ON APPLYING THE As.-STYLE OF UNIFICATION
FOR SIMPLY-TYPED HIGHER ORDER
UNIFICATION*

Mauricio Ayala-Rincén’  Fairouz Kamareddine

Abstract

Dowek, Hardin and Kirchner developed a higher order unification
(HOU) method based on the Ao-style of explicit substitutions (which
uses two sorts of objects: terms and substitutions). The novelty of this
method rests on the possibility to resolve HOU problems by first order
unification (FOU). This is achieved via a pre-cooking translation of the
HOU problem into an FOU problem of the Ao-calculus. Solutions to
the FOU problem are then translated back into the range of the pre-
cooking translation and subsequently to solutions of the original problem
in the A-calculus. Recently we studied unification in the Ase-style of
explicit substitutions which only uses one sort of objects: terms. We
believe that Ase-unification enables quicker detection of redices and has
a clearer semantics. In this paper, we provide a pre-cooking translation
for applying Asc-unification to HOU in the A-calculus. The pre-cooking
jointly with a back translation complement the Ase-unification method.
We establish correctness and completeness and show why avoiding the
use of substitution objects makes As.-HOU more efficient than Ac-HOU.

1 Background
HOU via explicit substitutions as in [8] is illustrated by Figure 1 where solving
a higher-order unification problem in the A-calculus amounts to the following:
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1. The higher-order problem of the A-calculus is translated (or precooked)

into a first order problem of the Ao-calculus.
2. The first order problem is solved in the Ao-calculus using Ao-unification.

3. Solutions obtained in step 2 are translated back into the range of the
pre-cooking translation and then translated back into the A-calculus.

Unification Problem

Pre-cooking
translation Unification
rules
HOU-Problem Solutions
.............................. Back
translation
Pre-cooking™!
Solutions

Language of a A-calculus
of explicit substitutions
-grafting-

Language of the A-calculus
-substitution-

Figure 1: HOU method via calculi of explicit substitutions
In [3] we followed [8] in formalizing a unification system based on the As-

style in which first-order unification problems are solved in the As.-calculus.
However, [3] only dealt with step 2 of the above 3 steps of [8]. In this paper,
we close the gap and fill the other steps. We give a pre-cooking translation
for applying Asc-unification to HOU in the A-calculus. The pre-cooking jointly
with a back translation complement our As.-unification method. We show the
correctness and completeness of our pre-cooking and back translations.

The Ao- and the As.-calculi use de Bruijn indices instead of variable names
in order to be closer to implementation and to avoid the problems that result
from variable clashes. However, there are two differences between Ao and As,:

e \o uses only one de Bruijn index (1) and builds the others by operations

in the calculus. As. uses all the de Bruijn indices.

e \s. remains close to the A-calculus by adding updating and substitution
operators and using one sort of objects: terms; Ao adds categorical opera-
tors like composition, cons and lift and a new sort of objects: substitutions.

In this paper, we focus on the advantages of using all de Bruijn indices and
only term objects when implementing the As.-HOU approach over Ao-HOU
and its implementation as described in [6]. We show why avoiding the use of
substitution objects makes As.-HOU more efficient than A\o-HOU.
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It should be stressed that Ao and As. are non-isomorphic styles of explicit
substitutions [12] and hence reworking the HOU method in As, is not a transla-
tion of work already done in Ao. Many rules and proofs of the As.-HOU differ
from those of the Ao-HOU. We outline some of these differences throughout.

For a set of operators F, we assume familiarity with F-algebras and with
a term algebra 7 (F,X) built on a (countable) set of variables X and on F.
Variables in X" are denoted by X,V .... For a term ¢t € T(F, X), var(t) denotes
the set of variables occurring in ¢. We assume familiarity with A-calculus [5] and
with basic rewriting [4]. We denote with —% the reflezive and transitive closure
of a reduction relation —g over a set A. The subscript R is usually omitted.
Syntactical identity is denoted by a = b. We assume the usual definitions for
Church Rosser (CR) and Weak Normalisation (WN) of a reduction relation.

A valuation is a mapping from X to 7 (F, X). The homeomorphic exten-
sion of a valuation, 6, from its domain X" to 7 (F, X) is called the grafting of 6.
This notion is usually called first order substitution and corresponds to simple
substitution without renaming. As usual, valuations and their corresponding
grafting valuations are denoted by the same symbol. The domain of a graft-
ing @ is defined by Dom(f) = {X | X0 # X, X € X}. A valuation and its
corresponding grafting 6 are explicitly denoted by 6 = {X/X60 | X € Dom(0)}.
When necessary, explicit representations of graftings are differentiated from
substitutions by a “g” subscript as in: {X/X60| X € Dom(0)},.

We assume familiarity with de Bruijn notation [7], with 8- and n-reduction
and with =g and =g, as well as with the Ao- (-, 0, [] and 1) and the As.-calculi
(skeleton notation ), their typed versions and their normal form (nf, Inf and
n-nf) characterizations as in [3]. Agp(X) denotes the A-terms in de Bruijn
notation over a set of (unification) meta-variables X and for a term a and a
substitution 6, a™ and 6% denote their lifts as in [3]. We recall that terms
of the As.-calculus, whose set of rules is presented in Table 1, are given by:
Ase = X|N|As.Asc|AAse|As.07Ase| ot Ase, wherej, i >1, k>0,X € X.
The equational theory of the rewriting system As. defines a congruence =,,,.
The congruence obtained by dropping o-generation and Eta is denoted by =, .

2 Unification in the As.-calculus

In this section we review the As.-unification of [3]. Normal form characteriza-
tions (normal form (nf) and long normal forms (Inf)), WN and CR are essential
for a unification method for \s., which can lead to HOU in the A-calculus.
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Table 1: The Rewriting System of the As.-calculus with Eta rule

(o-gen.) (Aa b) — aclb
(o-\-trans.) (X.a)o'b — A(ac*tlb)
(o-app-trans.) (a1 az)o'b — ((a10%) (ag0'D))

{ n— 1 if n>i
(o-destr.) no'h —» if n=1

it n<1

(p-A-trans.) oi(da) — A(phya)
(app-trans) Gl a) — (Fa) (gha)
(-destr.) ohn — {n+1_1 g 222
(Eta) Ale 1) — b if a =, pib
(o-o-trans.) (aob)oic —> ( oitle) ot (boi=le) if 1< 5
(o-p-trans. 1) (pra)alb —> Ya if k<j<k+i
(o-p-trans. 2) (Pta)oib —» gpk(a ol THp) if k44 <
(p-o-trans.) plad?b) — (Fh10) 07 (hyy;b) if j<k+1
(p-p-trans. 1) ¢i(pla) — @] (Ghpya) if 1+5<k
(o-p-trans. 2) oi(pla) — @ la if I<k<I+]

Let 7(F,X) be a term algebra and let A be an F-algebra. A unification
problem over 7 (F, X) is a first order formula without universal quantifier or
negation, whose atoms are of the form F, T or s =/, ¢ for 5, € T(F, X). Unifi-
cation problems are written as disjunctions of existentially quantified conjunc-
tions of atomic equational unification problems: D = \/, ;3w A, L Si = t.
When |J| = 1, the unification problem is called a unification system. Vari-

ables in the set @ of a unification system 3 A =’ t; are bound while

zEI
all others are free. T and I stand for the empty conJunction and disjunction,
respectively. The empty disjunction corresponds to an unsatisfiable problem.

A unifier of a unification system i A, ; s; =% t; is a grafting o such that

il
A = J0 N\, siop = tio where o) denotes the restriction of the grafting o
to the domain X' \ . A unifier of \/;c; 3 Aser, 5i =4 i is a grafting o that
unifies at least one of the unification systems. The set of unifiers of a unification

problem, D, or system, P, is denoted by U4 (D) or U4(P), respectively.
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Definition 1 A As.-unification problem P is a unification problem in the
algebra Tys,(X) modulo the equational theory of A\s.. An equation of such a
problem is denoted by a :?/\Se b, where a and b are \s.-terms of the same sort.
An equation is called trivial when it is of the form a :?\Se a.

[3] gave a set of rewrite rule schemata that simplify unification problems and lead
to a description of the set of unifiers. Basic decomposition rules for unification
are applied modulo the usual boolean simplification rules as in [8].

Definition 2 ([3]) Table 2 defines the As.-unification rules for typed As.-

unification problems.
Table 2: As.-unification rules

(Dec-)\) PAXga =5, Aab — PAa=j, b
(Dec-App)  PA(mar...ap) =5, (nbi...b) — PA_ 0= b
(App-Fail)  PA(mai...a)) =3, mbi...b,) — F ifn#nm

(Dec-p) PAgia=;, ¢ib — PAa=), b,
where ¢ha, ptb are long-normal terms
(Ezp-)) P — 3JATFY : B),PAX =}, A.Y if Y & var(P),

(THX : A— B) € var(P) and X is a unsolved variable
(Ezp-App) P A wf;’ ... ljll(X, ar,...,ap) =?)\Se (mby...by) —
PAYY ... (X, a,. .., ap) =}, @b1...bg) A
. VTERpURi ElHl,...,Hk,X :?/\Se (I'HlHk)
if wf;’ ... fll (X, ay,...,ap) is the skeleton of a Asc-normal term
and X has an atomic type and is not solved where Hy, ..., Hy
are variables of appropriate types, not occurring in P, with
the contexts I'y, = 'y, R, is the subset of {i1,...,i,} of su-
perscripts of the o operator such that (r Hj...Hy) has the
right type, Ry = U, if 4 > m+p—k =37, 5 >
i1 then {m+p—k—=>3"7 , ., ji} else O, where ig = 00,441 =0
(Replace) PANX =, a — {X/a}PANX=], a
it X € var(P),X ¢ var(a) and a € X = a € var(P)
(Normalize) PAa=5,, b — PAd =}, b ifaorbisnotin Inf
where @' is the Inf of a if a is not a solved variable and a
otherwise. b’ is defined from b identically

Since As, is CR and WN [11], the search can be restricted’ to n-long nor-

1Use of As.-normal forms in Ezp-App is not essential but simplifies the case analysis
presented in the definition of the rule and its completeness proof. It can be dropped and
subsequently incorporated as an efficient unification strategy, where before applying Exp-
App, Asc-unification problems are normalized.
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mal solutions that are graftings binding functional variables into n-long normal
terms of the form A.a and atomic variables into n-long normal terms of the form
(k by ...bp) or ac’b or ¢}a, where in the first case k can be omitted and p is zero.
The FEta rule reduces the number of cases (or unification rules) to be considered
when defining the unification algorithm, but as for the Ao-calculus, it can be
dropped. Normalize and Dec-\ use CR and WN of As, to normalize equations of
the form \.a =, A\.binto a’ =}, b’ and Replace propagates the grafting {X/a}
. a. Ezp-) generates the grafting { X/A.Y'} for
a variable X of type A — B, where Y is a new variable of type B. Dec-App and

corresponding to equations X =,
App-Fuil transform equations of the form (n a; ...a,) =},, (mb;...b,) into the
empty disjunction when n # m, as they have no solution, or into the conjunction
/\izl..p a; :3\36 b;, when n = m. Analogously, Dec-¢ decomposes equations with
leading operator ¢. It can be easily checked, using the arithmetic properties
of As, to build counterexamples, that the addition of the corresponding Dec-o,
o-Fail and @-Fail is wrong. In Ao, the rule Fzp-App advances towards solutions
to equations of the form X{a; ... a,. 1] =}, (m by ...b,) where X is an unsolved
variable of an atomic type. This process is similar for As.-unification problems.

Example 1 Take the problem (A\.(\.(X 2) 1) Y) =}, (\.(Z 1) U) where X,
Y, Z and U are meta-variables. By Normalize we get (Xo?Y)o'(piY) ¢5Y)
=}, (Zo'U @gU) which after Dec-App, - and Replace gives (Xo?Y)ot (oY)
:RSS Zo'YAY :;SG U. Since X and Z are variables of functional type, Exp-App
and Replace give (\.X")o?Y)o' (pY) =5, AZ)o'Y AY =], U A X =],
ANX'"NZ =5, A\.Z'. Finally, Normalize and Dec-\ give (X'0%Y)o?(pgY) =3,,
Z'’Y NY =5, UNX =}, A X'NZ =, \Z'. Solutions are built as
{Y/X1,U/ X1} union solutions for X and Z obtained by the first equation. The
first equations, called Flex-Flex, are related to the pre-unifiers of [10]. E.g., here
we can take {Y/X1,U/X 1} U {X/An+1,7Z/A\n}, where n > 2.

Example 2 from A.(\.(Y 1) A(X 1)) =" A.(A.V AW) one obtains:
(YIMNX 1)dd] A(X 1)) =}, VIAW.id] and (Yo'A.(X 1) A(ef 1)) =4,
VolAW. By Exp-App with V. =%, (Vi V) and V :;Se (Vi Va), we get
M(X 1) =5, Vo[M(X 1).id] and M.(p1X 1) =},, Vao'A\(X 1). For solutions
take Vo =5, 1 or Vo =5, 1.

Definition 3 A unification system P is in As.-solved form if its meta-vari-
ables are atomic and it is a conjunction of non trivial equations of the forms:
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(Solved) X =5, a, where X does not occur anywhere else in P and a is in
long normal form. Both X and X :3\0 a are said to be solved in P.
(Flez-Flex) non solved equations between long normal terms whose root op-
erator is o or @ which we represent as equations between their skeleton:

e fll(X, ai,...,ap) :;Se ¢1l51 ) ..¢211(Y, bi,...,by) with X,Y atomic.

Lemma 1 ([3])
1. Any As.-solved form has As.-unifiers;

2. Well-typedness: Deduction by the As.-unification rules of a well-typed

equation gives rise only to well-typed equations, T and T,

3. Equivalence of solvedness and normalization: Solved problems are normal-
ized for the As.-unification rules. And, a system which is a conjunction
of equations that cannot be reduced by As.-unification rules is solved.

Definition 4 Let P and P' be \s.-unification problems, let “rule” denote the
name of a \s.-unification rule and “—™” its corresponding deduction relation.

By correctness and completeness of rule we understand P —™¢ P’ implies
Uys, (P') C Uy, (P) and P —™¢ P' implies Uy,, (P) C Uy, (P'), respectively.

Theorem 1 (Correctness and completeness [3]) The Ascunification rules
are correct and complete.

An analogous unification strategy to that of [8] for Ao applies in this setting.
Correctness and completeness proofs for these strategies essentially do not differ
because they are based on an appropriate ordering of the application of the
unification rules which is independent of the calculi [2].

3 HOU in the pure A-calculus
[3] dealt only with the Ase-unification method (half of the box on the right hand
side of Figure 1). For applying this method to HOU in the A-calculus we need
to complete the diagram by providing the pre-cooking a nd Back translations,
show their correctness and completeness and establish the applicability of As.-
unification for HOU in the pure A-calculus. This is what we do in this section.
Observe firstly that unifying two terms a and b in the A-calculus consists
in finding a substitution 6 such that 6(a) =gz, 0(b). Thus using the nota-
tion of substitution a unifier in the A-calculus of the problem A.X :?ﬂn A2
is not a term ¢t = #X such that \.t =?ﬂ" A.2 but a term ¢t = #X such that
O(A.X) = X.60%(X) = A.2. This observation can be extended to any unifier and
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by translating appropriately A-terms a,b € Agg(X), the HOU problem a :?ﬂn b
can be reduced to equational unification. We illustrate in the next example how
searching for substitution solutions of a HOU problem a :?ﬂn b corresponds to
searching for grafting solutions of a unification problem in As,.

Example 3 Consider the HOU problem A\.(X 2) =} A2, where 2 and X are
of type A and A — A, respectively. Observe that applying a substitution solution
6 to the Agp(X)-term A\.(X 2) gives O(A\.(X 2)) = A.(07(X) 2). Then in the
Ase-calculus we are searching for a grafting 6’ such that 0'(\.(03(X) 2)) =,
A.2. In the Ao-calculus, \.(X 2) is pre-cooked into N\.(X[1] 2). This correspon-
dence results from one between both Eta rules (i.e., between b[1] = a and p2b =
a). Then we should search for unifiers for the problem X.(p3(X) 2) =5, A.2.
Now we apply As.-unification rules to the problem A.(p3(X) 2) =5,, A.2.
By applying Dec-)\ and Ezp-\ we get (p3(X) 2) :?/\86 2 and subsequently
IV (p3(X) 2) =5, 2A X =,, Y. Then by applying Replace and Nor-
malize we obtain IY (Q(A.Y) 2) =5, 2A X =}, AY and Y (1Y )o'2 =}
2AX =}, \.Y. Now, we obtain (3Y (pY)o'2 =}, 2 A X =}, A\Y) A (Y =},
1VY =5, 2) by applying Ezp-app; by applying Replace: ((p3i1)c'2 =3, 2 A
X =5, A1)V ((ef2)0'2 =5, 2 A X =], A\.2); and by applying Normalize:
(2=%,, 2A X =}, A1)V (2=}, 2AX =}, \.2).
In this way substitution solutions {X/A.1} and {X/\.2} are found.

In general, before the unification process, a A-term a should be translated
into a As.-term a' obtained by simultaneously replacing each occurrence of a
meta-variable X at position i in a by it X, where k is the number of ab-
stractors between the root position of a and position 7. If £ = 0 then the
occurrence of X remains unchanged. The pre-cooking translation defined in
[8] transcribes all occurrences of de Bruijn indices n into 1[1"!] and all occur-
rences of meta-variables X into X[1*], with k as above. Notice that the two

pre-cooking translations can be implemented non-recursively in an efficient way.

Example 4 Consider the HOU problem F(f(a)) =" f(F(a)). In Agp(X) it can
be seen as (X (2 1)) =p, (2 (X 1)), where both X and 2 are of type A — A
and 1 1s of type A. Since there are no abstractors in the terms of the equational
problem, the equation remains unchanged: (X (2 1)) =}, (2 (X 1)). For
simplicity we omit existential quantifiers. After an application of Exp-A and of
Replace we get (\.Y (2 1)) =}, (2 (\Y 1))AX =}, \Y whereY is of type
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A. Normalize gives Yo'(2 1) =, (2 Yo'1) AX =}, A\Y And by Ezp-App
we get Yo'(2 1) =%, (2 Yo'1) AX =}, AY A (Y =, 1vY =} (3 Hy)).
First solved system: Note that other possible cases do not produce solved forms.
By Replace and Normalize we get: ((2 1) =}, (2 1) AX =], A1)V
(2 Hyo'(2 1)) =5, (2 (2 Hio'1)) AX =}, A(3 Hy)), which gives the
first solved system corresponding to the identity solution: {X/\.1}.

Second solved system: [t is possible to obtain additional solutions from the
equational system: (2 Hyo'(2 1)) =5, (2 (2 Hio'1)) A X =}, A\.(3 Hy).
In fact, by Dec-App and Ezp-App we obtain Hio'(2 1) :;Se (2 Hio'1) A
X =i, A\(3 Hi) A (Hy =}, 1V Hy =},, (3 Hy)), which by Replace and
Normalize gives ((2 1) =3, (2 1)AX =}, \.(3 1)) V ((2 Hyo'(2 1)) =},
(2 (2 Hyo'1))AX =5,, A.(3 (3 Ha))), from which we obtain the second solved
system corresponding to the grafting solution: {X/A.(3 1)}. This corresponds
to the solution F = f; in fact, by replacing X with A\.(3 1) in the original
unification problem we obtain (A.(3 1) (2 1)) =5, (2 (A.(3 1) 1)). Notice
that indices 3 and 2 correspond to the same operator. Additionally, note that
(A(31) (2 1)) =5(2 (2 1) and (2 (A\.(3 1) 1)) =5 (2 (2 1)).

Third solved system: By continuing the application of Dec-App, FExp-App, Re-
place and Normalize we obtain grafting solutions corresponding to F' = fff,
F=[ffff, etc. to the equational system ((2 Hyo'(2 1)) =5, (2 (2 Hyo'l))
AN X =}, A(3 (3 Ha))) we obtain the third solved system giving the grafting
solution {X/X.(3 (3 1))} corresponding to the solution F = ff.

The unification process continues infinitely producing solved systems correspond-
ing to the grafting solutions {X/X.(3 (3 (3 1)))} (i.e. F=fff),

{X/X.(3 (3 (3 (3 1))} (ie. F=[f[f) ete.

Definition 5 (Pre-cooking) Tuke a € Agp(X) where I' -y, x) a : T (ac-
cording to (Var), (Varn), (Lambda), (App), and (Meta) of Table 3). We
give every variable X of type A in a the same type and context I in the As,-
calculus. The pre-cooking of a from Agp(X) to the Ase-calculus is defined by
ape = PC(a,0) where PC(a,n) is defined by:

1) PC(Ag.a,n) = A\g.PC(a,n+1) 2) PC((a b),n) = (PC(a,n) PC(b,n))

_ | X, ifn=0
) POl n) = precen={ AT

Lemma 2 (Type preservation) IfI'Fp,  xya: T, then 'y, ap.: T.
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Proof. We prove the more general result: if A;... Ap,I' -y, xy a2 T and if
every variable in a is given the same type and context I', then A; ... A, Fj,
PC(a,n) : T. This is done by induction on the structure of terms, for all n.
Cases a =k and a = (a; ag) are simple. Case a = Ag.b, then T'= B — C and
B Ay . AT Fppy 0 C. Thus B Ay .. Ay, T Fy, PC(b,n+1) : C and
Ay AT Fy, PC(Ag.byn) = Ag.PC(by,n+1): B — C. Case a = X then as
Iagpa) X T, Ty, X T and Ar ... A4, Ty, g TH(X) : T

O

Proposition 1 relates substitution and grafting and justifies pre-cooking.

Proposition 1 (Semantics of pre-cooking) Let a,by,...,b, be terms of
AdB(X). We have.' (G{Xl/bl, e ,Xp/bp})pc = (ch{Xl/blpc, e 7Xp/bppc}g'

Proof.  PC(a{X:/b{",...,X,/b3'},i) = PC(a,i){X1/b1,us- - Xp/bpye}g i8
proved by induction on the structure of terms for all 7. The case i = 0 corre-
sponds to the proposition.

O

In contrast to the related proof in [8] where substitution objects [1...k. 177¥]
are necessary for proving the critical case of a = X our proof uses pure term
objects by selecting the appropriate super- and sub-scripts for ¢ (i.e., (pfjl).

The next proposition presents necessary facts for relating the existence of

solutions for unification problems in the pure A-calculus and in the As.-calculus.

Proposition 2 Let a and b be terms in Agp(X). Then:
1. a —g b implies aye —,, bpe 2. If a is Bn-nf then ap. s Ase-nf
3. a —, b implies ape —>cta bpe 4. a =gy bif and only if apc =xs, bpe

Proof. Proved by induction on the structure of terms. For the first item,

for instance, we prove by induction on a the more general fact that for all k,

(M *la b) =5 (A\F.a){1/b} implies (\*T1.a) b)pe =3, (A¥.a){1/b})pe. Our
case of interest is when £ = 0.

O

Again, our proof differs from that of [8] in that we avoid complicated sub-

stitution objects because we profit from the semantics of ¢ in the As.-calculus.

Finally we relate solutions and their existence in the A-calculus to those of As..



Ase-STYLE OF UNIFICATION FOR SIMPLY-TYPED HOU 11

Proposition 3 (Correspondence between solutions) Let a, b in Agp(X).
Then there exist terms Ni,..., N, € Ngp(X) such that a{X1/Ny,..., X,/N,}
=gp 6{X1/N1, ..., Xp/Np} if and only if there exist Ase-terms My, ..., M, where
apc{ X1 /M, ..., Xp/Mptg=ns. bpc{X1/Mu, ..., X,/ My},

Proof. If {X;/N;}i—1.p is a solution of the unification problem a =3, b then
a{X;/N;} =p, b{X;/N;}. By Proposition 2.4, (a{X;/N;})pc =rs. (6{Xi/Ni})pe-
By Proposition 1, apc{ X;/Ni,.}g =xs. bpe{Xi/Nipe }g-
If ape{ Xi/M}y =xs. bpe{Xi/M]}, we select terms N;, i = 1,...,p, in the pre-
cooking range such that N; =,,, M; and take M; in Ayp(X) such that M; = N;.
Hence, ap{Xi/M;,.}¢ =xs. bpe{Xi/M;,. }4. By Proposition 1, (a{X;/M;})pc=1s.
(b{X;/M;})pc. Hence by Proposition 2 a{X;/M;} =g, b{X:/M,}.
O

In addition to pre-cooking, we need a Back translation for giving descrip-
tions of solutions of the original pre-cooked problems. That means, that for
any unification problem P, derived by applying the As.-unification rules to the
pre-cooking a,,. 2336 b,c, we have to reassemble a problem () in the image of the
pre-cooking translation with the same solutions as P. Subsequently, () should
be translated to the A-calculus, by applying the inverse of the pre-cooking trans-
lation, into a HOU problem R (see Figure 1). Then the solutions of P coincide
with the solutions of ) and are the pre-cooking of the solutions of R, which
coincide with the solutions of the original HOU problem a :?ﬂn b. In this way
the set of solutions is given as solved forms. By the correspondence between
solutions (Proposition 3), we have that if a :Z?n b has a solution then so does
its pre-cooking aye =3, bpe. Here we do not present the proof of the converse
which can be done similarly to that of the Ao-HOU approach in [8].

The Asc-unification rules are extended with the following rules:
(Anti-Ezp-)) P—3Y (P A X =}, (Y 1)) if (X : AT F Ax) € var(P),
where (Y : Ty F A — Ax) & var(P)
(Anti-Dec-A) P Aa =3, b— P AXs.a=5,, Aa.b
if a =},, bis well-typed in a context A.I

Proposition 4 (Correctness and completeness of the Anti-rules) The
rules of As.-unification, Anti-FExp-A and Anti-Dec-\ are correct and complete.

Proof. By Theorem 1 we only examine the two new rules. Correctness
follows by inspection of the new rules. For completeness, observe that grafting
solutions of PAa =}, b, where the former equation is well-typed in the context
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A.I', are also solutions of P A A4.a :f\Se Aa.b (which is now the last well-
typed equation in the context I'). For Anti-Exp-A, suppose that 0 is a grafting
solution of problem P and select #' = 6 U {Y/X4.6X}. Then ¢'(p3Y 1) =
(P2A4-0X 1) =)5, (Aa.020X 1) =), (¢20X)o'1. We analyse the former term.
On one hand, ¢? increases by one all free de Bruijn indices occurring at 6X
except those corresponding to the variable of the free de Bruijn index 1. On the
other hand, “¢'1” decrements by one all free occurrences of de Bruijn indices
in p?0X except those untouched by ?. Then (©?0X)o'1 =), 6X.
O
The rule Anti-Dec-) is applied only to equations whose contexts are strict
extensions of I', i.e. of the form A;...A,.I' for n > 0. The rule Anti-Exp-\
only applies to variables, whose contexts are strict extensions of I'. The Back
strategy consists of applying the two new rules and the rule Replace eagerly.

Proposition 5 Let a :Z’n b be a HOU problem well-typed in a context I and P
derived by the A\sc-unification rules from its pre-cooking. By applying the Back
strateqy on P we obtain a system @ satisfying t he following invariants:

1) if an equation is well-typed in context A, then A is an extension of T';

2) for every variable Y, its context 'y is an extension of I';

3) for every subterm 1/15;’ ... fll(X, ai,...,ap) in P we have p < |I'y|—|T'| + 1.

Proof. We omit the proof of the fact that P satisfies these invariants. This
is done by induction on the structure of the derivation via the As.-unification
rules. Suppose that P satisfies these invariants. Then since the rules Anti- Exp-A
and Anti-Dec-) are applied only on variables and equations, whose contexts are
strict extensions of I, the first and second invariants are maintained. The third
invariant is maintained too, since subterms of the form ¢f;’ . fll (X, a1,...,ap)
are either already of this form in P or obtained by the two new rules as ¢2Y in
whose case p=1 < |I'y| — |T'| + 1 holds, since I'y is an extension of I'.
O

Proposition 6 (Building Back Pre-cooking images) Let P be a problem
derived from the application of the \s.-unification rules to the pre-cooking of a
given HOU problem a :};n b. The system resulting from normalization of P by
applying the Back strategy is the pre-cooking of a problem in the A-calculus.
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Proof. This is proved by simple examination of the effects of the rules Anti-
Dec-\ and Anti-Fxp-) over P. In P every context ['x is an extension of I' and
every equation is well-typed in an extension of I'. Thus applying Anti-Dec-A and
Anti-Ezp-)\ and then Replace to all the variables and equations whose contexts
are not I' (thus strict extensions of I'), we obtain an equational problem in As,
such that all equations are well-typed in the context I" and also all variables oc-
curring in the problem have context I'. The obtained problem is the pre-cooking
of a problem in the A-calculus. In fact, if I' is a context and b an s.-normal
form as above whose variables have context ', then b belongs to the image of
the pre-cooking translation. This is proved as follows. Every occurrence of a
variable X belongs to a subterm of the form wf;’ . 2311 (X,aq,...,a,). We have
that p < |T'x| — |T'| + 1 and since 'x =T, p = 1 or p = 0. For the interesting
case, p = 1, this term is of the form wg’ (X, a). The former term cannot be of
the form Xo'a, because in this case the context of a corresponds to I's; and
the whole term is of type Ax in the context I';.I's;, that is not an extension
of I'. Consequently the term is necessarily of the form (pg (X). Suppose that
I' = Ag;.Asiyj. Then ¢f(X) is of type Ax and its context corresponds to A,
that is an extension of I' whenever ¢ = 0; i.e., A = A; ... A,;_1.I'. Thus we can

conclude that b is in the image of the pre-cooking translation.
O

Corollary 1 (Soundness of the construction of solutions) Leta =}, b a
HOU problem such that its pre-cooking, normalised with the \s.-unification rules
gives a disjunction of systems that has one of its components, say P, solved.
Let @) be the system resulting by normalising P with the Back strategy and
let R = PC'(Q). Then R is a A-solved form (in the sense of [15]) and the
solutions of R are solutions of the original HOU problem.

Proof.  The pre-cooking of a substitution solution # of R in the A-calculus,
is a solution of R,. and then of @ (Proposition 3). But, 6,. is a solution of P
(Proposition 4) and then of a,. =},, by (Theorem 1). Hence 6 is solution of
a =3, b (the converse of Proposition 3).

U

Theorem 2 (Completeness of the construction of solutions) Let a =},
b a HOU problem such that its pre-cooking is well-typed in contert I'. Any
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solution of the initial problem can be obtained as the one of a system in -
solved form resulting from the application of the A\s.-unification rules, followed
by the Back strategy and the inverse of the pre-cooking translation.

Proof. We use the same notation as in Corollary 1. € is a substitution
solution of R, if and only if 6, is a solution of R,., if and only if 8, is a solution
of @, if and only if 6,. is a solution of P, if and only if 6, is a solution of
Ape :;55 by, if and only if 0 is a solution of a ::';n b.

O

4 Efficiency considerations

We precise here why the use of the sole de Bruijn index 1 and of substitution
objects make the A\o-HOU approach less efficient than the As.-HOU one. Our
comparisons are based on naive implementations obtained directly from the
inference rules, but for actual implementations many of the problems pointed
out may be circumvented. For instance, encodings of de Bruijn indices “1[1"]”
in Ao may be easily avoided in a reasonable implementation of A\o-HOU. But
these simple observations are interesting since one of the objectives of explicit
substitutions is to be close to implementation. Advantages of the Ao-calculus
in simultaneously applying different S-reductions [13] are not considered here.

For the sake of clarity, we have omitted above both types and contexts. But
for the analysis of the HOU method above it is necessary to know both the types
and contexts of all subexpressions during the unification process. Therefore
terms “decorated” with types and contexts for all their subterms are necessary
for any reasonable implementation. The general idea is to assign types and
contexts to all subexpressions at the beginning of the unification process and
to maintain this notation during the process via decorated versions of the As.-
calculus, the As.-typing rules and, of course, the As.-unification rules. Table 3
gives the decorated version of the typing rules for the As.-calculus.

The typing rules Var and Varn can be reduced to a sole decorated rule of
the form nﬁi“'A“'F making the decoration of de Bruijn indices a straightforward
process which is linear in both time and space in n.

The rule Meta is added to type open terms and should be understood as
follows: for every metavariable X, there exists a unique context I'x and a unique
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Table 3: Undecorated and decorated typing rules for the As.-calculus

(Var) ATF1: A 1AT
I'-n:B ol
4 _ D
(Varn) ATl'Fn+1:B (n+1)4T
ATFb: B pAT
Lambda by
( ) 'EAgb:A— B ()‘A'b/BLF)E_)B
(App) 'trb:A—-B TtFa:A M
' a):B L, aQ)b,
(Si ) 's;Fb:B T .Bls;Fa:A brl;zi , a£<i.B.1“2i
ma = ' >
g I'taocb: A (ai«'-B-in o-ibIl;Zi)g
(Phi) FepIsppiba: A aiﬁc-rzkw
' F'Fyia: A T T<xToring
k (Praa )4
(Meta) TxFX:Ax Xii

type Ax such that the rule holds. This is done in order to obtain compatibility
between typing and grafting. We suppose that for each pair (I', A) there exists
an infinite set of variables X such that 'y =T and Ax = A.

In Ao the corresponding rules are adapted for the manipulation of substitu-
tion objects. Types of substitutions are contexts (denoted in the undecorated
setting as s > I'). Examples of these rules are: (Shift) 141; (Comp)s® | t§
(52 o t§)R; (Clos)ay , s§ F (a3[sK])5. This kind of explicit decoration was
done Ao-HOU in [6], but maintaining this discipline in the As.-calculus is more
economical in both space and time. Let us compare the previous linear decora-
tion of a de Bruijn index, n, in \s, and its corresponding Ao-term 1[1"~!]:

Example 5 The decoration of 1[1" '] uses quadratic space and time.

. An—1-An. y Ap_2...
(comp) (shift) 43" (shift) 4420 ¢
Ap_1.ApT A, 2.7 \Ap 2.1 . A, 3. AT
(comp) (Tanr oy DA, (Shift) 1, T

(comp) Ap 1 AT _ AAn_2.T ~Ap_2.T AA A
(™ oM A DA T o Al wt (Uar)lAZI

(clos)(lﬁ:_p[(' (AT Tﬁn_Q..r YT YA A T AL AT

A,.T ne1.ApT/A,T A, T An

In [8] as well as in [6] all the development of the ELAN implementation of
the method is related to the sole de Bruijn index 1, the shift operator 1T and
composition, which makes that approach inefficient when compared with ours.
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Another problem in the decoration of substitution objects of the Ao-calculus
is that they are decorated with two contexts that are lists of types. While the
main marks in the decoration of a term object are a sole context and its type.
This makes decorations of As.-terms cheaper than those of Ao-terms.

As previously mentioned, decoration of expressions and subexpressions is
only done at the beginning of the unification process, since the As. and As,-
unification rules are supposed decorated and, of course, they preserve types
and contexts. Initial decoration can be done using the algorithm in Table 4.
This algorithm is based on a straightforward propagation of the decoration of
subterms composing a As.-term according to the decorated As.-typing rules.
The kernel of the algorithm consists of a set of rules that propagate contexts
and types between the decoration marks of the term processed conforming to
its structure outermost (named |}) and innermost (named 1}).

The above algorithm runs in time linear on the size of the As.-term and on
the magnitude of its de Bruijn indices. For this algorithm one needs the main
context, but linear algorithms can be built without it, based on the decomposi-
tion of the undecorated input into a first order unification problem of type and
context expressions generated from the typing rules of the As.-calculus.

Our previous remarks point out the advantage of As, in using all de Bruijn
indices, which avoids quadratic decorations in the size of the input as in the
Ao-HOU approach. In fact, we can take again 1[1"~!] of Example 5. Its explicit
decoration is, of course, quadratic. Consequently we can state the following.

Lemma 3 (Linear against quadratic decorations) Pre-cooked \-terms in
the Ase-calculus have linear decorations on the size of the A-terms and the mag-
nitude of their de Bruijn indices, while in Ao these decorations are quadratic.

Proof. The proof is done by induction on the structure of terms based on the
decorated typing rules for the simply-typed Ao and As, calculi.
O
Note that the size of decorated A-terms increases in an inadequate way when
normalizing via Ao, because the decoration of substitution objects is not only
expensive but also expansive in size and time. Furthermore, this expansion of
decorated terms in the A\o-HOU approach is independent of the use of other de
Bruijn indices than 1 itself, and depends only on the use of substitution objects.
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Example 6 ((Aa.((Aa. X4AAT) 44T 4ATAADAL 4 AD)AT s the deco-
rated version of (Aa.(Aa.X 1) 1). Compare the corresponding decorated terms
in the As.- and Ao-calculi after two applications of Beta.

In the /\Se-' _>Beta ((/\A.(Xﬁ'A'A'Fal1ﬁ'A'F)£'A'F)ﬁ£A 1ﬁ.r‘)ﬁ.r

~ Beta (XAAATGIAAT)AAT 51 AT)AT,

A0 = Bogg (A (XAAAT(AAAT g3 AT)AAT DAATIAT | 14T)AT S gy
(XA ad i aD) A AR DA T4 ddar) AT AT

Table 4: Type checking / decorating algorithm for the As.-calculus

INPUT: a a As.-term and I' a context.

OUTPUT: If a is well-typed in I then a corresponding decorated term
a', whose main context is I'. Else report that a is ill-typed in T'.
NOTATION: L denotes unknown types and contexts.
ALGORITHM: Initially, a is decorated in such a way that the sole
context known is its main one marked as I'. All other types and
contexts in the decoration of a are marked as 1. Afterwards, apply
nondeterministically to the decorated ter m the following rules until
an irreducible term is obtained.

At..... A, A1r..... An.T
(Varn) n’ e

(/\— U) ()‘A-ai)lj_ — (/\A-Cl’j‘_'r)lj_

A—1) Ol = Aaad™)h .

(app-)  (at bD)T — (af bD)T

(app-1) (a4 VAL — (ahp bA)B

= 1) (atobh)T - (@< T

(J_ :>) (aiq.L.FZio.ibEZi)i N (ai<i'B'FZiaibll;Zi)i
(0-_ ﬂ) (CLEQ.B.inGibgzi)E N (aiq.B.FZio_ingi)g
(b= 1) (phab)] = (pha) <" >+)]

: TepTspas i T<pT>pas
(o= 1) (pha =" 2] = (Pha st =),

(Meta) X% — X%

bS

Finally, if the main type of the resulting decorated term a' is known
then return a'. Else report that a is ill-typed under context I.

This expansion problem in Ao results from the fact that some rules used in
the generation of substitution objects increase the number of subterms which
are substitution objects. In Example 6, we only used the Beta rule of Ao
(i.e., (As.a b) — a[b.id]) which generates two new substitution subterms to
be marked in a decorated term: id and b.id, while for the Beta rule of As.,
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(Aa.a b) — ac'b, the number of subterms is reduced by one. Critical is the
case of the Abs rule of Ao, (A4.a)[s] = Aa.a[l.(so 1)], that enlarges the number
of subterms to be marked in decorated terms from four to eight. Rules that
enlarge the number of subterms to be decorated in As, are og-app-, p-app-, o-0-
and @-o-transition; i.e., all those related to the App rule of Ao, that enlarges
the number of subterms to be decorated from five to seven.

All the rules of the As.-calculus are supposed decorated. For example,
the Eta rule has the following form: (Eta) (Ma.(e4Lp 1408 —
Wi g if a4t g =, (0365, 5)4L 5. Except for this rule, application of the rules
of the As.-calculus is easy to decide: rules are either non-conditional or have
simple arithmetic conditions that can be resolved via any arithmetic deduction
algorithm usually built-in between any interesting programming language.

The test for applying the FEta rule can be implemented according to the
correspondence between the two Eta rules and following the idea suggested for
the Ao-HOU approach in [6]. We can extend the language of the As.-calculus
with a dummy symbol ¢ and verify for occurrences of this symbol after s.-
normalizing the term (a4% zolo4)Y . 5. In the case that the previous term has
no occurrences of ¢ the Fta rule applies being the reduct that s.-normalization.

In practice we have the easy to implement rule:
(Eta) (Ma.(a4Lp 140)8)% 5 — Se-normalization((a4t gotol), L 5)
if © does not occur in this term

Lemma 4 The previous implementation of the Eta rule is correct.

Proof. (Sketch). Note firstly that (a4% zoto4 )y , 5 results from Beta reduc-
tion of (Aa.a4lp) i a5 ©4)u.,p. After propagating the o operator all de
Bruijn indices in the term are decremented by one except those corresponding
to the variable of the outermost abstractor which are replaced with {o. This
is proved by induction on the structure of terms and the superscript of the o
operator that is incremented mainly via the o-A-transition rule. Terms of the
form ¢}o are obtained by applying the o-destruction rule.

Secondly, notice that in the case that no occurrences of ¢ remain in the
resulting term, by incrementing all de Bruijn indices by one we obtain a term
that is s, equivalent to a4 5. This corresponds to the condition of the original
Eta rule, since the application of p3 to A-terms increments by one all de Bruijn

indices. This can be proved by induction on the structure of terms.
d
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Turning back to Ao-HOU [6], the condition in the implementation of the Eta
rule is: “if o doesn’t occur in the o-normalization((a4”, g[(0%.id1) % 1)) 5)-”

This implementation is less efficient than in the As.-calculus because of the
use of substitution objects in the Ao-calculus. This is a simple consequence
of the fact that when propagating the above substitution objects between the
structure of a4, ; we need to apply the rules Abs and App that are expansive, as
mentioned early. More precisely, the rule Abs, (A4.a)[s] = Aa.(a[1.(s0 1)]), en-
larges the number of substitution objects to be marked in decorated terms from
one (s) to four: s, 1, so 1, and 1.(so 1); and the rule App, (a b)[s] — (a[s] b[s]),
from one to two. In contrast, in the As.-calculus the corresponding prop-
agation of the o operator is executed by applying the rules o-A-transition
and o-app-transition. The o-A-transition, (As.a)o'b — Aa.ac*™'b, does not
enlarge the number of subterms to be marked. And the o-app-transition,
(a1 az)o'b — (a10°b ayo'h), increases the number of subterms to be marked by
two as the App rule, but without including substitution objects.

5 Conclusions

Following the Ao-HOU of [8], we have developed a pre-cooking translation that
maps pure A\-terms in de Bruijn notation into As.-terms, for which the search of
grafting solutions corresponds to substitution solutions in the pure A-calculus.

Our pre-cooking translation transcribes a term a by replacing each occur-
rence of a meta-variable X with ¢5™ X while the Ao-calculus uses X[1*], where
k is the number of abstractors between the position of the occurrence of X and
the root position. Additionally, the pre-cooking translation in [8] transcribes
each occurrence of a de Bruijn index n in @ into 1[1"!]. Conformity of the two
pre-cooking translations is therefore evident. But our proofs differ from those
of [8] in that we don’t need the use of complex substitution objects because of
the appropriate semantics and flexibility of the ¢ operator in the As.-calculus.
This can be observed in the proof of the correct semantics of the pre-cooking
translation (Proposition 1) and the proof of Proposition 2 which relates the ex-
istence of unification solutions in the A- and the As.-calculus. In these proofs,
only a correct selection of the scripts for the operator ¢ was necessary, avoiding
the manipulation of substitution objects as is the case in the A\o-HOU approach.

Pre-cooking is complemented with a back translation that enables the re-
construction of solved forms of unification problems in s, into a description of
solutions of the corresponding HOU problems in the pure A-calculus.
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By comparing direct (naive) implementations of our method and that of the
Ao-HOU of [6], we observed that pre-cooked A-terms in As, have linear decora-
tions on the size of the A-terms and the magnitude of their de Bruijn indices,
while in Ao these decorations are quadratic. For this, we make no considera-
tions about the use of efficient data structures. For a reasonable implementation
of the A\d-HOU approach, a variation of the Ao-calculus which includes all de
Bruijn indices should be used, but according to the implementation of that
method in [6], this has remained inefficient. From the theoretical point of view,
our approach is the first to treat this problem in a natural way, thanks to the
simple syntax of the As.-calculus where all de Bruijn indices are included.

But it is not the sole use of all de Bruijn indices that makes the As. approach
more efficient. Another problem in the decoration of substitution objects of the
Ao-calculus is that they are decorated with two contexts that are lists of types.
While the main marks in the decoration of a term object are a sole context
and its type. This makes decorations of As.-terms smaller than those of Ao-
terms. Moreover, the size of decorated A-terms increases in an inadequate way
when normalizing via the Ao-calculus, because some rules of Ao are expensive in
that they enlarge the number of substitution objects to be marked in decorated
terms. The lack of substitution objects in As, makes the proofs easier.

Much work remains to be done and a prototype implementation of this
method is necessary. It would be relevant to consider whether a specializa-
tion of the As.-HOU for the important decidable and unitary fragment of the
higher-order patterns, as it has been done for Ao in [9], has practical benefits.
Furthermore, a formal distinction, from the practical point of view, between
the Ase-calculus (and our procedure) and the suspension calculus developed in
[14] (and used in the implementation of the higher order logical programming
language AProlog) should be elaborated. This is meaningful, since the As,-
calculus and the calculus of [14] have correlated nice properties. Recently, it
has been proved that the As. is more efficient than the suspension calculus in
simulating a sole step of S-reduction [1], but in contrast the suspension calcu-
lus appears more adequate for simulating simultaneous steps of -reduction as
pointed out in [13]. Studying these differences is important for estimating the
appropriateness of the As,.-HOU approach in that practical framework.
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