relating
the order of these subgroups with the indices of the “agemo” subgroups, taking

into account that G is regular.)
2.6. Let p be an odd prime.

(i) Prove that the group G' = (a,b | a?” = b”" =1, a® = a'*?) is a regular
p-group such that G/Q;(G) 2 U1(G). (Hint: Use Exercise 2.5 to find the
subgroups U;(G) and Q4(G).)

(ii) Prove that the group G = (a,b,c | a? = b? = ¢? =1, [a,b] = [a,d] =
1, b° = ba?) is a regular p-group such that G/U,(G) 2 O (G).

(iii) Prove that the group G = (a,b, ¢ | a?’ =bP =¢” =1, [a,b] = 1, a° =
a'*?, b° = baf) is a regular p-group such that G/U;(G) % Q;(G) and
G/ (G) 2 Uy(G).

It is not very difficult to prove that these groups are examples of minimum order

with respect to the properties stated. (Try it!)

2.7. In this exercise we prove that the direct product of two regular p-groups

need not be regular.
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i) Prove that the group G' = (a,b | a*" = b° = 1, a* = a*) is regular.
g g

(ii) Let Gy = (a1,b1) and G5 = (az,by) be two copies of (¢, and consider
the following two elements of Gy x Gy: © = bjas, y = aby. Check that
3y® = (zy)®ai. (Hint: Use Exercise 2.2 to prove that b°a® = (ba)*a® and
a®b® = (ab)® hold in G.)

(i) Let H = (x,y). Prove that a} ¢ U;(H’') and conclude that Gy x Gy is
not regular. (Hint: Prove first that [z,y] = a;%a3 and then derive that
H' = (a3, a3,a;’a3). Consequently Uy(H') = (a;%a3).)

3 From regular p-groups to p-groups of maxi-

mal class

3.1 A condition implying regularity

In this section we prove that any p-group G such that |G : Uy(G)| < pP~!
is necessarily regular. This result will be crucial in Lecture 4 when we study
the power structure of a p-group of maximal class of arbitrary order. We will
prove this regularity criterion by induction on the order of G and we need the

following lemma.

Lemma 3.1. Lel G be a p-group such that |G : U1(G)| < pP~'. Then |H :
U.(H)| < pP~! for any subgroup H of G.

Proof. If p =2 then |G : ®(G)| < |G : U1(G)] <2 and G is cyclic. Hence any
subgroup H of (¢ is also cyclicand |H : U;(H)| < 2. Let us now prove the result
when p > 2. By Theorem 1.4, we may assume without loss of generality that
H is maximal in (. Suppose, by way of contradiction, that |H : Uy (H)| > p?.
Again by Theorem 1.4, it is possible to choose a subgroup N < G such that
Ui(H)< N < Hand |H:N|=p".

By factoring out N we may suppose that |G| = p?*! and exp H = p. Then

any proper subgroup of G has order < p? and is consequently regular. It follows

from Theorem 2.14 that [U1(G), G] = U1(G") < U1(H) = 1. On the other hand,
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since |G : Uy (G)| < pP~tand p > 2, Corollary 1.16 yields that v,_1(G) < U, (G)
and we derive that v,(G) = [v,-1(G), G] < [64(G), G] = 1.
Hence (G has class less than p and it is a regular p-group. Then

|G O1(G)] = [ (G)] = [ (H)| = p?,
which is a contradiction. O

Theorem 3.2. Lel G be a p-group such that |G : Uy(G)| < pP~'. Then G is

reqular.

Proof. Again we may assume that p > 2. Let G be a counterexample of
minimum order. According to the previous lemma, the condition |G : U1(G)| <
pP~! is hereditary for subgroups. Thus all proper subgroups of G are regular.
It follows that we only need to check the regularity condition on elements z, y
such that G = (z,y).

Since |G : Uy(G)] < p?~' and p > 2, we have that v,_:(G) < U:(G). By
applying Theorem 2.14 we get that v,(G) < [01(G), G] = B1(G"). In particular,
the element ¢,(z,y) belongs to U1 (G') = Uy ((z,y)’) and G is regular. O

3.2 Irregular p-groups of minimal order

We have already seen in Section 2.3 of Lecture 2 that any p-group of order < p?
is regular. Next we see that there are irregular p-groups of order p?*! for any
prime p.

Let us see how the construction works. Let GG be the subgroup of X,

generated by the following permutations:

or=12...p),o=((p+1p+2...2p), ...,
op=(p—p+1(p—1p+2...p°

and

r=0p+1 ... (p—1p+1)2p+2 ... (p—1p+2)...(p2p ... p*).
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All these permutations have order p and

T __ T __ T _ T __
o] =0y, 0 =03, ...,0, | =0y, 0, =0]. (14)

Hence 7 normalizes the subgroup (oi,...,0,) and G has order p?*'. (This
proves, by the way, that GG is a Sylow p-subgroup of the symmetric group X,.
This group is also isomorphic to the wreath product of two cyclic groups of

order p.) Since the element
ror=1p+1 ... (p—Lp+12p+2 ... (p—1)p+23...) (15)

has order p?, the set {x € G| 2P = 1} is not a subgroup and consequently G is
irregular.”

Since p-groups of class < p are regular, an irregular p-group of order pP+!
has necessarily class p. This proves the following remark, that shows a first

connection between regular p-groups and groups of maximal class.

Remark 3.3. An irregular p-group of minimal order is a p-group of maximal

class.

We will devote the rest of these notes to the study of p-groups of maximal
class. As a result, we will obtain information on the power and commutator
structure (though in no way a classification) of the irregular p-groups of minimal
order.

We end this section with a refinement of Hall’s compilation formula for a
prime exponent. More precisely, we give an expression for the element ¢,(z,y).
Curiously, in the course of the proof it will be fundamental to work in the Sylow

p-subgroup of X ,» that we have introduced above.

Theorem 3.4. Let GG be a group and x,y € G. If p is a prime then the element

¢, = ¢y(x,y) of Hall’s compilation formula satisfies the congruence

¢ = [y, 2,070 2] HU?i (mod yp41((2,¥))), (16)

7

*Another example of an irregular p-group of order p?*! is the group in Exercise 2.4.
However, the Sylow p-subgroups of X2 are the most quoted example.
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where a = —1 (mod p), the a; are integers and each v; is a commutator of the

form [y, x, z3, ..., 2] such thal z; € {x,y} for all j and z; =y al least once.

Proof. Let H = (x,y). It follows from Exercise 1.10 that vo(H)/v3(H) is
generated by [y, z]ys(H). By applying repeatedly this exercise, we obtain that
Yo(H)/vp+1(H) is generated by the elements of the form [y, x, zs, ... , 2p]Vp+1(H)
with z; € {x,y}. This proves that ¢, satisfies a congruence such as (16). We
only need to check that a = —1 (mod p).

Let now G be the Sylow p-subgroup of ¥, defined above. As we mentioned
after the proof of Hall’s compilation formula, the element ¢,(z,y) may be con-
sidered as a universal expression in z, y (a word in z, y), valid in any group. So
we may analyse the value of a by studying the formula (16) in this particular
group for any couple of elements. We choose + = 7 and y = ;. According

o (14), the subgroup (oy,...,0,) is normal in (. Since this subgroup is also
abelian, it follows that any commutator in which o, appears at least twice must
be trivial. Hence v; = 1 for all i. On the other hand, G has order p?*! and

consequently v,+1(G) = 1. Thus (16) reads
cp(1,00) = [0, 7,27, )"
From (14) we get that
[on, 7] = 0702, (o2, 7] =055, ... Llop7T]=0,"0
and it follows easily that
ep(r,01) = (07" .. 0,77 0p)" (17)

for some integers n;. But, on the other hand,

1 =r1P0] = (Tal)pcgg) e

and we derive from (15) that 1 = 0y ...0,¢,, that is,

cp(ryo0) = (o1...0,)7". (18)
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By comparing the exponents of o, in (17) and (18), it finally follows that a = —1
(mod p), as desired.” O

The previous theorem will be essential in the study of the structure of the p-

groups of maximal class of order > pP*2, as we will see in Section 4.4 of Lecture

4.

3.3 Normal subgroups of a p-group of maximal class

We begin in this section the systematic study of the p-groups of maximal class.
The main reference in the theory of p-groups of maximal class is N. Blackburn’s
paper [1]. All the results about p-groups of maximal class that we present in
this and the next lecture are already present in Blackburn’s work, even if the
organization of the material and some of the proofs are different. It must be
noted that A. Wiman [28] had previously published a paper on p-groups of max-
imal class, and that he introduced some of the ideas that Blackburn developed
later on, but some of the conclusions that Wiman reached were unfortunately
erroneous. A more modern reference for the theory of p-groups of maximal class
is Section 14 of Chapter III in Huppert’s book [7]. Also, we want to acknowl-
edge the influence of the work of R.T. Shepherd [25] on some aspects of our
exposition of this subject.

The first result tells us that these groups have a very simple lattice of normal

subgroups.
Theorem 3.5. Let G be a p-group of mazximal class of order p™. Then:

(i) We have that |G : G'| = p* and |%(G) : 31 (G)| = p for2 <i<m —1.
Hence |G : vi(G)| = p* for2 <i < m.

(i1) Unless G is cyclic of order p*, we have that ®(G) = G’ and d(G) = 2.

*It is possible to use Exercise 2.2 to avoid some calculations in the final part of the proof
of this theorem. More precisely, instead of obtaining the value of [0y, 7,271, 7], it is enough to
compare the two relations between 7707 and (701)? that provide Hall’s compilation formula
and part (v) of Exercise 2.2. We recommend the reader to try to complete the details.
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(iii) The only normal subgroups of G are the v;(G) and the mazimal subgroups
of G. More precisely, if N is a normal subgroup of G of index p' > p?
then N = ~;(().

(iv) If N is a normal subgroup of G of index > p?* then G/N has also mazimal

class.
(v) Zi(G) = Ym—i(G) for 0 <0 <m —1.

Proof. (i) We have that
m—1
P =Gl =16 G H 17i(G) =Yg (G)].
=2

Now it suffices to observe that |G : G'| > p?, by Theorem 1.15, and that
|%:(G) s g1 (G)] > pfor 2 <i <m — 1.

(i1) We know that G' < ®(G), so part (i) yields that |G : ®(G)| < p*. If
|G : ®(G)| = p then G/®(() is cyclic and so G is also cyclic, of course of order
p*. Otherwise |G : ®(G)| = p* and, by Burnside’s Basis Theorem, d(G) = 2.

(iii) Let N be any normal subgroup of G and write |G : N| = p* with
0<:<m. Ifi=0o0r1then N =~/(G) or N is maximal in G. Otherwise
i > 2 and ;(G) < N by Corollary 1.16. Since |G : v;(G)| = p*, we conclude
that N = ;(G).

(iv) This is immediate from (iii) and (i), since the class of G//~;(G) is 1 — 1
whenever 2 <3 < m.

(v) By Theorem 1.15, we have that |G : Z,,_2(G)| > p*. Since |Z;11(G) :
Zi(G)] > pfor 0 <i<m—3and

m—3

p" =G =G Zna (D] ] 120 (G) : 2@,

1=0

all the inequalities above must in fact be equalities. It follows that |G : Z;(G)| =
p™~t for 0 <1 < m — 2 and, by part (iii), Z;(G) = vm_i(G). O
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3.4 Degree of commutativity of a p-group of maximal
class and the associated Lie algebra

A group of order p? is always abelian (recall Exercise 1.1) and therefore isomor-
phic to either C2 or C), x C,. The groups of order p* are also well-known. There
are only two isomorphism classes of non-abelian groups, which correspond to

Dg and Qg for p = 2 and to the groups

M, :<az,b|ap2 =b" =1, " = a'"?)

and
Ep = (a,b,c|a? =b" =c? =1, a° = ab, [a,b] = [b,c] =1)

for odd p. Thus there is no loss of generality if we only deal henceforth with
p-groups of maximal class of order > p*. In this case we may introduce the
characteristic maximal subgroup of the following definition, which plays a fun-
damental role in the development of the general theory of p-groups of maxi-

mal class. In the sequel, when G is a p-group of maximal class we will write

Gi = 7(G) for i > 2 and Gy = G.

Definition 3.6. Let G be a p-group of maximal class of order p™. We define
G = Ce(Gy/Gy) (the action of G on G3/Gy4 being induced by conjugation). In
other words, (7 is composed of the elements € GG such that [z, G5] < Gy.

If N is a normal subgroup of G such that |G/N]| > p?, it is clear from the
definition that (G/N);, = G1/N.

Theorem 3.7. Let G be a p-group of maximal class. Then Gy is a character-

istic maximal subgroup of G.

Proof. Let f € Aut G. Since (G5 and (4 are characteristic subgroups of ¢, we
have that

[f(z),Ga] = [f(x), f(G2)] = f([z,Ga]) < f(Ga) = Ga.

This proves that G is characteristic in G.
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On the other hand, since (¢ is the kernel of the action of G on GG3/Gy, the
factor group G'/G; embeds in Aut(Gy/Gy). But |Gy : G4| = p?, 50 Go/Gy = Cpe
or C, x Cp. In the first case, | Aut(Gy/Gy4)| = p(p — 1), while in the second
| Aut(Go/Ga)| = |GLz(p)| = (p* — 1)(p* — p). In any case, the highest power of
p dividing | Aut(Gy/Gy)| is p, so we deduce that |G : G| < p. If G; = G then
G5 = [G, Gy] = [G1,G4] < Gy4. This is only possible if Gz = 1, what contradicts
that |G| > p*. O

It follows that, with the notation introduced above, |G; : Gii1| = p for
0<:<m-—-1land G; =1 for:>m.

The invariant we introduce in our next definition may be considered as the
key to the analysis of the structure of p-groups of maximal class. It measures

to what extent the terms of the series {Gi}i21 commute with each other.

Definition 3.8. Let (G be a p-group of maximal class. We define the degree of
commutativity of G, which we denote by [(G) or simply by [, by means of

[(G) =max{k <m —2|[G;,G;] < Giyjpi for all i,7 > 1}.

It is clear that I[(G) = m—2 if and only if G} is abelian. In fact, [(G) = m —2
holds if and only if G has an abelian maximal subgroup: if M is maximal in
GG and abelian then G = G < M and [M,G;] = 1 < G4, whence M = G.
This is the case of the 2-groups Dym, S Dym and (Jom introduced in Exercise 1.7
and of the Sylow p-subgroups of X,.. The p-groups of maximal class with an
abelian maximal subgroup were completely classified by A. Wiman in [27] and
the number of them is 2 4+ (m — 2,p — 1). Hence we may assume, whenever it
is convenient, that [(G) < m — 2.

On the other hand, since the factor group G;/G;4q is cyclic, we have that
(G, Gi] =[Gy, Giga] for all i. In particular [Gy, G1] = [G1, G3] and consequently
the equality I(G) = m — 3 never holds. Also, if |G| = p* then [G,Gy] =
[G1,Gs] < Gy =1, hence (G is abelian and I(G) = 2.

*If G is any group and N is a normal subgroup of G such that G/N is cyclic, then
G' =[G, N]. Tt suffices to observe that G/[G, N] is abelian.
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We know that the terms of the lower central series of any group G satisfy
the condition [v;(G),v;(G)] < 74i4;(G) for all ¢, j. Therefore [(G) > 0 for any

group of maximal class.
Definition 3.9. A p-group of maximal class is called exceptional if [(G)) = 0.

We will see that this name is appropriate for this type of groups: they can
only exist under restrictive conditions on the order of the group.

The following result is straightforward.

Theorem 3.10. Let G be a p-group of maximal class of order p™ and let N
be a normal subgroup of G of order p* < p™~*. (Therefore |G/N| = p™~* > p?
and it makes sense to speak about the degree of commutativity of G/N.) Then
either (G/N) =m —t =2 or [(G/N) > I(G).

We have already indicated that the Lie ring L(() associated to a nilpotent
group G' can be a very useful tool for studying the commutator structure of
the group. However, if (G is a p-group of maximal class of order p™, most of
the information about commutation in G is lost when passing to L(G). For

instance, if [(G) > 1 then
G1/7(G) & (Siz2 Li)

is an abelian maximal ideal of L((), while (¢ only has an abelian maximal
subgroup when [(G) = m — 2. Hence, the standard Lie ring associated to
the lower central series has no interest for the study of the group G in that
case. Clearly, the loss of information is due to the fact that, for 7,5 > 2, the
commutator of an element of ;(() with an element of v;(() lies in a subgroup of
the lower central series posterior to its “natural destination”, which is v;1;(G):
in fact, at least in v;4;4:(G), where I = [((). This suggests a modification in the
definition of the associated Lie ring, by allowing the degree of commutativity
to play a role in the Lie commutators. More precisely, we may consider the
abelian group L£(G) = @;»0 Li, where £; = (;/Giy1 and define on it a product

[, | by giving the following commutators between homogeneous elements: if
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r € G; and y € G then

[$Gi+17ij+1] = [I7y] e 1 Z ) o
[, y|Gigjpip1, ife,7>1.

It can be checked, in the same way as for L(G), that £(() is a Lie ring. In fact,
since pa = 0 for any a € L((G), it is a Lie algebra over F, of dimension m. It
is clear that £L(G)F = Y,5, L; for any k£ > 2 and therefore £(G) is nilpotent of

class m — 1, in other words, a Lie algebra of maximal class.

Definition 3.11. We say that £(G) is the Lie algebra associated to the p-group

of maximal class G.

3.5 Uniform elements

Let GG be a p-group of maximal class of order p™. In the same way as we have
defined in the previous section the subgroup Gy = Cg(G4/G4), we may consider
more generally the so-called two-step centralizers Cq(Gi/Giyz) for 1 < @ <
m—2. As happened with GG, all these subgroups are characteristic and maximal
in G. Since [G,G4] = [Gh,Gs] < G4, we have that Cq(G1/G3) = Gy and,

consequently, it is enough to consider the two-step centralizers for 2 <1 < m—2.

Definition 3.12. Let G be a p-group of maximal class of order p™. We say
that s € G is a uniform element if s € Ur5? Ca(G )/ Gita).

The first question that arises is whether any p-group of maximal class has
uniform elements, that is, whether it is true or not that G' # U7, C(Gi/Gita)-
It turns out that this property always holds, as was shown by Blackburn, but
this will not be completely established until Section 4.4 in Lecture 4. However,
we can make some considerations at this moment.

First of all, observe that, by the Correspondence Theorem, G may be written

as the union of certain maximal subgroups of G if and only if the union of the

*A Lie ring L is said to be nilpotent if L* = 0 for some k. If L is a nilpotent Lie algebra
of dimension m > 2 over a field K, then dim L/L? > 2 and consequently the nilpotency class
of L is at most m — 1.
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corresponding subgroups in G'/®(() is also the whole group. But the group
G/®(G) = C, x C, has exactly p + 1 maximal subgroups and they are all
necessary if we want to decompose G/®(() as a union of maximal subgroups.
This proves that G has a uniform element if and only if the number of different
two-step centralizers Cq((;/Gi42) is at most p.

On the other hand, it is possible to derive the existence of uniform elements
from properties about the degree of commutativity of G. For example, if [(G) >
1 then [G,G;] < Gigq for all 7 > 1 and all the two-step centralizers coincide with
(G1, what proves that uniform elements exist under that assumption. Actually,
it suffices to suppose that [(G/Z(G)) > 1. In that case, since Z(G) = G,,_1 by
Theorem 3.5, it easily follows that [G, G;] < Giyo for 1 <i < m — 3 and there
are at most two different two-step centralizers, GG and Cg(G—2).

In fact, Blackburn showed the existence of uniform elements simultaneously
with some properties about the degree of commutativity. More precisely, he

proved the following theorem.

Theorem 3.13 (Blackburn’s Theorem). Let G be a p-group of mazimal
class of order p™. Then the following statements hold:

(i) If I(G) =0 thenp > 5, m is even and 6 <m < p+ 1.
(i) (G/Z(G)) > 1.
(iii) G has uniform elements.

The proof of this theorem has been split into several sections in the next
lecture and it requires showing first some structural properties of the p-groups
of maximal class, which are also interesting for themselves.

Parts (i) and (ii) in Blackburn’s Theorem justify the term “exceptional
groups” that is used for the groups with degree of commutativity zero. On the
other hand, it is shown in Exercise 3.6 that, for any p > 5and 6 <m < p+1,
m even, there exist p-groups of maximal class of order p™ satisfying [(G) = 0.

Note that the condition in part (ii) of Blackburn’s Theorem only makes
sense if |G| > p°. With the purpose of not increasing unnecessarily the length
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of the statements of the theorems, we will always omit from them this kind of
obvious conditions.

We may ask: why is so important the existence of uniform elements in the
p-groups of maximal class? This will be clear in the light of our next theorem
and also in Section 4.1 in the following lecture where, assuming that there exist
uniform elements, we develop a set of tools which are fundamental for any study

of the p-groups of maximal class. First we need a lemma.

Lemma 3.14. Let G be a p-group of mazximal class of order p™ and suppose
that G has a uniform element s. If 1 <1 < m —2 and x € G; — G441, then
[S,ZL’] € Gi—{—l — GH_Q.

Proof. Since = € G, it is obvious that [s,z] € G;1; and we only have to
prove that [s,z] € Gjy1o. Suppose on the contrary that [s,z] € Gipa. If we
write G = (G/Gitz, this means that 5 and T commute in G. We also have
that [s,Giy1] < Gipe or, what is the same, that 5 centralizes Gi,,. Since
Gi = (x,Giy1) (recall that |G; @ Gipq| = p), it follows that S centralizes G,
Then [s,G;] < Giyg and s € Cg(G;/Gi2), what contradicts that s is a uniform

element. O

Theorem 3.15. Let G be a p-group of maximal class of order p™ and suppose
that G has a uniform element s. Then the following properties hold:

(i) Cals) = (s)Z(G).
(i) s? € Z(G) and consequently o(s) < p* and |Cq(s)| = p*.
(iii) The conjugates of s are exactly the elements in the cosel sG3.

(iv) For 0 <t < m —4, the subgroup H = (s,G111) is a p-group of mazimal
class of order p™~" and such thalt H; = G,y for every i > 1. Hence, either
I(Hy=m—1t—=2orl(H) > I(G) +t.

Proof. (i) Let g be any element of (7. Since GG = (s)(;, we may write g = s'z,
where 1 € Z and z € (1. Then g € Cg(s) if and only if [s,z] = 1. But,
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according to the previous lemma, if z € G; — G4 with 1 <1 < m — 2 then
[s,2] € Giy1 — Giyo and, in particular, [s,z] # 1. It follows that z € G,,,_1 =
Z(G). Hence Cg(s) = (s)Z(G).

(ii) In the proof of (i) we have actually seen that Cg, (s) = Z(G). Since
s? € (4 commutes with s, it follows that s? € Z(().

(iii) The size of the conjugacy class of s in G is |G : Cg(s)| = p™~2 = |sGy.
Since any conjugate of s, say s¢ = s[s, g|, belongs to sG5, we deduce that the
elements in the coset s(G are precisely the conjugates of s.

(iv) There is nothing to prove if ¢ = 0, so let us assume that ¢ > 1. It is
clear from part (ii) that |H| = p|Giy1]| = p™~'. By applying repeatedly Lemma
3.14, for any = € G441 — Gy we have that

(2,807 8] € Gigy — Gigepr for2<i<m—1t—1. (19)

In particular, for « = m —t — 1 it follows that 1 # [z,s,™7 172 s] € yu—t—1(H)
and H has maximal class. In order to prove that H; = G;;;, we suppose
first that ¢« > 2. From (19) we have that H; has an element in the difference
Gitt — Gigeq1. By using this property not only with H;, but also with any H;
contained in H;, we derive that H; has elements in all the differences G — G414
fori+t <k <m—1. Consequently GG;1; < H; and, since both subgroups
have the same order, the equality follows. On the other hand, [Gi41, Hy] =
[Giy1, Giga] < Goys < Gipq = Hy and we obtain that Hy = Gyyq. Finally, if
[ = I(G) then [H;, H;] = [Gigs, Gigs] < Gigjyrpn = Hiyjyrqe for any 4,5 > 1
and therefore either [(H)=m —t —2or [(H) > [(G) + 1. O

Of course, once Blackburn’s Theorem is proved, there will be no need to

assume the existence of s in the statement of the previous theorem.

Exercises

3.1. Let G be a (not necessarily finite) group of exponent p. Let z, y be
elements of GG and define H = (z,y).
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(i)

(i)

(iii)

(iv)

Show that the Lie ring L(H) associated to the lower central series of H is

an algebra over F,.

Consider the elements v = #G’,v = yG' € L; and prove that there exist

integers a; such that
—[v,u, P77 u] + Z a;w; =0, (20)

where the w; are Lie commutators of the form [v,u, z3,... ,2,] with z; €
{u,v} and at least once z; = v. (Hint: Hall’s compilation formula for z?y?

yields that ¢,(z,y) = 1. Use then Theorem 3.4.)

For any A € F;, substitute Au for v in (20) and then sum all these expres-

sions to derive that
[v,u, 27 u] = 0.

(Hint: For 1 < r < p — 1, the sum S = ZAeF; A" equals zero, since

oS = S for any a € F; and, in particular, for a generator of F;.)

Deduce that [y, 2,77} 2] € v,41(H). This is known as Zassenhaus’ iden-
tity. In particular, a group of exponent p and class p satisfies the identity

ly,z, 77 z] = 1.

3.2. Let G be a regular p-group of class p such that exp G’ = p. Check that,

with minor modifications, the argument in Exercise 3.1 shows that ' satisfies

the identity [y, z,?7!, 2] = 1. (Hint: The point is that ¢,(z,y) = 1.)

3.3. Let GG be a 2-group of maximal class. In this exercise we prove that GG has

a cyclic maximal subgroup by induction on the order of G.

(i)

Observe that the result is straightforward if |G| = 4 or 8. (When |G| =8
you may just use the classification of the groups of order 8 or otherwise

recall that any group of exponent 2 is abelian.)
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(i1) Suppose now that |G| = 2™ > 2%, By induction there exists a maximal
subgroup M of G such that M/Z(G) = (a) is cyclic. Then for any g €
we can write af = a'z, where 1 € Z and z € Z((G). Deduce that (a*) < G
and consequently that Z(G) < (a*). Thus M = (a) is cyclic, as desired.

3.4. The aim of this exercise is to construct for any prime p and any m > 3 a

p-group of maximal class of order p™ with an abelian maximal subgroup.

(i) Let H be the abelian group defined by generators {s; | i > 1} subject to
the relations

b (0 C)

iSitt Sy = L for 1 <o <m —1; s; =1, fori > m.

Prove by induction on m that |H| = p™~'.

(ii) Prove that the map s defined by s; — s;5,41 extends to an automorphism
of order p of H, and that the semidirect product G = (s)[H] is a p-group

of maximal class. Which is this group in the particular case p = 27

3.5. Let G be a p-group of maximal class of order p”. Show that the Lie rings
L(G) and L(G) are isomorphic if and only if [(G) = 0 or m — 2.

3.6. Let p > 5 be a prime and suppose that 6 < 2r < p + 1. In this exercise

we construct an exceptional p-group of maximal class of order p?”.

(i) Let A = (ay,...,a,) be an elementary abelian group of order p". Prove
that the group B formed by the automorphisms of A that act trivially on
(a,) and on A/{a,) is elementary abelian of order p"~'. (Hint: Represent

the automorphisms by matrices.)

(ii) Define automorphisms by, ... ,b._; € B by means of

(o ()
1—1
(IE')J — a’ia‘T L]

a;, ife>r—j.

ifl1<i<r—y;

Prove that these automorphisms form a basis of B. (Hint: Observe that

the corresponding matrices are linearly independent.)
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(iii) Let us consider the semidirect product H = B[A]. Prove that the map s
defined by

s -1 : s s
ai =aia;, (1<i<r—2), a_ =a_1, a =a,

b =bibiy (1 <i<r—2), by =b_iaj,

extends to an automorphism of H of order p.

(iv) Prove that the semidirect product G = (s)[H] is an exceptional p-group

of maximal class of order p*".

4 The proof of Blackburn’s Theorem

4.1 Chains and the associated function «

If s is a uniform element of a p-group of maximal class G and s; € G — (s,
it follows from Lemma 3.14 that [s1,s] € Gy — G3, [s1,8,5] € Gz — G4 and
continuing this way we obtain elements in every difference G; — Gi41. This

suggests the following definition.

Definition 4.1. Let GG be a p-group of maximal class, s € G a uniform element
and s; € GG; — (. If we define recursively s; = [s;_1, s] for every 1 > 2, we say

that the sequence of elements {s, sy, s2,...} is a chain in G.

Of course, the existence of chains in G is equivalent to the existence of
uniform elements. On the other hand, if {s,s,55,...} is a chain in G and G is
a quotient of G of order > p*, then {5,5;,5,,...} is a chain in G: it suffices to
check that 5 is a uniform element of G.

Sometimes it will be convenient to represent the uniform element by sq,
so that the chain is simply denoted by {s;}. Then s; € G; — G4 for all
0<i<m-—1lands; =1fori>m. Let!=1[(G). For any couple of indices

2,7 > 1 such that : + 5 + 1 < m — 1, we may write

[si283] = s (mod Gigjyig) (21)
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for some integer «(i,7) which is uniquely determined modulo p and, conse-
quently, can be considered as an element of F,,. This way, we obtain a function
a : {(,5)eN?|i+j<m-I1-1} — T,
(4,7) — a(i,j).
Observe that we need to impose the condition [(G) < m — 2 if we want the
domain of this function to be non-empty. Since G; = (s;, Git1), G; = (sj,Gjt1)
and [G;, G, [Git1, Gj] < Gigjyig, it is clear from the congruence (21) that
a(z,7) = 0 if and only if [}, G;] < Giyjti41- Then the definition of the degree
of commutativity assures that the function « is not zero.

This function a we have just introduced associated to the chain {s;} turns
out to be a fundamental tool in the study of the p-groups of maximal class. It
satisfies a number of properties that reflect the commutator and power relations
among the elements s;. The quickest way to obtain most of these properties
is by working in the associated Lie algebra L£((G). More precisely, if {s;} is
a chain in G, we may consider the elements ¢; = s;G;1 in L(G). It is clear
that (eg,€1,...,€m—1) is a basis of L(G) and that e; = 0 for 1 > m. Then the
congruence (21) and the definition of the Lie product in £(G) yield that

[eiaej]:a(iv.j)ei-i-j-l-la for Zv.]Z 17i+j§m_l_17

so that the values (i, j) determine the structural constants of the Lie algebra
L(G) with respect to the basis (eq,...,€m,-1), since the rest of the products
among the elements ¢; either are of the form [e;, 9] = €,41 or equal zero.

On the one hand, the Lie product in £(() is alternating, so a(z,1) = 0 and
a(t,7) = —a(y,1) whenever these values are defined. On the other hand, if

t,7 > 1 then the Jacobi identity applied to the elements eq, e; and e; yields that

0 = [eo, €, 5] + [ei, €5, eq] + [e), €0, €] = [—eiy1, €] + [ali, J)eiyjq1, €0] + [€j41, €i]
= —a(i + 1,7)€irjr141 + i, 1) eirjrip + alf + 1,0) €104,

and consequently

a(t,j))=ali+1,5)+ali,j+1), fori+j<m-—1-2. (22)
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Similarly, from the Jacobi identity for e;, e; and e (7, 7,k > 1) we obtain that

a(t,Na(i + 5+ 1L,k)+a(j,k)a(j+Ek+1,i)+alk,i)a(k+i+1,7) =0,
foro+7+k<m-—20-1.

Observe also that (22) gives that a(7,i4+1) = a(i+1,i4+1)+a(i,i42) = a(i,1+2)
whenever these values are defined.

There is one more property that the function « fulfills: it is periodic in its
two components, with period p—1. This is a consequence of the power structure
of G and we must postpone its proof until Section 4.4. Nevertheless, we include
this property in the statement of the following theorem, in order to collect in it

the main properties of the function a.

Theorem 4.2. Let G be a p-group of mazximal class of order p™ and degree of
commutativity [ < m — 2. Suppose that G has a chain and let o be the function
associated to this chain. Then the following properties hold:

P1. o #0.

P2. a(i,1) =0 for2i <m —1—1.

P3. a(i,5) = —a(y,1) fori+j <m—1—1.

P4. a(i,j)=a(i+ 1,j)+ali,j+ 1) fori+j<m—1-2.
P5. a(i,i +2)=ai,i+1) for2e <m —1[—3.

P6. If we write J(i,7,k) = a(i,))a(t+ 7+ LK)+ a(j,k)a(j+Ek+1,1) + a(k,i)
alk+i1+1,9), then T(i,j,k) =0 fori+j5+k<m-—2—1.

P7. afi,j)=oli+p—1,5) = ali,j+p—1) fori+j <m—1—p.

Note that all the restrictions that apply to ¢, j and & in the above properties
have the only purpose of assuring that all the values of the function « involved
are actually defined. On the other hand, it is clear from P2 and P3 that, in
order to determine the function a, it is enough to know the values a(z, j) with

i < j (or, alternatively, with 7 > 7). Next we refine property P1.
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Theorem 4.3. Let G be a p-group of mazximal class of order p™ and degree of
commutativity [ < m — 2. Suppose that G has a chain and let o be the function
associaled to this chain. Then there exists some j € {1,... ;m—1—2} such that
a(l,7) # 0. In other words, there exists some j such that [G,G;] = Gy # 1.

Proof. Suppose that a(1,7) = 0 for all j. If we write property P4 in the form
a(t,j) = a(i — 1,7) —a(t — 1,5 + 1), it readily follows by induction on ¢ that
a(2,7) = 0 for all possible ¢ and j, which is impossible according to P1. O

Remark 4.4. In fact, once we have proved the periodicity claimed in property
P7, we may even assert that there is some j € {2,... ,p—1} such that (1, j) #
0. (Take into account that a(1,1) = 0 by property P2.)

The key to the proof of the previous theorem has been the recurrence relation
provided by property P4. This relation may also be used in order to obtain any
value a(t, j) from the particular values of the form a(r,r + 1), as we see in the
following theorem, due to Shepherd [25]. The proof of this theorem is easier to
write if we extend the definition of the binomial coefficients (Z) to all n,k € Z

as follows:

nn—1)...(n—k+1) CES 1

n k! ’
[ if k=0;

0, if k < 0.

These generalized binomial coefficients still satisfy the property (Z) + (kil) =
(Z_ﬁ) On the other hand, it is clear that (Z) = 0 for 0 < n < k and that

(1= (") forn >0

Theorem 4.5. Let G be a p-group of mazximal class of order p™ and degree of
commutativity [ < m — 2. Suppose that G has a chain and let o be the function

associated to this chain. If we write x, = a(r,r + 1) then

[(+i=1)/2] Vit
ali,j)= Y (—1)7"—2( Ny ):c fori<j. (23)
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Proof. By using generalized binomial coefficients, we may write (23) in the

form
i g—r—1
ofi,j) = Z(_l)r_( r—i > o

(This way, it is possible that some of the z, are not really defined because
2r+1 > m — [ — 1, but this is irrelevant, since the corresponding coefficients
are zero.) We prove the theorem by induction on j —i. When 5 —¢ =1 or 2

the result is immediate. In the general case, we have that

a(i,))=a(i,j—1)—a(i+1,5 — 1)

S (e S (-

— . r—1—1
7—2 7=2 .
g —r—=2 [y —r—=2
— 17”2 , 17”2 ] .
S () e e ()
Jj=2 7—1
_ifi—r—1 _if7—r—1
— 17”2 7,,: 17”2 e
Tzz;( ) ( r—1 )x T:Z( ) ( r—1 )x
as desired. O

We want to remark that, as soon as we prove the existence of uniform
elements, we will be able to remove the hypothesis that G has a chain from the

previous theorems.

4.2 Proof of Blackburn’s Theorem for |G| < p?*?

The goal of this section is to prove the following theorem, which is just Black-

burn’s Theorem for the p-groups of maximal class of order less than or equal to

pPte,
Theorem 4.6. Lel G be a p-group of mazimal class of order p™ < pP*2. Then:

(i) G has uniform elements.

(ii) IfI(G) =0 then p > 5, m is even and 6 < m < p+ 1.
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(i) ((G/Z(G)) > 1.

Proof. (i) The number of different two-step centralizers C(G;/Giy2) is at most
m —3 < p—1. Hence G cannot be the union of these centralizers and there
exist uniform elements.

(ii) First of all, recall that /(G) = 2 when |G| = p*. Next we prove that if
m is odd then [(G) > 1, by induction on m. Note that, according to part (i),
it is possible to choose a chain in G and consequently we may work with the
associated function a.

Suppose that m = 5. If [(G) = 0 then the condition [Gy, (] < Gy yields
that «(1,2) = 0. By property P5, we also have a(1,3) = 0. But these values
of a contradict Theorem 4.3 and hence [(G) > 1 in this case. This proves
in particular that, under the assumption that |G| < p?*2, I(G) = 0 can only
happen for p > 5.

Suppose now that m = 2n 4+ 1 > 5 and {(G) = 0. By the induction hy-
pothesis, we have that [(G/G,,—2) > 1. This means that [G;,G;] < Gy 41 for
1+ 7 <m — 3 and consequently

a(t,j)=0 fori+j5<m—3. (24)
On the other hand, property P6 yields that J(1,2,m —4) = 0, that is, that
a(l,2)a(3,m —4) + a(2,m —4)a(m —2,1) + a(m — 4,1)a(m — 3,2) = 0,

and we deduce from (24) that o(1, m—2)a(2,m—4) = 0. By using Theorem 4.5
and taking into account (24), we obtain that a(l,m —2) = (=1)""%(n — 1)z,_1
and a(2,m —4) = (—=1)"3z,_;. Hence (n — 1)z2_, = 0. Now the condition
m < p+2 assures that n—1 # 0in F,, so we necessarily have that z,,_; = 0. But
then z, = 0 for all r and, again by Theorem 4.5, we reach the final contradiction
that a = 0.

What we have proved allows us to conclude that if [(G)) = 0 then p > 5, m
iseven and 6 < m < p+ 1.

(iii) Since |G/ Z(G)| = p™~', if m is even then part (ii) yields that [(G/Z(G)) >
1. Suppose otherwise that m is odd. Then [(G) > 1 and, since we know from
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Theorem 3.10 that either I(G/Z(G)) = m — 3 or [(G/Z(G)) > I(G), we have
that I[(G/Z(G)) > 1 also in this case. O

4.3 Power structure

We begin to examine the power structure of a p-group of maximal class when

its order is < pP+l,

Theorem 4.7. Let G be a p-group of mazimal class of order less than or equal

to pP*t. Then exp G/Z(G) = exp Gy = p.

Proof. We know that GG has p + 1 maximal subgroups. Since the number of
different two-step centralizers Cq(G;/Gi42) is at most m—3 and m < p+1, there
are at least two maximal subgroups M and N of G which are not of that kind.
Consequently we may choose uniform elements s € M and ¢t € N. Since |G :
®(G)| = p?, s and ¢ generate G modulo ®(G) and, by Theorem 1.5, G = (s, ).
On the other hand, we obtain from Theorem 3.15 that s*.t* € Z(G). Thus
(//Z(() can be generated by two elements of order p. Since |G/Z(G)| < p?,
this quotient is regular and it follows from Corollary 2.11 that exp G/Z(G) = p.

In particular, we have that U;(Gq) < U;(G) < Z((G). Since Gy has order
< p? and is consequently regular, we derive that |G : Q1(Gy)| = |01(Gh)| < p.
It follows that |G : Qi(Gy)| = |G : G1||Gy : Qi(Gy)| < p* and, since Q;(G;) <
(¢, Theorem 3.5 proves that G3 < Q(G1). Again by the regularity of Gy, we
conclude that exp Gy = p. O

In our next theorem we specify the power structure of the p-groups of max-
imal class of order > p?*2. As will be clear in the proof of the theorem, this
structure is completely determined from the information about the groups of
order pP*?, a case that is dealt with in the following lemma. We recall that,
according to Theorem 4.6, if (G is a p-group of maximal class and |G| = p?*2,

then it is possible to consider a chain in G.

Lemma 4.8. Let G be a p-group of maximal class of order p?*% and let {s;}
be a chain in GG. Then the following statements hold:
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(ii) B1(Gh) = G,.

Proof. (i) By Hall’s formula we have that sfs} = (s¢s1)?¢c, (mod Uy(Gy)). If
we apply Theorem 4.7 to the group G/G,41, it follows that exp Gy/Gppr =
p and consequently U1(G3) < Gpp1. So the previous congruence also holds
modulo G,41. On the other hand, sq is a uniform element and Theorem 3.15
vields that s§ € Z(G) = Gpy1. Furthermore, we know from Theorem 4.6 that
[(G) > 1 and therefore any element in GG — (&1 is uniform. In particular, sos; is
a uniform element and also (sgs1)? € Gp41. Thus we get the congruence s} = ¢,
(mod Gipq1) and (i) will be proved if we see that ¢, = s;! (mod G/pq1). At this

point Theorem 3.4 is fundamental: it says in this case that

=5, H v (mod Gpyq),
where each v; is a commutator of the form [sy, 59, 23,... , z,] with z; € {sq, s1}
and at least one z; equal to s;. Since I[(G) > 1, it follows that v; € G4 for all
i and consequently ¢, = 57" (mod Gpq).

(i1) Part (i) proves that s} ¢ G411 and, in particular, §1(G;) £ G,41. On the
other hand, by applying Theorem 4.7 to GG/, 41 we obtain that exp G/G, = p
and therefore U;(G1) < G,. Since U1(Gh) is a normal subgroup of G, we
conclude that U,(Gh) = G,. O

Theorem 4.9. Lel G be a p-group of mazimal class of order p™ > pP*2. Then
the following statements hold:

(i) Gy is regular.
(i1) U1(G;) = Gigpy for all i > 1.
(iil) If1<e<m—pand x € G; — Giyq then 2¥ € Giyp1 — Giyp.

Proof. (i) If we apply the previous lemma to the quotient G/G,12, we get
that U1(G1/Gps2) = G,/Gpy2 and therefore U1(G1)Gp1e = G,. Since Uy (Gh)
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is normal in G, it follows that U,(Gy) = G, and |Gy : U;(Gy)| = p?~'. Then
Theorem 3.2 proves that Gy is a regular p-group.

(ii) Since G is regular, we have that [Q;(G})| = |Gy : U1(Gy)| = pP~.
But ©,(G4) is normal in G, so necessarily Q,(G4) = Gu_pt1. Also, this group
has exponent p, again by the regularity of (G;. This proves in particular that
U1(G;) = Gigp—y for i > m —p+ 1. Now if t < m —p+ 1 then Q,(G1) < G;
and consequently Q(G;) = Q4(G). Since G is also regular, |G; : U (G))] =
| (G;)| = pP~! and we conclude that Uy (G;) = Giypor.

(iii) Let € G — Gi41. We know from part (ii) that =¥ € G;4,—1. Suppose
by way of contradiction that = € G;4,. Since U1(Giq1) = Giyp, we have that
Gi/Giyp = (T,Giyy) is a regular group generated by elements of order p. It
follows from Corollary 2.11 that exp (; /Gy, = p and therefore U1 (G;) < Gigyp.
This is a contradiction with (ii). O

4.4 Proof of Blackburn’s Theorem for |G| > p?*?

Thanks to the knowledge of the power structure of the p-groups of maximal
class of order > p?*%, we can now proceed to the proof of Blackburn’s Theorem

in this case, which is stated as follows.

Theorem 4.10. Let G be a p-group of mazimal class of order greater than or
equal to pPT2. Then:

(i) G has uniform elements.

(i) 1[(G) > 1.

Proof. (i) We are going to prove by induction on 7 > 1 that [G,G;] < Giys.
Then all the two-step centralizers Cq(G;/Giyqe) coincide with G4 and G has
uniform elements.

By Theorem 4.6, we have that [(G/G,12) > 1 and consequently [Gy, G;] <
Gy for 1 <12 < p. On the other hand, if 7 > p then

(G, Gi] = [G1, 01(Gizpt1)] = Bi([Gr, Gimpia]) S O1(Gimpya) = Giya,  (25)
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where we have used the induction hypothesis and Theorems 4.9 and 2.14.

(i) Let us suppose that [(G) = 0. By part (i) we may consider a chain in
(¢ and its associated function a. As seen in the proof of (i), we have [, G;] <
(42 for every j and this means that a(1,j) = 0 for all possible j. This is a

contradiction with Theorem 4.3. O

We have developed the theory of p-groups of maximal class in a way that the
proof of Blackburn’s Theorem for |G| > p?*? relies on determining the power
structure of these groups, what in turn depended on Blackburn’s Theorem for
the case that |G| < pP*2. It is possible, however, to provide a proof of both
Theorem 4.10 and the power structure of the p-groups of maximal class of order

P*2 as is shown by A.

> pP*? without studying first the groups of order < p
Mann in his paper [19]. Nevertheless, if we aim at presenting a completely
developed theory of the p-groups of maximal class, as is our case, the quickest
way of obtaining Theorem 4.10 is the one chosen in these notes.

Now we are in a position so as to prove property P7 of the associated function

a. The key to it is that the powers s, which according to Theorem 4.9 belong

to Giyp—1 — Giyp, may be determined modulo G4,.

Theorem 4.11. Let G be a p-group of mazximal class of order greater than or

equal to pP*?. Consider a chain {s;} in G and lel « be its associaled function.

Then:

(i) s? =s3! (mod Giyp) for all v > 1.

7 i+p—1
(1) ali,j) = ali+p—1,j) =ali,j+p—1) fori+j <m—1I—p.

Proof. (i) Let G = G/Gp4q. Then {5} is a chain in G and, by Lemma 4.8, we
have that 5] = 5! (mod Gp41). It follows that s} = 57! (mod Gpy1) and the
case ¢ = 1 is already proved.

Suppose now that + > 2. According to Theorem 3.15, so and sgs; are

conjugate in (G: there exists g € G such that sgs; = sg. Then

(s0si)" = (s)" = (s0)” = sg,
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since s5 € Z(G). It follows from Hall’s compilation formula that s = ¢,
(mod Uy (H')), where H = (sg,s;). Since H' < G4y and Uy (Giy1) = Gigp by
Theorem 4.9, we derive that s = ¢, (mod G,4,). We may now argue as in the
proof of part (i) of Lemma 4.8 to obtain that ¢, = 32'_+1p_1 (mod Gy,). This
proves that the result holds.

(i1) Let us express the commutador [s?, s;] in two different ways. On the one
hand,

._ps,_lspsj — Sfp(séj)p_

[S‘?,S]'] =5 7 % 7 7

We deduce from the regularity of Gy that [s?, s;] = [s;, ;)7 (mod U1(H')), where

H = (s7',5”). Since H = (s;,[s;,s;]) and these two generators commute

modulo Gt jti141, it follows that H' < Gi4;4141 and, consequently,

[8?7 Sj] = [Si, S]‘]p (HlOd Gi—}-j-l—l-i—p)-

a(i,j)

By the definition of a(7,j) we have that [s;,s;] = s;,y) (mod Giyjyig) and,

using again that GGy is regular, [s;, s;]? = sf_fj(fl)

from part (i) that

(mod Gt jt14p). We conclude

—OZ(Z,])

P "
i+i+Hl+p—1 (mod Gitjtisp)-

[sf)s;] = s

On the other hand, sf = s;! | (mod Giy,) and therefore

o ) e
(s, 53] = [si7hmrs 851 = [Siep1, 8517 = 5019 (mod Gigjaien)-

(All the congruences above are easy to justify. Try to do it.)

If we now compare the two expressions we have obtained for [s?, s;], it follows
that a(t+p—1,7) = a7, 7). Finally, taking into account property P3, a(i, j +
p—1) = —a(j+p—1,i) = —a(j,i) = ai, ). =

Exercises

4.1. Let G be a p-group of maximal class of order p?*+1,
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(i) Prove that G is irregular and, as a consequence, that all p-groups of
maximal class of order > pP*! are irregular. (Hint: Let s be a uniform
element of G and s; € Gy — (5. Then [sy, 5,771, s] # 1. This means that

(i does not fulfill one of the conditions in Exercise 3.2.)

(i1) Deduce that |0:(G)| = p and exp G = p*. Is it true that Uy(G;) = Giypt
for all ¢« > 17 (Hint for the question: See what happens with a Sylow
p-subgroup of ¥,2.)

4.2. Prove that a Sylow p-subgroup of X, cannot be a quotient of a p-group of
maximal class of order > pP*'. (Hint: Suppose that G has maximal class and
order > pP*! and that H = (/N is isomorphic to a Sylow p-subgroup of ..
What is then the power structure of H;?)

4.3. Prove that a p-group G has maximal class if and only if G has an element
with centralizer of order p?. (Hint: In order to prove the “if” part, argue by

induction on the order of GG and take into account Exercise 1.2.)
4.4. Let G be a p-group of maximal class of order p™.

(i) Prove that G has at most two different two-step centralizers: (; and

Ca(Grm—2). Moreover, Gy # Cg(Gp_s) if and only if I(G) = 0.

(ii) Show that any maximal subgroup H of ¢ different from GGy and C(G,—2)

is again a p-group of maximal class and that H; = ;1 for all > 1.

4.5. Let GG be a finite p-group. In this exercise we show that the condition
that G//~,41(G) is a group of maximal class suffices to assure that G is also a
group of maximal class. For this purpose, we suppose that for some k > p + 1
the quotient GG/vx(G) has maximal class and prove that G'/y44+1(G) has also

maximal class.

(i) By factoring out vyx41(() we may assume that v,41(G) = 1 and v (G) # 1.
Prove that () has order < p* and exponent p. (Hint: Use Exercises
1.10 and 1.11.)
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(ii) Suppose that p > 2. Then we may take a chain {s;} in G/v(G). Prove
that, for any subgroup N of G such that |y4(G) : N| = p, G/N is a group
of maximal class such that [(G/N) > 1 and deduce that [s;_q,s;] = 1.
Conclude that |y;(G)| = p and hence that G has maximal class.

(iii) Suppose now that p = 2. Take again a subgroup N such that |y4(G) :
N| = 2. Prove that y4(G) = Uy(y%-1(G))N for any such N. (Hint: We
know either from Exercise 3.3 or from Theorem 4.9 that v,_;(G/N) is
cyclic.. What subgroup is then Uy (vyx_i1(G/N))?) Deduce that v4(G) =
U1(7%-1(G)). Then 44(G) has order 2 and (G has maximal class.

4.6. Deduce from the previous exercise that any 2-group such that |G : G| = 4
is a group of maximal class. Is any 2-generated 2-group a group of maximal
class? For odd p, does the condition |G : G'| = p* ensure that G has maximal

class?

4.7. Let G be a p-group of maximal class of order > p?*2. If N is an abelian
normal subgroup of G of order p’ and t = k(p—1)+r with 0 <r < p—1, prove
that

—_r—

~ r p 1
N:Cpk+1 ><---><Cpk+1 XCka chk.

5 The commutator structure of a p-group of

maximal class

5.1 The classification of the 2-groups of maximal class

In the proof of Blackburn’s Theorem in the previous lecture, it was essential
the fact that the p-groups of maximal class have a very regular power structure.
In this last lecture we are going to study the commutator structure of G, more
precisely the behaviour of the commutator subgroups [G;, G;] for 7,5 > 1. Nat-
urally, this will be done through the analysis of the degree of commutativity
I[(G) of the group. The main result, that we establish in Section 5.2, will be that
[(G) tends to infinity together with the order of the group. This fact will have
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surprising consequences about the structure of (G. Furthermore, when the prime
p equals 2 or 3 it is even possible to give a complete classification of the groups
in question. In this first section we present the classification of the 2-groups of
maximal class. Recall from Exercise 3.3 that G has a cyclic maximal subgroup
in that case (by the way, this may also be seen as a consequence of Theorem 4.9
on the power structure of p-groups of maximal class, check it). We also know

from Exercise 1.7 that the groups Dym, S Dym and Q9= have maximal class.

Theorem 5.1. Let GG be a 2-group of mazximal class. Then G is isomorphic to
one of the groups Daym, SDaym or QQom.

Proof. Let M = (a) be a cyclic maximal subgroup of GG. Since Gy < M, we
necessarily have that Gy = (a?) and consequently G; = <a2i_1> for any 7 > 2.
It is clear that M coincides with all the two-step centralizers Cq(G;/Gi12) and
consequently any b € G — M is a uniform element of . (This shows that we
do not need Blackburn’s Theorem to assure the existence of uniform elements
in this case.) Then G = (a,b).

According to Theorem 3.15, we have that b* € Z(G) = (a*" ), so b* =1 or
a?"™*. On the other hand, Lemma 3.14 yields that [a,b] € (a*) — (a*). Hence
[a,b] = a* for some odd 4, 1 <i < 2™~%, Then

1= [a,b%] = [a, b*[a, b,b] = a*[a*, 8] = a*[a, )" = a*'a*" = a*(*)

and consequently 27! | 4i(i + 1). Since 7 is odd, we deduce that 273 | i 4 1.

The condition 7 < 2™~% only leaves two possibilities: either 1 = —1 4+ 2™73 or
i = —142""2 Then a® = afa,b] = a't% coincides either with ¢ '*2"™ or with
at.

Let us now combine the possible cases that have arisen. If > = 1 and

a® = a2 then G = S Dym, while for a® = a=' we get that G = Dym.
Ifa® =a=! then G = Qum. Let us finally see that

m—2
Assume now that b? = a?

b —142™m7

in the case a” = a * the group (G is isomorphic to S Dym. To this end, it

suffices to observe that

(ba)2 = b2aba = b2a " e =1
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and that ¢** = ¢= 14277, I

5.2 Bounds for the degree of commutativity and their
consequences

The 3-groups of maximal class were classified by Blackburn in his paper [1].
The key to the classification is the following result about the degree of commu-

tativity.

Theorem 5.2. Let G be a 3-group of mazimal class of order 3™. Then [(G) >
m — 4. Consequently Gy has class < 2, iy is abelian and G has derived length
2 (i.e., G is metabelian).

Proof. Suppose [(G) < m—>5 and consider a function « associated to a chain in
(. The condition on the degree of commutativity assures that the value (1, 3)
is defined and, by property P7, a(1,3) = a(1,1) = 0. It follows from property
P5 that also a(1,2) = 0. These values are a contradiction with Remark 4.4.
Hence [(G) > m — 4. Consequently [G1,G1,G] < [G3,G1] < Giyqa = 1 and

[GQ, GQ] S G1_|_4 - 1 D

The best bound that can be obtained for p = 5 is much worse than the
one for p = 3 and, as a result, the classification problem is much more difficult
in this case. As a matter of fact, the 5-groups of maximal class have not been
classified yet, even if the computational evidence suggests quite a regular pattern
of isomorphism classes (see [22]). In spite of this, the bound we give below has

interesting consequences.

Theorem 5.3. Let G be a 5-group of mazimal class of order 5. Then [(G) >
(m—6)/2.

Proof. Let us first make some preliminary remarks. Consider a function «
associated to a chain in (G. We are going to use freely the properties P1-P7 of
a stated in Theorem 4.2. Put = «(1,2) and let us express some values of o

in terms of . We have that a(1,3) = z. On the other hand, by Theorem 4.5,
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0= oa(l,5) = a(1,2) — 2a(2,3) and therefore a(2,3) = 3z. Finally, from the

relation o(1,3) = a(1,4) + (2, 3) we obtain that a(1,4) = 3z. Since we know

from Remark 4.4 that o(1,7) # 0 for some j € {2.3,4}, it follows that = # 0.
Supose now that 2/(G) < m—7. Then property P6 assures that J(1,2,3) =

0, which is written as
a(1,2)a(3 4+ 1,3) + a(2,3)a(5 + 1,1) + a(3, 1)a(4 + 1,2) = 0.
We derive from the above calculations that
2a(1,5 + 1) + a(2,4 + 1) — (3,3 + 1) = 0. (26)

If we use property P4 in the form a(i,5) = a(t —1,j) —a(i —1, j+ 1), we obtain
that

a2,44+ ) =a(l,441) —a(1,54+1)
and

a3,3+ ) =0a(1,3+1) —2a(1,4+1) 4+ (1,5 +1).
Substituting these values into (26), it follows that
a(l,34 1) =3a(l,4+1).

Now we may use the periodicity of property P7 to transform this equality so
that it relates in the same way two (cyclically) consecutive elements of the set
{a(1,1),a(1,2),

a(1,3),a(1,4)}. But this is impossible, since that set is precisely {0, z, z, 3z}
and = # 0. So necessarily 2I(G) > m — 6, as desired. O

This bound for the degree of commutativity is sharp, since in [12, Theorem
3.8'] C.R. Leedham-Green and S. McKay have constructed, for each even integer
m > 6, a 5-group of maximal class of order 5 such that 2/(G) = m — 6.

Corollary 5.4. Let G be a 5-group of mazimal class. Then:
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(i) The class of Gy is at most 3, and Gy has class at most 2.
(ii) The derived length of G is at most 3.
Proof. (i) We have that
v4(Gh) = [Gh, Gy, Gy, Gy] =[G, Gy, Gy, Gy < [Ga, Gy, Gy < Gage < G = 1,
by Theorem 5.3, and on the other hand,
v3(Ge) = [Gq, Ga, Ga] < Gge = 1.

(ii) Since G is nilpotent of class < 2, its derived length is also < 2. Hence
the derived length of GG is at most 3. O

Our next objective is to prove that there is a bound valid for any prime
similar to the one given in Theorem 5.3 when p = 5. This general bound was
obtained independently by R.T. Shepherd [25] and C.R. Leedham-Green and
S. McKay [12]. The proof of Theorem 5.3 seems difficult to generalize to an
arbitrary prime. In this text we follow the idea of Leedham-Green and McKay,
that consists in extending the function « to all of Z x Z in a way that it keeps

all its properties.

Theorem 5.5. Let G be a p-group of mazimal class of order p™. Then [(G) >
(m—3p+6)/2.

Proof. Clearly, the bounds we know for the small primes allow us to assume
that p > 7. Suppose that 2/(G) < m—3p+5. Since the degree of commutativity
is > 0, this yields in particular that m > 3p — 5 > p 4+ 9. Consider a function
a associated to a chain in G. Then we extend o to a function v:Z x Z — F,
by defining v(i,7) = a(io, jo), where ig,50 € {1,...,p — 1} are chosen to be
congruent to ¢ and 7 modulo p — 1. Note that this makes sense, since

m—3p+5 1_m—l—3p—7>4p—|—2
2 N 2 - 2

=2p+1

m—[0l—1>m—

and consequently a(ig, jo) has an assigned value. Observe that, due to the
period p — 1 of a, we have that y(i,7) = a(1, j) for any pair (7, j) in the domain

of a. Thus v is an extension of a.
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It is straightforward to check that properties P1-P5 and P7 also hold for the
extended function 4. On the other hand, in order to prove that ~ also fulfills P6,
we have to see that J(1,7,k) = 0 for all 1, j,k € Z (where J (1, j, k) is defined
using 7). Since v satisfies P7, we have that J(¢,7,k) = J(i0, jo, ko). If any
two of the values ig, jo or kg are equal, it is immediate that 7 (i, jo, ko) = 0.
So we may assume that they are all different. It follows that g + jo + ko <
(p—3)+(p—2)+(p—1) =3p—6 < m—2[—1 and then all the pairs to which
v applies in J (iq, jo, ko) are in the domain of a. Hence we can substitute o for
v throughout and J (o, jo, ko) = 0 is simply a consequence of P6 for «.

Let us apply P6 to the triple (¢, + 1,1 —[) for an arbitrary ¢ € Z. As
y(i+1,0+1)=0and v(z,7 + 2) = v(z,7 + 1), it follows that

Yo+ D) {y(1 =204+ 1+1)—~y(1 -1+ 1)} =0. (27)

Since v has the same properties as a, the formula in Theorem 4.5 also applies
to v and any v(7,j) may be expressed in terms of the values x, = y(r,r + 1).
In particular, that formula provides that
) : 2 +1—1r
1—1,2i+141)= —1)r+i-t .
Y1 =12+ 1+1) ;l() ralo1)"
= 1] — """ —}- (—1)i+l_1(i —}- Z)LZ?Z

and, similarly,
7(1 - lal‘l' 1) =T+ 2/7

where ¥/ denotes some linear combination of the values z, with 2 — [ < r <
(1 =1+ 1)/2. Now if we choose 1 > 2 — [ then (: — [+ 1)/2 < ¢ and therefore it
follows from (27) that

i X"+ (=) i+ D} =0, (28)

where ¥” is a linear combination of z9_;, ..., x;_;.
Let us prove by induction on ¢ that z; =0 fore =2—-10,3—1,... ,p—1—10. If
i = 2—1 then (28) reduces to —2z32_, = 0, whence z5_; = 0. If2—] <4 < p—1—1,
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the induction hypothesis yields that z9_; = -+ = z;_1 = 0 and consequently
we have that ¥ = 0 in (28). Hence (—1)”’1_1(@' + l)xf = 0 and, since i + [ Z 0
(mod p), it follows that z; = 0. On the other hand, z,_; = v(1 —[,2 — 1) =
y(p—1,2—=1)=—~(2—1,p—1). But according to Theorem 4.5, this last value
is a linear combination of x5_;,... ,2,-1-; and this proves that also z;_; = 0.
Since 4 has period p — 1, it follows that z, = 0 for all »r € Z and again by
Theorem 4.5 and by properties P2 and P3, we conclude that (¢, 7) = 0 for any
1,7 € Z. This implies that a = 0, which is a contradiction. O

As in the case p = 5, the bound in the previous theorem has direct conse-

quences about the structure of G.

Corollary 5.6. Let G be a p-group of mazimal class, where p > 2. Then:
(i) The class of Gy is bounded by a function of p alone.
(ii) The class of Gp,_y is < 2.

(iii) The derived length of G is < log,(3p — 3).

Proof. (i) We have that (Y = [Gy,G;] < Giy3 and, in general, v (Gh) <
Gi(i41)+2- By Theorem 5.2, we may assume that p > 3, so that 3p —8 > 2 and
then Theorem 5.5 yields that

Bp—8)(I+1)+2>2+3p—6>m.

Therefore vs,_7(G1) = 1 and the class of G is < 3p — 8.
(i) Just observe that y3(G,—2) = [Gpo2, Gp_2, Gp—2] < Goysp—6 < Gy = 1.
(iii) We have that G" =[G, G3] < Gigs, G" < G;+5 = [Glys, Gies] < Garpnn
and, in general, G() < Gy, where ¢ = 3-2i=1 +[(2i=! — 1) — 1. If the derived
length of G is d then G4~ £ 1 and consequently

3-272 4112 - ) -1 < m, (29)

If () = 0 then Blackburn’s Theorem says that |G| < pP*!. Hence 3-277% <
p+1and d <log, 3(p+1) < log,(3p — 3). (Recall that p > 2.)
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Suppose now that [(G) > 1. Since m < 2]+ 3p — 6 by Theorem 5.5, we get
from (29) that

(143)272 <31+ 3p — 5.

It follows that

_ 3+3p—5 3p— 14 3Jp—14 3p-—2
-2 0 " 3 <3 =
[+3 + I+3 - + 4 4
and consequently 2¢ < 3p — 3. This proves the result. O

There is a counter-intuitive aspect in the previous corollary: it asserts that,
in a p-group whose class is as large as possible, there are however large subgroups
whose class keeps small regardless of the order of the group. In particular,
it follows from (ii) that any p-group of maximal class G can be surprisingly
constructed from a group of class < 2 by putting on top a group whose order
only depends on p, and not on the order of (G. On the other hand, note that
the bound for the class of the maximal subgroup Gy that we have found in the
proof of (i) is far from being sharp: the best bound is (p + 1)/2, as proved by
R.T. Shepherd in [25].

We want to end this section with a remark about the sharpness of the bound
for [((7) obtained in Theorem 5.5. When p = 5 we already know the best possible
bound, so we only need to worry when p > 7. In that case, it has been proved
by the author [4] that the bound [(G) > (m — 2p + 5)/2 holds. This cannot be
refined further, since Leedham-Green and McKay have constructed groups of

arbitrarily large order with this degree of commutativity in [13, Theorem 6.8].

5.3 Suggestions for further study

It has been the aim of the author that these notes about the theories of regular
p-groups and p-groups of maximal class both lay the foundations for and arouse
the interest in embarking on a deeper study of finite p-group theory. In the hope
that the objective has been achieved with some of the readers, I would like to

end with some hints as to what direction to follow from this point onwards.
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One possibility is to continue studying either of the families of p-groups
described. In what respects regular p-groups, there is an important topic that
we have left out in these notes, which is the existence of bases: a basis is a
set {z1,...,24} such that any z € G may be expressed uniquely in the form
r = ' .. 2)%, with 0 < n; < o(z;) for each i. The proof that regular p-
groups have bases can be found in Hall’s original paper [5]; consult also [21]
for a simplification in Hall’s proof. I also recommend the series of papers by
A. Mann [16, 17, 20]. In the first two, he investigates the minimal irregular
groups, that is, p-groups all of whose proper sections are regular. The last one
is devoted to normal subgroups N which are regularly embedded in a p-group
(i: this means that for all z € G,y € N, 2Py? = (zy)?z for some z € U;({(z,y)’).
On the other hand, in [18] Mann studies the p-groups G such that GG, as well as
all sections of (4, satisfy one of the properties (ii), (iii) or (iv) in Theorem 2.10.

As for p-groups of maximal class, the papers by C.R. Leedham-Green and
S. McKay on the subject [12, 13, 14] provide an elegant way of constructing all
the p-groups of maximal class in which the subgroup G has class < 2. They
also study the classification problem and the automorphisms for a particular
type of these groups in [15].

Another possibility T would like to comment on is to take up the theory of
powerful p-groups and the study of p-groups according to their coclass. These
two topics are particularly interesting because there has been very active re-
search on them in the last two decades. On the one hand, powerful p-groups,
which are defined by the condition that G < U(G) if p > 2, constitute a
class of p-groups with a tame behaviour with respect to p-powers. So in this
respect they resemble regular groups and, even if their theories are not directly
related, they have some similar properties. For instance, powerful p-groups also
have an interchanging property for commutators of agemo subgroups, although
it does not apply to all normal subgroups. It is possible now to have access
to the main properties of powerful p-groups without browsing research papers:
the books [2] and [10], by J.D. Dixon et al. and E.I. Khukhro respectively, in-

clude a chapter on the subject. In the same way as regular p-groups serve for
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the development of the theory of p-groups of maximal class, there have been
found several applications of powerful p-groups. I would like to point out their
use in the study of p-groups with a fixed coclass. The coclass of a p-group of
order p™ and nilpotency class ¢ is defined to be m — ¢. Thus the p-groups of
maximal class are precisely the p-groups of coclass one. An appropriate use of
powerful p-groups has permitted to generalize to arbitrary coclass some of the
results we have proved for p-groups of maximal class. This has been a long
term project, with many group-theorists involved, that finds its culmination in
Leedham-Green’s and Shalev’s papers [11] and [24]. The most important result
in these papers is that any p-group of coclass r has a normal subgroup of class
< 2 whose index is bounded by a function of p and r.

A final suggestion for further study is to dive into the theory of pro-p groups.
These are inverse limits of finite p-groups and are also topological groups, with
the topology inherited from the product topology. Although Shalev’s proofs do
not rely on them, these groups have played a very important role in the study
of p-groups according to their coclass. Even if this is not the only application
of pro-p groups to finite p-groups, the theory of pro-p groups also deserves
attention for its own sake and research on the subject is very lively nowadays.
The above-mentioned book [2] by Dixon et al. is a good way of getting started
in this theory. On the other hand, the new book [3] by M.P.F. du Sautoy, D.

Segal and A. Shalev includes the latest issues of research on this topic.

References

[1] Blackburn, N., On a special class of p-groups, Acta Math. 100 (1958), 45-
92.

[2] Dixon, J. D.; du Sautoy, M.P.F.; Mann, A.; Segal, D., Analylic pro-p
groups, second enlarged edition, Cambridge Studies in Advanced Mathe-
matics 61, Cambridge University Press, Cambridge, 1999.



AN INTRODUCTION TO FINITE p-GROUPS: 225

3]

[10]

[11]

[12]

[14]

[15]

[16]

du Sautoy, M.P.F.; Segal, D.; Shalev, A., New horizons in pro-p groups,
Progress in Mathematics, Birkhauser, Boston, 2000.

Fernandez Alcober, G. A., The exact lower bound for the degree of com-
mutativity of a p-group of maximal class, J. Algebra 174 (1995), 523-530.

Hall, P., A contribution to the theory of groups of prime power order, Proc.
London Math. Soc. 36 (1933), 29-95.

Hall, P., Nilpotent groups, Queen Mary College Math. Notes, London, 1969.
Huppert, B., Endliche Gruppen, I, Springer, Berlin, 1967.
Huppert, B.; Blackburn, N.,; Finite groups, II, Springer, Berlin, 1982.

James, R., The groups of order p® (p an odd prime), Math. Comput. 34
(1980), 613-637.

Khukhro, E. 1., p-Automorphisms of finite p-groups, Cambridge University
Press, Cambridge, 1997.

Leedham-Green, C. R., The structure of finite p-groups, J. London Math.
Soc. (2) 50 (1994), 49-67.

Leedham-Green, C. R.; McKay, S., On p-groups of mazimal class, I, Quart.
J. Math. Oxford (2) 27 (1976), 297-311.

Leedham-Green, C. R.; McKay, S., On p-groups of maximal class, II,
Quart. J. Math. Oxford (2) 29 (1978), 175-186.

Leedham-Green, C. R.; McKay, S., On p-groups of mazimal class, III,
Quart. J. Math. Oxford (2) 29 (1978), 281-299.

Leedham-Green, C. R.; McKay, S., On the classification of p-groups of
mazimal class, Quart. J. Math. Oxford (2) 35 (1984), 293-304.

Mann, A., Regular p-groups, Israel J. Math. 10 (1971), 471-477.



226

[17]

[18]

[19]

23]

[24]

[25]

G. A. FERNANDEZ-ALCOBER

Mann, A., Regular p-groups, 11, Israel J. Math. 14 (1973), 294-303.

Mann, A.; The power structure of p-groups, I, J. Algebra 42 (1976), 121-
135.

Mann, A., Regular p-groups and groups of mazimal class, J. Algebra 42
(1976), 136-141.

Mann, A., Regular p-groups, 111, J. Algebra 70 (1981), 89-101.

Ming-Yao Xu, P. Hall’s basis theorem for regular p-groups and its applica-
tion to some classification problems, Comm. Algebra 19 (1991), 1271-1280.

Newman, M. F., Groups of prime-power order, Groups — Canberra 1989,
Lecture Notes in Mathematics (Springer, Berlin) 1456 (1990), 49-62.

O’Brien, E. A., The groups of order 256, J. Algebra 143 (1991), 219-235.

Shalev, A., The structure of finite p-groups: effective proof of the coclass
conjectures, Invent. Math. 115 (1994), 315-345.

Shepherd, R. T., p-Groups of mazimal class, Ph. D. thesis, University of
Chicago, 1970.

Suzuki, M., Group Theory, II, Springer, Berlin, 1986.

Wiman, A., Uber mil Diedergruppen verwandte p-Gruppen, Arkiv for
Matematik, Astronomi och Fysik 33A (1946), 1-12.

Wiman, A., Uber p-Gruppen von mazimaler Klasse, Acta Math. 88 (1952),
317-346.

Matematika Saila
Fuskal Herriko Unibertsitatea
48080 Bilbao (Spain)

E-mail: mtpfealg@lg.ehu.es



