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Abstract

We give here three different descriptions of ribbon braided multiplica-
tive linear logic without units : In terms of sequent calculus, in terms
of planar proof-net structures with explicit permutation and torsion op-
erators and in term of semantical proof-nets which are isotopy classes
of ribbon graphs embeded in IR3. This allow us to decide the equality
between proofs.

1 Introduction

In his sequent calculus Gentzen recognized three structural rules: contraction,
exchange and weakening. This paper is dedicated to the study of the exchange
rule. This rule allows us to permute formulae both to the left (left exchange
rule) and to the right (right exchange rule) of the inference symbol of a sequent.

In linear logic the two other structural rules, contraction and weakening are
forbidden except for the formulae starting with the “why not” modal operator
(or more generally for negatively polarised formulae).

At this stage we can consider two variant of linear logic :

e Girard’s commutative linear logic [6].

In this case (by far the most common one) exchange is free and left as an implicit
rule. Indeed saying that a sequent is composed of two multi-sets of formulae
means that it’s invariant by permutation on the left and on the right of the
inference symbol. This calculus is also often presented with an implicit nega-
tion: the calculus being symmetrical between left and right, we can apply De
Morgan’s symmetries to the formulae and write sequents with all the formulae
on the right side of the inference symbol.
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e Yetter’s variant, circular linear logic [11].

Here we also use an implicit negation. This leads to a sequent system with
all the formulae on the right where the exchange rule is restricted to circular
permutation. Only the why-not-modalised formulae do commute with every
formula. Why allowing circular permutation? Indeed there is also a strictly non
commutative system by Abrusci [1] where one has to consider two negations.
Circular permutation allows us to consider only one negation. More precisely,
it amounts to say that between the two negations there is a natural equivalence
restricting to equality on formulae. Usual models of non commutative (linear)
logic enjoy this rule: phase spaces for example.

Moreover in presence of braiding the set of these natural equivalences is in
bijection with the set of torsion operators. The proof of this assertions is not
given here and left to a forthcoming paper. Similar ideas have been developed
by A. Joyal and R. Street in their work on the Tensor Calculus [7]. Indeed an
important motivation of our work lies in its possible applications to Category
Theory: the main proof of this paper can be seen as the core of a coherence
theorem for ribbon braided *-autonomous categories.

The proof-nets of multiplicative linear logic have nice geometrical properties.
Between the planar proof-nets of non commutative linear logic and the abstract
graphs of the commutative one, it was quite natural to look at what happens
in the braided case. It turns out that a generalisation of Artin’s treatment [2]
of the braid group using algebraic topology works well and allows us to reach
our result.

In chapter two we present the sequent calculus and define the equalities of
proofs to be considered in presence of the exchange rules. In chapter three, we
define planar proof-nets. Note that our system of proof-nets is without explicit
axiom and cut links like Lamarche’s essential nets [9] for intuitionistic linear
logic and unlike the usual proof-nets for classical linear logic. In chapter four
we show how to put exchange in a canonical form relatively to the commutative
sequential proof underlying the braided one. In chapter five we exhibit a cut
elimination procedure and an algorithm to compare proofs. In chapter six
we introduce the three dimensional version of proof-nets. We show that two
sequential proofs are equal if and only if their representations in IR? are ambient
isotopic. This topological argument shows that our algorithm for comparing
proofs is indeed complete.
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2 Sequent calculus and structural group

2.1 Formulae, sequents, proofs

We have a denumerable set of atomic formulae, given together with a bijection
on it which is involutive and without fixed point, denoted by (.)* and named
duality, negation or orthogonality.

By structural induction a formula will be an atomic formula or an expression
of one of the forms A’®B and A ® B where A and B are formulae. Duality is
extended to all formulae by the equalities (A’ B)* = B*® A* and (A® B)* =
BL9AL. One can easily see that duality is still involutive and without fixed
point.

Greek capitals I', A .. .stand for sequences of formulae.

A sequent F I' is a circularly ordered multi-set of formulae. This circular
order is obtained by extending the successor relation of the sequence I' in the

obvious way.

Proofs are built according to the following set of rules:

1
——— : aziom T4 F4 ’A:cut
- A, AL FT,A
FABT ~AT
FB AT 7 FAT A
A, BT FT,A FB,A
- asBr TV FT. A@ B.A - lensor

The rule p4 p is called permutation and the rule 64 is called torsion.

The formulae containing Latin capitals are called principal formulae of the
corresponding rule. The principal formulae can be deduced from the pattern
of each rule except for permutation and for torsion. In this case the principal
formulae are signed at the level of the rule. Thus one can consider that the
name of the rule is part of the rule itself.

As a consequence the ancestors of a(n occurence of a) formula in a sequent
in a proof are uniquely determined. In fact we could say that this paper studies
chains of ancestors, and the relations between these chains. They are repre-
sented as “ribbons” in a 3-dimensional space.
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2.2 Commutations and simplification of proofs

In this sequent calculus, one can define permutations of rules as usual (Kleene
52)[8]: when a rule R; is followed by a rule R, and no principal conclusion of R;
is principal premise of Ry, the rule Ry can always be applied before R; except
when R; is a tensor or a cut, Ry is a par or a permutation and the two premises

of Ry come from different sequents in the premises of R;.

We will not give a detailed treatment of this matter, as it follows from the
representation of proof-nets as Bellin and Van De Wiele show in [4]. We will call
these permutations of rules trivial commutations. Concerning structural rules
we are interested here in a more general notion where a principal conclusion of
the first one may be principal premise of the following one. Moreover we have

a case of simplification of structural rules.

We have four cases of non trivial commutations:

- A,B,T - A, B,T

FA BT ﬁi ~ FB, AT ZA’B
FB, AT FB, AT "4
l_AaBaFH |_‘/Ll’ipAB
I—A,B,FpﬁB ~ I—B,A,Fe’
FB,AT " FB,AT "
FABCT - AB,CT
FBACT P I—A,C,B,FpB’C
~B,C,AT ¢ ~C,ABT "
FC B,AT ° ~c,B, AT
l_A,Bl,---Bn l_A,B]_,Bn
- By, A, B, oM i)
a5, F Bi,...Bu, A
3 By A
By AB, By A By
FB,,.. B, A " :
T FBiA...B,
- A B,...B, FAB,...B,

...and the simplification:
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FA B, By,
FBi,A ...B, "

Pa,B,
“B.lAB, ~ - A, By,...B,(Id)
FAB,...B, "
I—A,Bl,...BneA

2.3 The structural group

This set of equivalences of deductions turns the set of structural rules into a
group. In order to give it explicitly we will mark a formula and situate the
other relatively to this one (there is a little cheating here because we should
have taken into account the change of the marked formula, but it doesn’t have
harmful consequence on our purpose). Let - 'y A be a sequent with n + 1
occurrences of formulae. The marked formula A is said of index 0, the other
ones following the circular order are said of indez 1...n. Let 6; be the torsion
on the formula of index ¢ (0 <4 < n), let [ (resp. r) be the permutation of the
marked formula with the one immediately to its left (resp. to its right). For
1 <7 <n-—11let g; be the permutation between the formulae of indexes 7 and
1+ 1.
Commutations and simplifications give us the following equations:

trivial commutations between two permutations:

oioj =00, 1<i4,j<n—-1 |i—j>2 (1)
lO'z'_H:O'Z'l 1SZSTL—2 (2)
ro;=o;r 1<i<n-—2 (3)

between a permutation and a torsion:

1<i<n-1 C
0i0; = 0;0i {Ozj_<n J#4i+1 (4)
7191':92'—1—17' 1S’LS7L—1 (6)

between two torsions:
0:0; =0;0;, 0<i,j<n (7)
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1%* non trivial commutation:

9i0i=0i0i+1 1§2§n—1
Ol =104
007‘ = 7“00

27 non trivial commutation:

9i+10'i:0'i0,‘ 1§2§n—1
Ool = 16
Or =10,

3% non trivial commutation:

0i0410; = 0110041 1 <1<n—2

Un_1l2 = l20'1
loyr =ro,_1l
7'20'n_1 = 0'1’/’2

4 non trivial commutation:

O;...0p_1loy...0i_1=04_1...01lop_1...0;

=1

the simplification:

OjoeOp_qloy...0;10;, =1 1<i<n

T"t%:l

One can immediately check:

-1 _
0, =0i41 ...Un_llal...oi_lﬁi

-1
9i :O-i---o-n—llo-l---o'i—l
7! = O1...0p-10,
r = Op_1...0101

Oyt =1

A. FLEURY

1<i<n (18)
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If we want to generate this set as a group (and not as a monoid) one can
forget about [, 7 and 6, and keep only equations (1), (4), (7), (8), (11) and (14).
This is the usual presentation of the ribbon braided group [2].

3 Proof-nets and sequentialisation

3.1 Definitions

A proof-structure R is a cellular complex of dimension 2(i.e. a disjoint union of
0-cells or vertices, of 1-cells or open lines and of 2-cells or open discs) isomorphic
to the oriented closed disc D2

We will have four types of vertices (or links, or O-cells):

conclusion: torsion: l
o

( O)Y
1777777777/

connective: \ / permutation: > \

The lines on the border of D? are called borders, they inherit an orientation
from D? (looking at the positive face you see them oriented positively i.e. coun-
terclockwise). We have #borders=#conclusions,the set of borders and the set
of conclusions are circularly ordered by the orientation of D?.

A non-border line will be called an edge. A sequence of edges connected
by torsion links and whose extremal vertices are not torsions will be called, by
abuse of language, an edge too. The number of torsion on these so called edges
is uniquely determined. We will say: this edge is carrying n (n € N) torsion(s).

The set {vertices}U{edges} is called the graph of the proof-structure.

The 2-cells will simply be called cells. We will say that a cell is adjacent to
a vertex or to a line if this vertex or this line belong to the closure of the cell.

For each connective link, we need to know if the connective is a par link or

a tensor link and wich one of the three incident edges is the principal edge of
the link.



46 A. FLEURY

Graphically we will use the notation: \T/ and

Turning around a connective link in the positive sens, after the principal
edge or concuston of the link, the first edge we meet is the right premaise of the
link and the third one is the left premise.

The cell adjacent to the two premises is said to be above the connective..

Moreover, these proof-structures may be typed in the following way: to each
edge with a chosen orientation one associate a formula. Typing obey to some
coherence conditions:

For each edge we have:
:A  then A+ (same edge, opposite orientation)

For internal vertices we have:

Remarks: Unless the usual proof-net representation there is no canonical ori-
entation of edges here. Indeed these orientatationless proof-nets can be seen as
a quotient of oriented (and intuitionistic) ones in the style of Lamarche essen-
tial nets. The changing of orientation over edges beeing involutive and without
fixpoint, the typing makes sens only because negation is itself involutive over
the formulae.

The type of a conclusion will be the one of the edge oriented to reach this
link. The set of types of the conclusions inherits the circular order on these
conclusions. In this way, it inherits a sequent structure. this sequent is called
the conclusion sequent of the proof structure.



RIBBON BRAIDED MULTIPLICATIVE LINEAR LOGIC 47

If the principal edge of a tensor reaches a conclusion and the three cells ad-
jacent to this tensor are adjacent to a border, this tensor will be called splitting.
The embedding of a circle S* in the interior of the disk D? induces a partition
of D? into a ring outside and a disk inside. In the case of a proof-structure if
the image of S! doesn’t contain any link and cuts the edges transversally, the
embedding is said regular. The disk inside is then itself a proof-structure. We

will say that it’s a sub-proof-structure of the larger one.

3.2 Sequents and proof-nets

Translation of the sequent calculus into proof-structures:
the translation is made inductively starting with the axioms and for the other
rules by gluing disks step by step:

/ﬁﬁv T2
:axiom \\i :cut
‘ :torsion ' ; ; n l :permutation

:tensor

Each sequential rule determines a sub-proof. We check that the translation
of a sub-proof is a sub-proof-structure. this one will be said associated to the
rule. Remark that the translation forgets about the position of the axioms and

cuts and also forgets the orientation of the torsions.
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Definition: Let C be the smallest subset of the set of 2-cells such that:

e If ¢ is adjacent to a border b then ¢ € C

e if the two cells adjacent to the principal edge of a par belong to C then
the cell above this par also belongs to C.

o [f three of the four cells adjacent to a permutation belongs to C then the
fourth one too.

We construct C by induction starting with () and adding cells one by one. We
describe this construction by the mean of a function f : C — {borders}U{par}uU
{permutations} which to z associates the border , the par or the permutation
used to show that z € C. The function f is injective, indeed:

Assume the work is already done for a subset Cy C C and that for all ’® or
perm. € f(Cp) the cells adjacent to those links are already in Cy. If Cy = C the
proof is finished otherwise 3x € C\Cy in one of the three cases:

e 1 is adjacent to a border b. Since only one cell is adjacent to b, no cell of
Co is adjacent to it, so b & f(C). We extend f to Co U {z} with f(z) =05

e 1 is above @y, ¢ and ¢’ are two cells adjacent to the principal edge of ®q
belonging to Cy. We set f(z) =8¢
The induction hypothesis still apply to Co U {z}

e 1 adjacent to a permutation py and c,d’,¢” the three other cells adjacent
to po are in Cy. We set f(x) = po
The induction hypothesis still applies to Co U {x}.

Definition: A proof-net is a proof-structure such that every cells is in C and
such that #cells=#borders++#par—+#permutations.

We say that a proof-net is a correct proof-structure. In this case the function
f is bijective. We show now that it is unique :
Let fi and f, two such functions. Let C; = {z/fi(z) = fo(z)}.

If C; # C C; is not close for our three case then it exist an z in one of the
three following case:

e fi(z) = bborder and fo(x) # b but b can only be the image of z. f» would
not be bijective contradiction.
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e fi(z) =99 and fo(z) #79 also here 2y can only be the image of = con-
tradiction.

e fi(z) = po fo(x) # po furthermore for ¢, ¢, ¢ on a f; = f, and then

fa(c) # po, fo(c') # po, f2(c") # po  po is not in the image of f, contra-
diction.

For a proof-net there is a unique inductive way to check if cells belongs to
C. Starting by the border we move up between the premises of the par and
the permutation. In the neighborhood of each non torsion link the status of
germs of edges being premise or conclusion of this link is well defined: conclu-
sion links have 1 premise and no conclusion, connective links have 2 premises
and 1 conclusion(the principal edge), permutation links have 2 premises and 2
conclusions (the cell z such that f(x) = p is the unique cell adjacent to the
two premises of p). For an edge (in the abusive sense of an edge carrying some
torsions) there are three possible status: on one end the edge is premise, on
the other it is conclusion, the edge is called ordinary edge,the edge is premise
on both ends, it’s called aziom edge, the edge is conclusion on both ends, it’s
called cut edge.

Theorem: A proof-structure is the translation of a sequential proof if and only
iof it is a proof-net.

Proof: We show first that translations of sequential proofs are proof-nets: by
induction

e The axiom: we have 2 cells on the border and the axiom has 2 conclusions.
Remark that the convention on typing is coherent with the fact that the
conclusions have dual types.

e The cut: We suppose that the result is true for the two sub-proof-structures
m et my. Gluing them together we obtain

#conclusions(m)=7£conclusions(m; ) +#conclusions(ms)-2
#cells(m)=cells(m)+#cells(my)-2

The fact that cells belong to C is checked independently in the two parts.
Moreover this fits with the convention on typing.

e Torsion: trivial
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e Permutation: one more cell, one more permutation. The cell above the
permutation is immediately reached from the border and then the induc-
tion hypothesis allows us to conclude for every other cells of the proof-
structure.

e Par: one mor par, one conclusion less. Same argument as for the permu-

tation.

e Tensor: F£conclusions(m)=#conclusions(m;)-+#conclusions(ms)-1
#cells(m)=#cells(m ) +#cells(mg)-1

Same argument as for the cut.

Remarks: A cut on an axiom doesn’t change the translation. In the three last
cases the new edges are ordinary (neither axiom nor cut).

Reciprocally proof-nets are translation of sequential proofs by induction on
#par+Fpermutation

In the case there is neither par nor permutations, by correctness, each cell is
adjacent to exactly one border: the graph of the proof-net is then a tree. If there
is no tensor link, it’s an axiom (which is perhaps carrying some torsions) and
one check trivially that the proof-net is indeed the translation of a sequential
proof. If there is a tensor we go down along his principal edge reaching either
another tensor by one of his premise in which case we repeat the process either
to a conclusion (the typing forbids us to reach another tensor by it’s principal
edge) and the last visited tensor is then splitting. It’s a good candidate to be
the translation of a last non torsion rule of a sequential proof (indeed if the
complete proof structure is correct then the two sub-proof-structures m; and m
are correct to).

#2+#perm.> 1: The set of cells adjacent to the border is not closed, then
we have a par or a permutation in a configuration like this:
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1% case: Each of the two edges conclusions of the permutation (resp. the
principal edge of the par) either reach a conclusion of the proof-net either are
cut edges. We apply the cut if it’s the case, some possible torsion and at last
the permutation (resp. the par). By induction hypothesis the proof-net is
sequentialisable.

2nd case: At least one of the conclusion edge of the permutation or the
principal edge of the par are neither cut edge neither conclusion of the proof-
net. In this case it’s not necessary to make a cut (it’s indeed possible, this will be
a cut on an axiom and then apply the 1% case). But in the sub-proof-structure
, this edge is an axiom edge and this proof-structure is a proof-net which isn’t
reduced to an axiom. By induction hypothesis it’s sequentialisable (it contain
at least one par or one permutation less). The last non torsion rule associated
to a possible sequentialisation of this proof-net is still a good candidate as the
last non torsion rule of the whole proof-net.

O

This second case has been considered to show that a proof-net without cut
edge sequentialize in a cut free sequential proof . For the converse we must
consider that if one premise of a cut rule is an axiom followed by torsions, this
cut will disappear in the translation process.

3.3 Contexts and sub-proof-nets

Acontext is a proof-net with “holes”; This mean that we have the same cells,
the same typing rules but we are no more necessarily isotope to D?: A context
is a zero gender orientated surface with a distinguished connected component
of the border. Such a surface is represented as embedded in the plan with the



92 A. FLEURY

distinguished border outside.

Internal borders are sequent-hypothesis. The types are read starting from
the conclusion link (wich in this case should be called hypothesis links. Germ
of edges are conclusion in the neighborhood of such a link.

A context with only one internal border and only ordinary edge connecting
the internal and the external border is said trivial.

The sub-contexts are defined as the sub-proof-structures but relatively to a
context instead of a proof-structure.

The correctness is defined exactly as for the proof-structures but only the
external border is taken into account.

We call sequential deduction a sequential proof where some leaves are hy-
potheses (it can be an arbitrary sequent but marked as an hypothesis) instead
of logical axioms.

Proposition: The translation of a sequential deduction is a correct context, fur-
thermore sequential deductions and context can be composed and the translation
of the composite is the composite of the translations.

The proof is easy and it is left to the reader. Reciprocally we have:

Proposition: Let C a correct context Cy...C, sub-conterts of C disjoint and

correct then C\C1U...UC, andC;...C, are translations of sequential deductions.

Proof: We only need to make the proof for C\C; U...UC, furthermore, we can
suppose that all the internal borders of C are in C; U ... UC,. Elsewhere, for
these borders we take a trivial context and if C; ...C, are all trivial it simply
remain to prove the sequentialisation of a correct context (this also allow us to
conclude for C; ...Cp).

The proof follows the same pattern as the one for proof-nets.

e There is neither par, tensor nor permutation in C\C; U ... U C,. To see
what is happening we can consider C; ...C, as internal n-ary vertices, By
the correctness criterion the graph is a tree and then:

If there is no internal borders it’s an axiom (with some possible torsions).

If there is exactly one internal border it’s a trivial context (with some
possible torsions).
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If there are severals internals borders, there are some edges between these
internal borders. These edges are cut edges and we apply the cut rule. In
each part we have now less internal borders.

e there is no par no permutation but at least one tensor:

The graph of the context still being without cycle, we follow the principal
edges until we reach a border. If this border is an internal one, the prin-
cipal edge of the last visited tensor is a cut edge. Applying the cut this
edge now reach the external border and is splitting.

e There is at least one par or one permutation: We apply the same argument,
that in the proof-net case.

0

Suppose we have regularly embedded a disjoint union of circle S! in a proof-
net such that the part inside each circle is correct. The nesting of the circles give
us a tree structure of sub-proof-nets and sub-sub-proof-nets. By an inductive
application of the last proposition, we see that it’s possible to sequentialize
keeping the trace of this tree structure.

3.4 Equivalences of proof-nets

The translation of sequential proofs into proof-nets is quotienting the structure
up to trivial commutations. But it’s quotienting more. There is an apparent
ambiguity related to the lack of orientation of torsions. We will then translate
now the equivalences of proofs and show that this identification is harmless.

Boxes stand here for arbitrary sub-proof-nets. The four non trivial commu-
tations give us:
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QY

And the simplification rule:

Y

About the torsions, using equivalence 2 and 3 we find:

The fact that axiom-cut are not translated is normal. This is because the
proof-nets are a kind of natural deduction system: Substituting an axiom in an
hypothesis doesn’t change the proof.
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4 Commutation of the exchanges

4.1 Commutation of the exchanges with fixed logical skele-
ton

We will call logical skeleton of a sequential proof with explicit exchange, the
proof without explicit exchange where we have simply forgotten about the rules
of permutation and of torsion. This is indeed meaningful because in the case
without explicit exchange, sequents are multi-sets of formulae (this is the ordi-
nary sequent calculus for commutative linear logic).

Now we want to commute permutations and torsions in order to do them
as late as possible, the logical skeleton staying unchanged. We will see that the
only rule blocking this process is the par rule. This will allow us to internalize
permutation and torsion in the par rule. The remaining uncaught ones reach
the end of the proof. But remember that the structural group is a group. Thus
these rules are reversible (until something has been caught by a par) so we will
just forget about them. An other possibility could have been to consider this
last sequent as an implicit par, for example, by marking one particular formula
of the sequent (as the left-most formula in a n — ary par).

Lemma: Let ¢ = 0, 19 and d' = do, 1 (n > 2) then for all word m in the
structural monoid, there exist | and n such that m = In, | being built from g, d
and By and n being build from ¢', d', o1...04 9, 01...0, 1 (if n = 1 we have
m=1).

Proof: If n=1 60, = 6, else we have:
Op_1 = d" 'Gyd’ and O, = d"'g" 0y...0,_1(01...00 o))"
so the monoid is generated by g, d, 0y, ¢', d', 01...0,_o and 6, ...6,_;.

Since #;, commutes with everything it’s enough to show that the generators
of the 2" group can commute to the right of ¢ and d:

o;d =do;_1 2<i<n-—2

0ig = g0it1 1<:1<n-3

0;d = db;_, 2<i1<n-1

0ig = 901 1<i<n—-2

o1d = g"0h01d = g"Oogord = g"Opdon_19 = g" Oodyg’

On—29 = goy_1 = gd" 'Opd’

0rd=db, =g"0,...0,_1(01...00_0)"}
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Opn_19=90n = gd" 19" 10y...0 —n —1(0y...0n_9o)" *
d'd = do,_1d = d*0,,_9 n#2

d'd = dod = dgoy = dgdbyd’ n=2

dg=do, 19 =dg

g'd=0,_19d = d"00,—19d = d"'Oydo,_19d
=d" Y9ygo,d? = d"10ygd?on — 1 = d"0ygdd’

g9=0n19*= g% n#2

qg=01¢9> = g’y = ¢?dbpd n=2

Now take the leftmost d or g which is on the right of some generator of the
second group and apply the commutation. if there is more than one generator of
the second group in this position then their number has diminished. If you had
only one, then the maximum number of d and g on the right of some generator
of the second group has diminished. So the process of reaching the desired form
is terminating and the lemma is true. Graphically, the distinguished formula
is in the first time part of every exchange and then it "moves parallely” to the
formula which is just on his left.

We will now make the exchanges commute below the connectives:

Case of the par: Suppose that we have a sequence of permutations and
torsions followed by a par. We distinguish the right premise of the par and we
put the exchanges under the form described in the preceding lemma. o, ...0,_»
and 6, ...60,_; commute trivially with the par. Let us show graphically what is
happening in the case of ¢':

<




RIBBON BRAIDED MULTIPLICATIVE LINEAR LOGIC o7

(7 7
[

The exchanges have passed from the premises to the conclusion of the par.
The case of d’' is symmetrical to this one. The ¢, d and 6, stay there.

Case of the tensor: We have some exchange rule and then a tensor. Let’s dis-
tinguish one of the premise of the tensor (say the left one). The only exchanges
which do not commute trivially with the tensor are g, d and 6.

Let’s show graphically what is happening in the case of d:

The permutations are now after the tensor.

For the case of 6, consider the following calculation:

Let’s do 20(1) x ... x 20(n) and by (2), (5), (9) and (15) we obtain:
(01...04-10,)"g™ = 1 then by (19) we find: 0y = (03 ...0,-16,)" and the work
is done.



58 A. FLEURY

The other cases ( g for the left premise and g, d and 6, for the right premise)
are similar and also the commutations with a cut instead of a tensor.
O

We actually reach what we claimed by the same kind of induction as for
the preceding lemma (taking the deepest par, tensor or cut which is behind a
non canonical exchange rule). Except in the cases of g, d and 6y on the right
premise of a par, the permutations and the torsions reach the end of the proof
where we forget about them.

4.2 Exchange in canonical form

Let a proof in the usual M LL sequent calculus, the implicit use of exchange rules
can be made explicit in the following way: We never make any permutation nor
torsion except perhaps just before a par. Indeed the par can be done only if it’s
left premise is immediately to the left of it’s right premise. In this case we just
do it. otherwise we permute the right premise with the formula immediately on
it’s left and so on until we reach the left premise. Then we do the par. In our
braided case, if the only remaining exchanges are on the right premise of some
par, they can be encoded in a word in ¢, d and 6. Now multiply this word
on the left by ¢"6,. The right premise of the par is then coming immediately
to the right of the left premise and then do some exchanges and then the par.
These exchanges are represented by a word in g, d, 6 such that #g = #d [n].

Lemma: The subset of the structural group generated by g, d and 6y such that
#g = #d [n] is isomorphic to Z x FG(n — 1) where FG(n) is a free group on
n generators.

We have ¢g" = d” = ;' and 6, do commutes with all the elements of
the group, It will be the generator of Z. For 0 < i < n let u; = d'¢’ and
u; = g™ 'd"'0%. The u; will form the bases of our free group. We first easily
verify that the application from 7Z x FG(n — 1) to our subset of the structural
group is a surjective morphism of groups. For the injectivity we will use a
topological argument (cf next proposition).

We call canonical form of the exchange the ordinary commutative sequent
calculus where a comment is attached to every par rule, this comment being
an element of ZZ x FG(#I'), I" being the context of the par (the relative num-
ber represents the torsions and the element of the free group represents the
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permutations).

Proposition: Two proofs with the same logical skeleton are equal if and only if
the comments on each par rule are equal (taking the reduced representation of
the element of the free group).

This proposition will be proved in paragraph 5.3. It implies the injectivity
of the morphism of the precedent lemma.

5 Cut eliminatition and equality of proofs

5.1 Cut elimination and n-rule

In a proof-net, When the two ends of a cut edge are connective links, we will
call it a multiplicative cut. All the other cases will be called exchange cuts (one
at least of the premise of the cut is a permutation link).

Let’s show first how to n-expand the axioms and eliminating multiplicative
cuts. If they don’t carry torsions

\/
we have: <£>
f

If there are some torsions we can “push them over the par” and we can

conclude. Indeed gdfyf,, = (01 ...0,_260,_1)" " and then:

? ; T

In the translation of a sequential proof in canonical form the cuts are multi-

plicative cuts and don’t carry torsions. There elimination is then easy. It enough
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to put the proof again in canonical form to iterate the process (which strictly
shrinking) or to notice that the cut have already been eliminated. Even if this
proof is constructive it cannot be taken as a serious normalization algorithm.
In particular it is not confluent, this is why we need the next chapter.

5.2 Commutations of multiplicatives rules

We are able to decide the equality of two proofs with the same logical skeleton
and also those without explicit exchange (usual multi-set calculus) using the
trivial commutations. But with the comments on the par, these commutations
are a bit less trivial (or even forbidden). When a par is before another rule
the techniques of the preceding chapter are enough to conclude. When a tensor
is before a par the situation is not so simple: We cannot always apply the
commutation we would have without the comment.

We produce here a semantical argument which allow us to say when the

commutation can be done.
The phases

One associate to each cell an element in a free group whose number of
generators is equal to to #border+#par. This function will be called phase
and denotated ¢. The computation of the phases will be done following the
correctness checking pattern.(the function f is the one describe in paragraph..)..

e if f(c) = b is a border then ¢(c) = z,
e if f(c) ="9 is a par then ¢(c) = x5,

e if f(c) = po is a permutation, let ¢, ¢y, c3 the three other cells adjacent
to po, respectively on the left of the left conclusion, between the two
conclusions and on the right of the right conclusion of the permutation. By
the hypothesis of correctness of the proof-net, the values ¢(c1), ¢(cz) and
#(c3) have already been calculated. We pose: ¢(c) = ¢(c1)d(ca) *o(cs)

In the case of a context there is of course no generators associated to the
internal borders. Let R a proof-net, R’ a sub-proof-net, R\ R' being a correct
context. If we have calculated the phases for the proof-net R’ and the context
R\R', outside of R' the phases for R are the same as for R\R' and inside the
sub-proof-net they are obtained by substituting to the generators of the border
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of R’ the values obtained on the internal border of the context R\R' (easy
checking).

Definition: Let a an edge with a chosen orientation let [ and r the cells
respectively on the left and on the right of the edge (a oriented upward). We
call phase of a and we denotate ¢(a) = ¢(g)p(d) .

Proposition: If a tensor is followed by a par, the commutation is possible if
and only if each of the premises of the tensor is conjugated to a term who doesn’t
contain the generator associated to this par.

Proof: We will show, first that either one knows how to make the commutation,
or all the conjugates of the phase of at least one of the premise of the tensor
contain z (the reciprocal will be proved in the next chapter).

We are reasoning in the sub-proof-net associated to the par.

We start by computing the phases of a context with n+1 conclusions where
the marked formula is permutated with & (k < n) formulae to it’s left (resp. to
it’s right). We denotate xg, x1. ..z, (resp. xy, o...z)) the terms associated to
the cells of the external (resp. internal)border starting with the marked formula
and turning in the positive direction.

/ o / 1 -1
Ty = Tk Ty = Tp—kT, To
= T =Ty 1% T
We find: ¢ “nk for gF and: ¢ AL noim for d*.
Tn—k+1 = TnLo L1 Tp = To
ro_ -1 ro_
\ z], = z,2y g \ T, = Ty

Let p (resp. ¢) the number of formulae in the context of the left premise A
(resp. right premise B) of the tensor. Suppose that just after having introduced
the tensor this one is of index ¢ relatively to the marked formula (future right
premise of the par). To the cells corresponding to this border will be associated
the terms x, 73...7,,,. The cells respectively to the left, to the right and
above the tensor will then be of the following indices:

t—1,tand t+¢q (t — 1 and ¢ + ¢ are taken modulo p 4+ ¢ + 1) and then
O(A) =z, 40"y 9(B) = aja'r),

After having introduced the tensor we bring the marked formula just to the
right of the future left premise of the par (by ¢* k < p+q). If we denote
Zo. .. Tpt+q the image by ¢ of the cells of the border of this sub-proof-net, we will
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find for ¢(A) and ¢(B) the following values:

e t=0
ek=0
$(A) = z47,,
¢(B) = zozy’
e 0<k<p

¢(A) = xq_HCfE];l.Io./E;iq

5(B) = mial,
ep<k<p+gq

1, -1 —1
P(A) = Tp4e2g LkLp_p,T0TLptq

-1
p+q

#(B) = xkx,ipxox
e 1<t<p
oi+q<p+q—k
A(A) = TerqrnT;i 4
O(B) = TrpkTpygin
ot<p+qg—k<t+gqg
G(A) = Tpigo TopraT; 14
$(B) = Te1kT7 ) pT0Tp g
ot—1=p+q—Fk
¢(A) = xp+q$alxq+1$;iq
(B) = TpigTq Tqi1T0Tpig
ep+qg—k<t—1
P(A) = xp+qxalxt—p+k$;—11—(p+q—k)xox;iq
¢(B) = $p+qxalxt—(p+q—k)xt_—1p+kx0m;iq
et>p
ot<p+q—k

D(A) = Tep1 18T g

A. FLEURY
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¢(B) = $t+k$t__1p_1+k
ep+g—k=t—1
P(A) = 33(137_1

ptq
1 _
¢(B) = Lp+qZy Tp+g+1-kLy !

ol—p—1<p+qg—k<t—1

¢(A) = Tt—p-14kT4_1_(p1q—k)T0Tptq

-1 —1
¢(B) = Tp+qloy Tt—(p+q—k)Ly p 14k

ep+q—k<t—p—1

_ 1 1 1
¢(A) = zp1q2g Lt—p—1—(p+q—k) V11— (pt+q—k)L0Tp+q

¢(B) = $p+qxa1$t—(p+q—k)x;lqu(mq—k)xoxzﬁq

Suppose that we do the par right now (this correspond toae € Z x FG(p+
g —1)). We have z, = z,+,. The two phases admit a conjugate which is not
containing z,., exactly in the cases: 2.1(t+k # p), 2.3, 2.4, 3.1(t + k #p+q),
3.3(t+k = 2p+q+1) et 3.4. These are precisely those for which the commutation
arise in the case without explicit exchange. For the case 2.1 (t+ & # p) and 3.1
(t + k # p+ q) commutation is trivial. If ¢’ is the new position of the tensor
we have, modulo p + ¢ + 1, ¢(A) = zpyea,l, and ¢(B) = zpxyl,. In the
other cases we use the commutation between the tensor and the permutation
of paragraph ... in these cases we have ¢(A) = T, @) Ty ey Tz, 1, and
»(B) = mp+qx51xt:x;,iqx0x;iq. In the other cases we have ¢(A) or ¢(B) = xp14v

or vz, |, (v doesn’t contain )

p+q

We will now reasoning by induction on the length of the comments 6.t or
f,.t withn € N and t € FG(p+q—1) (¢ is in reduce form) to show that, if for a
comment a all the conjugates of A and B contain x then for the comment a.u
(u generator) it’s also the case. The phases will always be alternated products

of z and of z7!. In the cases where one know how to do the commutation for

1

+¢)» sSome u will

a (then up to conjugation ¢(A) = zy,,x;", et ¢(B) = zpz;
block it. The will then have the expected property.

e u = B trivial

e u = f we compose the sub-net for which the calculus is already done
with the context g" (n = p+ q). Here we have to substitute z,,25 " 7; to
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1

»+q and the hypotheses are

;. One obtains Cba?o (A) = $p+q$51¢a( )ToZ,.
satisfied.

= d*¢* we check first the effect produced on a context. For

Ug,
< i < k we obtain: x, = 4,2, xxk Yoz, Lt oxp and for k < i < p+q¢:

p+q

8 © <

I_ .
i = Li

Substituting z} to x; all the generators and conserved and in the same or-
der, then ¢q 3 Tp1q = Pguy, D Tpiq- Suppose now that up to conjugation
¢a(A) = xt:+qxt_,£1 and ¢,(B) = :thxt, then for a.u; one finds:

1<t <p

'+ q < ki o, (A) = Tpigzy ¢a(A)zoz, ], and similarly for B and we
know how to perform the commutation (should have been a good idea to
put some more picture).

' —1<k<t'+¢q ¢ou(A) =2piqz, Y2 aTo mka:t, lxoxp+q this phase
and all its conjugates contain x,,,. We will see that the commutation
doesn’t hold.

k<t —1: ¢gu,(A) = ¢4(A) similarly for B. The commutation is
trivial.

Ifp<t <p+yg

t <k Pau,(A) = TpigTy da(A )xoxp+q similarly for B and we know
how to perform the commutation.

t'—p—1<k<t: ¢gu,(B) =zpzy xp+qx0 lxkxt,ip lxoa:p+q this phase

and all its conjugates contain z,;,. We will see that the commutation
doesn’t hold.

k<t —p—1: ¢gu,(A) = ¢s(A) similarly for B. The commutation is

trivial.

u =T = gPTIFdPrI=%G2 Over a context for 0 < < k we obtain: z} = x;,

for k <i<p+q o = 2325 ' Tpy Ty TiTH 4 To

IJ‘HI

Similarly for uj one check that: ¢, > 2,4, = ¢a @, D Tpig and for the
cases where @,(A) = 2y 4,7, | and @, (B) = :thxt, up to conjugation we
find

1<t <p
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t'+q <k ¢pom,(A) = ¢a(A) similarly for B. The commutation is

trivial.

' =1<k<t+q ¢oz,(A) = TuTy  TpiqTy, Ty 49Ty ToTy ", this phase
and all its conjugates contain x,,,. We will see that the commutation
doesn’t hold.

k<t —1: ¢om, (A) = 2k70 ' TprgTy  da(A)TrTp + ¢ 207, ' similarly for
B and we know how to perform the commutation. If p < ' < p+¢

t' <k: ¢pom,(A) = ¢4(A) similarly for B. The commutation is trivial.

1 |
' —p—1<k <t ¢ug,(B) = ThTy TpiaTy TeTpiy

and all its conjugates contain x,,,. We will see that the commutation
doesn’t hold.

a:oact_,ip_l this phase

k<t'—p—1: ¢om, (A) = 2475 ' Tp1 gy da(A)TpTp + ¢ 1207, ' similarly
for B and we know how to perform the commutation.

Let’s now give an example where it’s the exchange who blocks the commu-
tation:

i

Without explicit exchange, the tensor on the right would have been splitting.
Here it doesn’t commute with the par and can’t be the last rule. Intuitively,
in order to have the commutation, the two premises of the par must be in the
context of the same premise of the tensor and for each generator of the free
group if we have crossed one formula in the context of the other premise of the
tensor or the conclusion of the tensor, we must have crossed every one of them.
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6 The proof-nets in IR*

We give here a topological interpretation of proof-nets which will allow us to
prove that the method we used to compare proofs is indeed complete. Take
one more time the translation of the sequent calculus but giving a thickness to
the planar proof-structures. The edges will have a certain width becoming like
ribbons. The border of planar proof-structure being the equator of a sphere
border of a ball B® where the “graph” (a surface) will be embedded (this one
“touches” §B? only on this equator). We show graphically how permutation
and torsion are interpreted:

In the case of the permutation, the left premise passes over the right premise.
In the case of the torsion, the ribbon corresponding to the principal edge does
a complete turn on itself in the clockwise sense (to my knowledge M.C.Shum
[10] introduce this kind of structure). For the other two rules take the evident
translation where nothing is going out of the equatorial plane. We can check
that the equivalences of rules preserve ambient isotopy class. This means that
we can pass from a form to the other by a continuous deformation of the ball
B? (and then of the included ribbon). But we can do better than this:

Theorem: Two cut-free proof-nets with only atomic axioms, are equal if and
only if they are isotope as proof-nets in B3. Furthermore, the method described
in the former paragraph allows to decide about this equality.

Let us now describe the decision algorithm. Given two proofs of the same
multi-set of formulae, first put them in canonical form, cut-free and n-expanded.
If they have the same logical skeleton, we compare the comments, otherwise by
applying commutation rules, we try to impose on the second proof the same
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logical skeleton as the first one. More precisely: if the last rule of the first proof
is a par then it’s evidently possible to make it commute in order to reach the
lowermost position and we can pass to the preceding rule. We can then suppose
by induction that the last rule of the first proof is a tensor. Let’s compute the
phases of the premises of the corresponding tensor for the second proof. If the
conjugation classes of these phases both contain an element of the group of the
border, we know how to make the tensor commute and reach the lowermost
position. It remains to prove that in case of failure of this algorithm the two
proofs are not isotope.

Lemma: Let m(I1, py) be the fundamental group of the complement of the graph
of a proof 11 in B? relatively to a point py € by a border. We have a surjec-
tive morphism of phase group over mi(I1,py) whose kernel is generated by xy, .
This application sends the group generated by the phases of the border onto the
fundamental group of the border of 11: §Bs\{conclusions}. In particular, this
fundamental group is a free group with #conclusions + #par — 1 generators,
the one of the border has #conclusions — 1 generators.

Proof: Let ¢ be a cell, the image of ¢(c) is the path which, starting from
Po € by, passes under the graph of the proof, rises through the cell ¢ and goes
back to py passing over the graph. We proceed by induction on the sequential
proof:

e In the case of the axiom, as expected we have a fundamental group iso-
morph to ZZ generated by the path which is turning around the ribbon.

e In the case of the cut or of the tensor, the result follows from an elementary
application of the Seifert-Van Kampen theorem (saying that, if A, B and
AN B are connected by arcs, then the fundamental group of AU B is the
amalgamated sum of those of A and B over the one of AN B).

e Adding a par induce a retraction of the complementary of the graph and
then the fundamental group is unchanged. The cell who was between the
premises of the par is now above the par.

e The case of the torsion is trivial.

e In the permutation case, it’s enough to check that the equations on the
phases do pass to the fundamental group. O



68 A. FLEURY

Now let II; and II; be two proofs of the same multi-set of formulae, where
IT; is in canonical form, cut-free and with only atomic axioms. We suppose that
only the isotopy classes of I1 is known. To eliminate the cuts and n-expand the
axioms, we just have to cut the ribbons in the sense of the length. Let’s now
test the equality of the proofs.

If the last rule of II; is a par, it does exist in Il a unique path starting
from the left premise of this par following the graph but never an edge which
is the right premise of another par and reaching the right premise of our par.
The number of time the ribbon we are following turns on itself gives us the
torsion associated to this par. This definition depends only on the isotopy class
(in particular it is invariant by commutations) and we check on II; that it is
indeed the torsion of the last rule. Let’s now cut the right premise of every
par, the complementary of the graph retracts now on its border. Start from
a point py of the border in a neiborhood of A’ B, following the path we just
described, we come back to py. By the retraction we inherit an element of
m(0Bs\I'U{A®B},po). The circular order of the formulae in the root sequent
depends only of the graph of the proof (and not of the particular embedding in
B3). A base can then be chosen knowing only the isotopy class of the proof.
As a base, we choose the paths passing above the equator, making one turn
around the formulae of I' and back to the starting point by the same way. In
the case of II; one checks that the word produced in this way does correspond
to the free group part of the comment. If the comments are different then the
proofs are not isotope. If the last rule of II; is a tensor, it’s enough to check
that this tensor is splitting in Il;. The phase of an edge is associated to a
path, passing under the graph turning around the edge in the positive sense
and returning by the same way. If we are reasoning up to isotopy, we can take
a path ¢(A) turning around the edge A, but, in order to have an element of the
fundamental group, we still have to choose a path to the base point. We will
take all the possible path, this will give us a conjugation class C(A) C w1 (I, po).
The condition A ® B is splitting if and only if C'(A) N 6 Bs\{conclusions} # 0
et C(B) N dB;s\{conclusions} # () does depend only on the isotopy class of II.
If this condition is not true for Il,, this last one is then not isotope to II;.
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7 Conclusion

Despite of the strong geometrical intuition about 3D-proof-nets, this work sticks
to the syntactical aspects. Several other aspects have to be considered, first of
all the categorical semantics which will give this work its natural audience. Rick
Blute [5] has already given a definition of braided *-autonomous categories. The
typical example of such a category is the category of modules over a quantum
group. We can even hope a completeness result in this area. On the other hand,
a proof-object is an ambient isotopy class of ribbon graph. So the correctness
criterion should be itself invariant by isotopy. It’s relatively easy to find a
property which looks characteristic to our objects : If we generalize the notion
of causal chain defined by Asperti [3], we find that these causal chains are
unknotted. I conjecture that any proof-structure whose all the causal chains
are unknotted is correct.
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