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Abstract

Present state of development of mathematical fuzzy logic is surveyed.

The aim of this paper is to survey the present state of development of math-
ematical fuzzy logic (or fuzzy logic in the narrow sense) based on the logical
systems BL and BLV (basic fuzzy propositional and predicate logic) as intro-
duced in my monograph [21]. Note that there was another survey [22] written
in 1998. The present paper is based on my lectures held on WOLLIC’2001 in
July 2001 in Brasilia, Brazil and on Reason Park in August/September 2001 in
Foligno, Italy. The paper cannot be any self-contained exposition; it should be
understood as a guide for studying the book [21] and later results. (Needless to
say, only a selection of results is presented.) The reader should be also informed
on four recent monographs dealing with many-valued (fuzzy) logic, each from
its specific point of view: Cignoli et al. [7], Gottwald [20] and Novak et. al.
[39], and Turunen [40].

1 Propositional fuzzy logic.

Fuzzy logic is understood a logic with a comparative notion of truth, the stan-
dard set of truth values being the real interval [0, 1] with its usual ordering. 1 is
absolute truth, 0 absolute falsity. The logic is built as truth-functional; contin-
uous t-norms (binary operations * on [0, 1] that are commutative, associative,
non-decreasing and satisfy 1 x z = z for each z)! serve as truth-functions of
conjunction &. Each such t-norm x has its residuum r = y = max{z|z x z < y}

!The monograph [36] is recommended as a modern monograph on t-norms, in general very
good but unformulately its presentation of properties of our logic BL is incorrect.
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serving as the corresponding truth function of implication —. Note that z(x =
y) = min(z,y) and max(z,y) = min((z = y) = y, (y = z) = z). Formulas
are built from propositional variables, connectives &, — and truth constant 0
(denoting 0); one defines = to be ¢ — 0, p A1) to be Y& (¢ — 1) and p V1 to
be ((¢ = ¢¥) = Y)A((¥ = ¢) — ¢). Three most important continuous ¢-norms
are Lukasiewicz max(0,z + y — 1), G6édel min(z,y) and product t-norm z - y.
Formulas for their residua are: x = y = 1 for x < y, otherwise z =y =1—xz+y
for Lukasiewicz, = y for Gidel, = y/x for product. The residuum of product
is called Goguen implication. Note also that the truth function(—)z = x = 0
for negation is 1 — z for Lukasiewicz, and Go6del negation((—)0 =1, (—)z =0
for x > 0) for Godel and product. An evaluation e of propositional variables by
truth values extends to an evaluation e, of all formulas (depending of a chosen
t-norm x*); a formula @ is a x-tautology if e.(p) = 1 for all e; ¢ is a t-tautology
if e,(¢) = 1 for each e and each .

1.1 The basic fuzzy logic and three stronger systems

The following t-tautologies are taken for azxioms of the logic BL:
(A1) (= 9) = (¥ = x) = (¢ = X))

(A2)  (p&t)) — ¢

(A3)  (p&tp) = (V&)

(Ad) (&l =) = (V&Y — @)

(ABa) (o — (¥ — x)) = ((p&t) — x)

(A5b)  ((p&t) = x) = (¢ = (¥ = X))

(A6) (¢ =)= x) = (¥ —=9)=x) = Xx)
(A7) 00—

Modus ponens is the deduction rule; this gives a usual notion of proof and
provability.

Lukasiewicz logic L is BL plus the axiom of double negation =—¢ — ;
Gddel logic G is BL plus the axiom of idempotence of conjunction ¢ — (p&¢).
Product logic I1, originally introduced in [30], is defined in [21] as the extension
of BL by two axioms; Cintula [9] has shown that they can be replaced by the
following axiom: —=—¢ — ((¢ = (&) = (P&—-—1)).

General algebras of truth functions for BL are called BL-algebras. A BL-
algebra is a structure L = (L, N, U, *,=,0, 1) where (L,N,U) is a lattice with 0
and 1 as least and greatest elements, (L, *, 1) is a commutative semigroup with
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identity 1 and the following holds for each x,y,z € L :
z <z =yiff x x z <y (residuation)

xNy=zx*(r=y) (divisibility)
(x = y)U (y = z) =1 (prelinearity)

BL algebras from a variety, i.e. can be defined only by identities. Indeed, resid-
uation may be replaced by identities and Cignoli showed [6] that the following
two suffice:

r=(y=2)=(r+y) =2z (cf. Axiom A5)

(xAy)*z=(x*x2)A(yx*z) (A =*-distributivity).

Agliano, Ferreirim and and Montagna [2, 3| related BL-algebras to hoops.
A hoop is an algebra L = (L, ¥, =, 1) satisfying for all z,y, z € L the following:

T xy =y (commutativity), lxz =2z, z=2=1,
zx(@=y)=yx{y=2), 2= Y=2)=(Txy) =2

(Compare the last two axioms with (A4) and (A5).) One defines z < y as
x = y = 1. Particular hoops: satisfying

(r=y)=>2<((y == 2) = z (basic)
(z = y) =y = (y =) =z (Wajsberg)

A hoop is bounded if it has a least element 0. It turns out that BL-algebras
are precisely bounded basic hoops; more precisely, (L,N, U, *,=,0,1) is a BL-
algebra iff its reduct (L,*,=,1) is a bounded basic hoop with least element
0.

Each BL-algebra L can serve as algebra of truth functions for BL, =, %, N, U
being truth functions of —, &, A,V respectively. Our axioms A1-A7 are L-
tautologies for any BL-algebra L. We have three varieties corresponding to our
three stronger logic: A BL-algebra L is an M V-algebra if the axiom of double
negation is an L-tautology, i.e. (—)(—)z = z is L-valid ((—)z being = = 0).
Similarly L is a G-algebra if x = x x x is L-valid; L is a product algebra if the
additional axiom of II is an L-tautology. As shown in [3], MV-algebras are
precisely all bounded Wajsberg hoops. Relation of product algebras to hoops
was studied in [1].
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If % is a continuous ¢-norm and = its residuum then ([0, 1], min, max, *, =,
0,1) is a particular linearly ordered BL-algebra [0, 1], given by *. Such algebras
are called t-algebras or standard BL-algebras. The standard MV-algebra (G-
algebra, II-algebra) is just [0, 1], where * is the Lukasiewicz (Gddel, product) ¢-
norm. Each BL-algebra L can be isomorphically embedded into a direct product
of linearly ordered BL-algebras (subdirect representation).

Let now C stand for BL, L, G, I1, let C-algebras be BL-algebras, MV-algebras,
G-algebras and II-algebras respectively.

General completeness theorem. For each formula ¢, the following equiva-
lent: (i) ¢ is provable in C, (ii) for each C-algebra L, ¢ is an L-tautology, (iii)
for each linearly ordered C-algebra L, ¢ is an L-tautology, (iv) for each/the
standard C-algebra LV ¢ is an L-tautology.

Note the the equivalence of (i)—(iii) generalizes to provability in a theory T’
over C and truth of ¢ in each L-model of T’; details are in [21]. Concerning the
equivalence of (i) and (iv), called standard completeness, for C being L, G,II
a proof is found in [21] (together with references to literature); for BL it is a
result of Cignoli et. al. [8] (improving substantially my partial result from [23]).
We shall discuss it in the next subsection.

1.2 Structure of linearly ordered BL-algebras

The proof of standard completeness for G is easy. For L and II it uses the
representation of linearly ordered MV-algebras (MV-chains) as intervals [0, e] in
a (linearly) ordered Abelian group (oag) with appropriately defined operations
and the representation of II-chains as intervals [—o0, 0] in an oag extended by
—o0. This is used together with theorem of Gurevich and Kokorin saying that
for each oag G' and each finite subset X C G there is a subset Y of reals and
one-one mapping of X onto Y preserving addition and ordering. Using this one
can convert a counterexample showing that a ¢ is not an L-tautology, L being
an MV-chain (II-chain) to a counterexample showing that ¢ is not a tautology
over the standard MV-algebra (II-algebra).

Showing standard completeness for BL is much more difficult and uses results
on the structure of BL-chains that are of independent interest. (They are from
[23] and [8].) To sketch them let us first recall the characterization (by Mostert
and Shields) of continuous ¢-norms. Let * be a continuous ¢-norm and let
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E = {z|x*x = z} be the (closed) set of its idempotents. For each x € F — {1},
let 2 be the least idempotent bigger than z if such element exists, otherwise
xt = . If £ # x than the restriction of * to [x, 27| is isomorphic to Lukasiewicz
or product t-norm; if for each x € FE, if u,v are not from the same interval
[z C x], then u x v = min(u, v).

This generalizes to BL-chains as below: each BL-chain can be embedded
into another BL-chain which is saturated (roughly, a saturated BL-chain has
“sufficiently many” idempotents).? Let L be a saturated BL-chain and let E
be its set of idempotents; for x € E defined z* as above. Now if x # z+ then
the interval [z, z"] with the structure inherited from L? is an MV-chain or a
[I-chain. For u, v not belonging to any common [z, 2], u*v = min(u, v). Using
this one can transfer a counterexample showing that ¢ is not an L-tautology to
a counterexample showing ¢ not to be a [0, 1],-tautology for a suitable t-algebra.

Agliano and Montagna [3] developed another representation of BL-chains.
Let (L;,7 € I) be a linearly ordered system of hoops having the same greatest
element 1 and otherwise being pairwise disjoint, i.e. L; N L; = {1} for i # j.
Let L = |J;cr Li and let x be the operation on L that behaves on each L; as L;
says and otherwise for v € L;,y € L;j,© < j let x x y = . Define accordingly
= on L and you get a hoop L which can be called the AM-sum of (L;,7).
Agliano and Montagna show that each BL-chain is an AM-sum of a system
of Wajsberg hoops, the system having a first element which is bounded (has
a least element). Note that their paper contains deep results on varieties of
BL-algebras, e.g. a characterization of BL-chains generating the whole variety
(i.e. for such a BL-chain L, L-tautologies coincide with ¢-tautologies). Deep
algebraic results on varieties of BL.-algebras have been also obtained by diNola
et al. [13, 14] and others. The paper [33] by Honzikovd (=Hanikovd) on logics
of particular continuous ¢-norms must also be mentioned.

1.3 Computational complexity

Let us close our survey on fuzzy propositional calculi by summarizing known
result of computational complexity. C stands again for BL, L, G, II; for each C

2A pair X,Y C L such that (Vz € X)(Vy € Y)(z <y and z xy = z) and Y is closed
under x is called a cut. L is saturated if for each cut there is an idempotent d such that
(Vz € X)(Vy € Y)(z <d <y).

3x is restricted to [z,zT], also v = u for z < u < v < 7 is inherited; for z <u < v < z7T,
u = v becomes v.
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we consider four sets of formulas denoted by TAUTE, TAUTE,

pos?

SATE, SATS

pos

and defined as follows:

TAUTE = {¢| for each C-chain L and L-evaluation e, er,(¢) = 1},
TAUTY,, = {¢| for each C-chain L and L-evaluation e, eg,(¢) > 0},

SATYE = {p| for some C-chain L and L-evaluation e, er,(p) = 1},
SATE = = {¢| for some C-chain L and L-evaluation e, ey,(¢) > 0},

pos

Note that due to the results formulated above we may restrict our attention
just to standard C-chains keeping in mind that L,II, G has just one standard
C-chain (t-norm) each and standard BL-chains are just t-algebras [0, 1], (all
continuous ¢-norms). Elements of TAUTE may be called 1-tautologies of C ele-
ments of TAUTY,, positive tautologies of C, elements SATY, SAT,,, 1-satisfiable
and positively satisfiable formulas of C.

To put it briefly, everything is as expected: SATY and SAT},, are NP-
complete and TAUTY, TAUTY,, are co-NP-compete. The proofs of these facts
are of varying degree of difficulty; for C = L,G,II all are in [21] (with ref-
erences to original papers if there are any); TAUTP" being co-NP-complete
is proved in [5] and the remaining results for BL are (easy but) not yet pub-

lished. There are several results of equality among these sets, namely SATE =
SATS = SATP! = SATE = SATP (= formulas satisfiable in the clas-

sicalpBoolean logic), TAUZ}ES = TAUT,,, = TAUTP" (see [21]), SATP" =
SATE, SATE: = SATL TAUTB: = TAUTY, (unpublished). Evidently,
TAUTY for different C are pairwise distinct; also SATPI;S > SATE 5 SATB!,
TAUTE ¢ TAUTPI;S C TAUTP* and all these inclusions are strict (see [21]).

2 Predicate fuzzy logic

2.1 The basic predicate fuzzy logic and the three
stronger systems

In [21] one works with an arbitrary predicate language given by its predicates
(each having a given arity) and constants; formulas are built from them in
the obvious way using object variables, logical connectives &,—, truth con-
stant 0 and quantifiers V,3. A standard interpretation of the language is a
structure M = (M, (Tp) ppred, (Mec)cconst-) Where each m, € M and for each
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n-ary predicate P,rp is an n-ary fuzzy relation rp : M"™ — [0,1]. To com-
pute truth values one has to fix a continuous ¢-norm *, thus we may speak
on a [0,1],-interpretation. A general interpretation over a BL-algebra L (or
an L-interpretation) is a structure as above but rp is an L-fuzzy relation, i.e.
rp : M™ — L. The notion of free and bound variable is as usual. The truth
value ||¢||5, of a formula ¢, is given by a BL-algebra L, an L-interpretation
M and an evaluation v assigning to each variable z an element v(z) € M (and
for simplicality, assume v(c) = m,). The definition is a la Tarski:

||P(U1, Tt un)“k/l,v = TP(U(ul)a R U(Un)),
le = Ylinee = el = [¥lln,,, similarly &, ,
1(V2)¢llyg, = inf{[|¢llnges [v =2 v}, similarly 3, sup

(where v' =, v means that v'(y) = v(y) for all variables y except possibly z).
This definition is total for L = [0, 1], since the order of [0, 1] is complete; for a
BL-algebra L some values may be undefined since the necessary inf/sup does
not exist. The L-interpretation M is safe if ||¢||yy, is defined for all ¢ and v.
(Caution: it is not demanded that L is completely ordered; just all sups/infs
used in the definition exist.) A formula ¢ is an L-tautology if ||¢||3y,, = 1 for all
safe L-interpretations M and all corresponding evaluations v. We write ||¢||X
for inf{||¢|lyr,lv} and say that ¢ is L-true in M if ||¢||y = 1. The following
formulas are L-tautologies for each linearly ordered BL-algebra L and are taken
for arioms on quantifiers:

V1
J1
V2
42
V3

NN N N S
N N N N

Deduction rules are modus ponens and generalization (from ¢ derive (Vz)y).
Let C be BL, L, II, GG. The predicate calculus CV has axioms of C for connectives
(in which ¢, 9, x vary on formulas of predicate logic) and the above five axioms
on quantifiers. A theory is a set of formulas; provability in a theory T over the
logic CV is defined in the obvious way.* T Fey ¢ (or T F ¢ of C is clear from

“Deduction rules are modus ponens and generalization.
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context) means that ¢ is provable in 7' (over CV). An L-model of T is a safe
L-interpretation M in which all o € T" are L-true.

General completeness theorem (see [21]). For each theory T and formula
@, T Fey @ iff for each linearly ordered C-algebra L and each L-model M of T,
@ is L-true in M. In particular, ¢ is provable in CV iff for each C-algebra L ¢
is an L-tautology.

Remarks. If the reader compares this completeness theorem with the cor-
responding completeness theorem for propositional logic, he/she may ask the
following questions:

(1) Why only linearly ordered BL-algebras? What about BL-algebras that
are not linearly ordered? The question is whether the axiom (V3) is L-
true in all safe interpretations over an arbitrary BL algebra (the other
axioms are). Thus soundness of BLY w.r.t. such interpretations had
been an interesting open problem for long time; very recently, Esteva and
Montagna have found counterexamples.

(2) What about standard completeness, i.e. completeness w.r.t. standard
interpretations (over standard C-algebras)? GV has standard completeness
but the other logics in question not, their standard tautologies are not
recursively axiomatizable (see below).

(3) Couldn’t we work with completely ordered C-algebras (having all infima
and suprema)? Again for GV yes; but in general no. For example there
are MV-chains that cannot be embedded into any completely ordered
MV-chain. (More can be said.)

(4) Finally, discussing models of a formula ¢, can we just assume that its
value is defined, not bothering about safeness (all values of all formulas
are defined)? No, we cannot, as proved in [31]. Call CV supersound is
each (closed) formula ¢ provable in CV is L-true in each L-interpretation
M (L any C-chain) in which ||¢||§; is defined. One can show that GV is
supersound but BL, L, IT are not. (This is strengthened in [32].) These
remarks seem to show that our choice of semantics of fuzzy predicate

calculus is reasonable (adequate).
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2.2 Equality and function symbols

Fuzzy equality is called similarity; a binary predicate ~ is a similarity predicate
in a theory T (over one of our logics CV) if T' proves axioms of reflexivity,
symmetry and transitivity of ~ . What it means for models of T" depends on
the underlying logic; e.g for LV similarities are closely related to metrics. (See
[21] for details). If =~ is a similarity in 7" then for each n, the predicate ~"
defined by © ~F y = 2 ~ y& ... &z ~ y (k conjuncts) is also a similarity for
T. The congruence aziom of degree k for a predicate P and similarity ~* reads
(r1 ~F & ...z, &F y,) = (P(21,...,20) = P(ys,---,Yy)). Similarly for any
formula (x4, ...) instead of the atomic formula P(z,,...).

Azioms of a fuzzy function F w.r.t. =~ (F being an (n + 1)-ary predicate)
are the congruence axiom for F' and the functionality axiom:

(F(z,y1)&F (2,92)) = y1 & Yo

This is elaborated in [21] and used for an analysis of “fuzzy IF-THEN rules”,
see also [25]. We shall not refer on this; but we shall present the result of [26]
concerning the use of function symbols in fuzzy logic.5 CV still varies over BLY,
LV, GV, IIV.

Take a language consisting of some predicates P, ... P, (with arities, among
them = binary) function symbols Fi, ..., F,, (with arities) and some constants.
Terms are built from variables and constants using function symbols in the
usual way. Logical azioms of CVF (i.e. CV with function symbols) will be those
of CV (in substitution axioms (V1), (31) allowing y to be a substitutable term)
plus similarity axioms for ~, congruence axioms for predicates (each of a given
degree) and the following congruence axioms for function symbols:

(o1 & & o & ) = (F(X0, . @) % Fys, -, Ya))-

A L-interpretation of this language is a structure

M= (M, (TP)Ppredicatea (fF)F funct. symb.; (mc)cconst.)

where rp, m, are as above and for each function symbol F, fr is a (crisp) map-
ping of M™ into M ((n being the arity of F'). The definition of the value ||||m,

SLet us mention that the fuzzy logic developed by Novék, Perfilieva and Mockof in [39] is
a logic with function symbols.
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of a term is obvious. The truth value of an atomic formula is defined as fol-
lows: ||[P(t1, .-, t0)|lme = 7p(|t1llMo; - - - ||tn]lM,w); the rest is as before. M
is L-admissible if it is a safe L-interpretation making all the logical axioms (of
similarity and congruence) L-true. For these notions we get the following.
Strong completeness theorem Let 7" be a theory over CVF), let ¢ be a for-
mula. T Feyp @ iff for each linearly ordered C-algebra L, and each admissible
L-model of T, ¢ is L-true in M.

For more results see [26].

2.3 Arithmetical complexity

Here I assume that the reader knows the notion of a recursive set of natural
numbers (words, formulas etc.) and the corresponding arithmetical hierarchy
of ¥, sets and 11, sets. A set is arithmetical if it belongs to some ¥, or 1I,,. A
set X is ¥,-complete of X is 3, and each ¥, set is recursively reducible to X.

We are interested in arithmetical complexity of sets of predicate tautologies
and sets of satisfiable formulas. In contradiction to the discussion in proposi-
tional calculus we restrict ourselves to the value 1 (absolute truth) and do not
discus positive tautologicity /satisfiability. Another difference is that we have
to distinguish standard tautologies from general tautologies and similarly for
satisfiability. Let CV be as above.

TAUTC = {¢p| for all standard C-chains L and each L-safe M, ||¢||3; = 1}
genT AUT® = {| for all C-chains L and each L-safe M, |||/} = 1}
SATC = {| for some standard C-chain L and some L-safe M, ||¢|k = 1}
genSATC = {y| for some C-chain L and some L-safe M, ||¢|% = 1}

(Caution: recall that for L, II, G there is a unique standard L chain.) The
results are summarized in the following table:

PROVABLE | stand. gen. SAT stand.
= gen. TAUT | TAUT = consistent | SAT
BL | ¥i-compl. NOT AR. | II;-compl. NOT AR.
L | ¥i-compl [I5-compl | II;-compl II;-compl
G | ¥i-compl Y1-compl | II;-compl II;-compl
IT | ¥;i-compl NOT AR. | II;-compl NOT AR.
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Since by the completeness theorem general tautologies coincide with prov-
able formulas, genT AUTC is evidently Y;; ¥;-completeness is proved in [27].
Similarly, general satisfiability coincide with consistence; thus genSAT¢ is II;
and completeness needs a proof. TAUTS = genTAUTS" by the standard
completeness of GV. T AU TLv being II,-complete is a classical result of Ragaz.
The fact that SAT™ is not arithmetical is proved in my [27]; the three other
results, of TAUT™Y, TAUT® S ATBY not being arithmetical are due by Mon-
tagna [38] by a very tricky improvement of my proof just mentioned.

The questions of positive tautologies and satisfiable formulas have to be
studied; I only mention that the set T AU TLY of standard positive tautologies

pos

of L is ¥y-complete and the set SATPI;Sv is 3j-complete. (This follows from the
preceding thanks to the properties of Lukasiewicz negation.) Also it is easy to
show that SATGY = SATSY. (If ||¢||§; = @ > 0 use the function h(z) =z -a™"

for z < a,h(z) =1 for a < x < 1 to produce an M’ with ||¢||{y = 1.) Similarly

for genSATSY. (Not much more seems to be known. )

2.4 Monadic fuzzy predicate logics

A logic is monadic if all its predicates are unary. Classical monadic logic is
very simple: it is decidable, has finite model property and each closed formula
can be equivalently expressed as a propositional combination of closed formulas
of the form (Vx)p(z); thus one object variable suffices. Fuzzy monadic logics
are investigated in my [24]; I present the main results. We shall deal with our
logics BLY, LV, GV, IV, (monadic) and their standard semantics. TAUT® and
SATC has the same meaning as above (but for monadic languages); fTAUTC
stands for the sets of all finite tautologies, i.e. sentences [0, 1],-true in all [0, 1],-
structures M = (M, ...) with a finite M (and * any/the C-t-norm); similarly
JFSATC for the set of all ¢ such that for a finite M (and some/the C-t-norm) ¢
is [0, 1],-true in M.

We have two different notions of finite model property: FM P; stands for
TAUT = fTAUT, whereas FFM P, stands for SAT = fSAT. Furthermore,

mon-CV stands for the monadic predicate logic CV and mon,-CV for its sublogic
with just one object variable x. We present the known results in a table.
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TAUT | fTAUT SAT fSAT | FMP, | FMP,
mon-LV II; =11 II;-comp > yes no
mon;-LV AN =/ AN = /A yes yes
mon-GY ¥ I, II; Ay no no
monl—GV 21 H1 H1 Al no no
mon-11V ? I, ? Ay no no
mon,-11V ? I, ? AN no no
mon-BL ? I, ? > no no
mon;-BL ? I, ? 1 no no

Here A; stands for recursive (both ¥; and II;). Note that the full (non-
monadic) LV has neither FM P, non F'M P,; for other logic the same follows
from the fact that the corresponding monadic logic lacks the property.® The
equality sign means that the two sets in question are the same. As you can see
there are many open problems concerning the arithmetical complexity and the
corresponding ¥;-completeness (IT;-completeness). Thus monadic fuzzy logic
(which can e.g. express simple facts and notions on “fuzzy IF-THEN rules”) is
by far not an uninteresting branch of fuzzy logic.

3 Extended and combined systems

3.1 Adding connectives

First we discuss the unary connective A whose truth function on [0, 1] (denoted
also A) is as follows: A(1) =1,A(z) =0 for z < 1. A is called “Baaz’s delta”
[4] and Ap may be read “p is absolutely true”. BLa is the extension of BL
by the connective A; new axioms are Agp V =Ap, A(p V¢) — (Ap V Ay),
Ap = ¢, Ap = AAp, A(p = ) — (Ap — Ay) (we may call them Al-
A5); there is a new deduction rule of A-generalization: from ¢ infer Ap. For
a natural notion of BLa-algebras’one gets the usual completeness theorem (see
[21]). The predicate version works also smoothly, as it is easy to check. Note
that A is a particular truth-stressing connective (saying in general, “p is very
true”). This is analyzed and axiomatized in [29].

6 Also mention that for the full (non-monadic) CV (C being BL, L, G, 1), fTAUT is Il;-
complete and fSAT is Xj-complete (i.e. Trakhtenbrot theorem holds for fuzzy logic). For C =
L,G,1I it is proved in [28], for BL in [24]. The same can be proved for fSAT,,s, fTAUTpys.

7One translates the axioms Al-A5 into corresponding identities and adds the identity
A(1) =1 (guaranteeing soundness of A-generalization).
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Now let us discuss negation. The negation of Lukasiewicz in involutive, i.e.
- is equivalent to ¢. G and II have Godel negation but sometimes one would
be happy to have there also an involutive negation. To be satisfactorily general
let us first introduce a theory SBL strict basic logic) weaker than both G and

IT and enforcing the negation to be Godel (to be made precise).®

SBL is the extension of BL by the axiom (¢ A —¢) — 0 (caution: this is the
min-conjunction; recall that BL proves (¢&—¢) — 0). Equivalently, this axiom
may be replaced by ((p&y) — 0) = ((p = 0) V (¥ — 0)), i.e. —(p&y) —
(= V—1)). This axiom is a *-tautology for each strict continuous ¢-norm (having
no non-trivial zero divisors, i.e. z,y > 0 with z * y = 0). They all have Godel
negation; moreover, if L is an arbitrary SBL-chain (BL-chain for which the
additional axiom is a tautology) then L has G6del negation: (—)0 =1,(—)z =0
for x > 0.

Let L be a SBL-chain and let n be an inwvolutive negation for L, i.e. a
decreasing mapping of L onto itself satisfying n(n(z)) = = for x € L. If (—)
is the Godel negation then obviously Az = (—)n(z), i.e. A is definable from
the two negations. Thus let SBL. be the extension of SBL by a new unary
connective ~ (called also involutive negation) and a defined connective A (Agp
is = ~ ). The axioms are those of SBL plus

~v =, = @, Al = ) = (Ap — Ag);

deduction rules are modus ponens and A-generalization.
There is an obvious notion of SBL-algebras with general completeness.
For G. and II. we can say more: The standard G.-algebra is the structure
([0, 1].,n) where * is Godel t-norm (minimum) and n(z) = 1—z for all z € [0, 1].

Standard completeness theorem states that G.. - ¢ iff ¢ is a tautology of
the standard G.-algebra. For II. the analogous claim is false but we have
completeness w.r.t. semistandard I -algebras of the form ([0, 1], n) where * is
now the product t-norm and n is an arbitrary involutive negation: Il F ¢ iff
© is a tautology over each semistandard II.-algebra.

We have the corresponding predicate calculi with general completeness.

8The presented material is from [17] and from [11].
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3.2 Putting Lukasiewicz and product logic together

We present results of [15], [18], [10, 11]. One develops a logic in which we
have both connectives of L and those of IT (and we get also connectives of G,
Baaz’s A and several other things). The language has connectives —y , —n (for
Lukasiewicz and Goguen implication) and ® (product conjunction). We use
— for Godel negation (- is ¢ —y 0) and ~ for Lukasiewicz negation (~ ¢
is ¢ —y, 0). & is defined as p&y being ~ (¢ —p~ ). Needles to say, the
standard LIl-algebra is ([0, 1], min, max, *p, —y,, =, 0, 1) where *q is product
t-norm and —y , —y are residua of Lukasiewicz and product t-norm respectively.
Then clearly, = and ~ get their standard semantics and thus A can be defined
in the obvious way (Agp is = ~ ). Further define

eV = (p =y, ¥) = ¥,

(¢ 2a¥) = Alp =, ¥) VY,

PO =&k~

Azioms: axioms of L for —,, &, 0
axioms of II for =, ®, 0,

=, Alp =, ¥) = Ap 2 o),

PO Wex)=(eoy)e(pox).
Deduction rules are modus ponens and A-generalization. For a natural notion
of an LII-algebra we get completeness. Note that LII proves the axioms A1-Ab
for A (see [11]).

Moreover, LII enjoys standard completeness: LII F ¢ iff ¢ is a tautology over
the standard LII-algebra. This is proved in [17] by characterizing LII-algebras
using linearly ordered fields and using known results on (real closed) fields.

Recently Cintula has shown [11] that LII is equivalent to IL. with ¢ —p,
¥ defined as ~ (p® ~ (¢ —q %)) and only one axiom added, namely the
transitivity of —y, (i.e. Al for —y).

3.3 A logic of left-continuous ¢t-norms

A t-norm has the residuum iff it is left-continuous (for each increasing sequence
{zn|n € w} of elements of [0, 1] and each y € [0, 1], lim,(z,*y) = (lim,x,)*y)].
Fodor’s nilpotent minimum [19], defined as z xy = 0forx +y < 1, z*xy =
min(z,y) otherwise is the classical example of a non-continuous left-continuous
t-norm; surprisingly, its residuum is 1 — . There are very many left-continuous
t-norms, see e.g. [34]. If a left continuous t-norm is not continuous we loose
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divisibility (the identity min(z,y) = x * (x = y) is no more valid).

Esteva and Godo in their pioneering paper [16] develop a logic MTL (monoidal
t-norm logic, logic of left-continuous ¢-norms) in a very smooth way. Just delete
(A4) from the axioms of BL, add A as a new primitive connective and add the

axioms

(@A) =@, (PAY) = (Y AQ), (p&(p = ¥)) = o A

(Keep modus ponens as the only deduction rule.) This logic MTL proves sur-
prizingly many of consequences of BL. Define MTL algebras by deleting the
divisibility axiom from the definition of a BL-algebra; you can prove general
completeness (MTL ¢ iff ¢ is true over all (linearly ordered) MTL-algebras)
by usual methods and also standard completeness (MTLF ¢ iff ¢ is true over all
[0, 1,-algebras, x being a left-continuous ¢-norm) by some more tricky means.
(Standard completeness was proved by Jenei and Montagna [35].) General com-
pleteness of the corresponding predicate calculus MTLY is also easily obtained.
Various extensions of MTL have been studied, from which we mention IMTL
(involutive MTL, i.e. MTL plus the axiom of double negation ——¢ — ¢, sound
e.g. for Fodor’s t-norm, hence weaker that Lukasiewicz logic L) and IIMTL
(MTL plus the additional axiom of product logic, weaker that product logic II).
Note that MTL plus idempotence of conjunction (¢ — (p&¢)) is equivalent to
G. NMTL is the logic of Fodor’s t-norm — the extension of IMTL by the axiom
((p&p) = 0) V ((¢ A ) — (p&1))). Remarkably, this logic is equivalent to G,
(Godel logic with involutive negation added) in the sense that the connectives
of G. are definable in NMTL and vice versa (see [16]).

The following is a very surprizing and beautiful result of Montagna and Ono
[37] on the predicate logic MTLV,:

Theorem. Standard completeness of MTLY. MTLY proves ¢ iff for each left-
continuous t-norm * and each [0, 1],-interpretation M, ¢ is [0, 1],-true in M,
i.e. ¢ is a standard tautology of MTLV.

This is in sharp contrast with BLV since as we have seen the set of standard
tautologies of BLY is not arithmetical.
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4 Conclusion

There are several results and papers that I could not present; I apologize to
their authors. In particular, let me call the reader’s attention to the long-term
and continuing work of Vilém Novadk and his group on a fuzzy logic which is
the extension of Lukasiewicz logic by truth constants (known as Pavelka logic
or logic with evaluated syntax). See [39] for detailed exposition.

I also mention a generalization of BL-algebras different from MTL-algebras,
so-called pseudo-BL-algebras; see e.g. [12].

Nevertheless, I hope that this survey will be useful for people interested in
mathematical fuzzy logic and shall be grateful for comments.
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