ON EMBEDDING MODELS OF ARITHMETIC INTO
REDUCED POWERS

Juliette Kennedy

1 Introduction

In 1934, Thoralf Skolem! constructed a family of nonstandard models of true
arithmetic without making use of the completeness or compactness theorems
for first order logic. Skolem’s models are substructures of a certain structure N
that will be the central topic of this paper. His discovery, from our point of view,
was that N contains nonstandard models of true arithmetic. This is interesting
because N has a much simpler definition than any nonstandard model of true
arithmetic constructed by means of the completeness theorem. The domain of
N and its operations occur naturally in mathematics.

We now define A and for historical reasons describe Skolem’s construction.
Let NY be all functions from the natural numbers to the natural numbers. We
define an equivalence relation on NV as follows: Two functions f and g are
equivalent if the equation f(x) = g(z) holds for all but finitely many natural
numbers z. Let [f] be the equivalence class of the function f. We add and
multiply equivalence classes by the rules

[f1+ 19l =1f +4g] and [f]-[g] =[f -]
Equivalence classes are partially ordered by the relation
[f] < [g] iff for all but finitely many z, f(x) < g(z).

The structure N has domain all equivalence classes [f], and is equipped with
the addition, multiplication and order relation we have just defined.

Skolem found nonstandard models of true arithmetic inside N by construct-
ing a function g from the natural numbers to the natural numbers with the

'See [12].
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following property: If S is any set of natural numbers defined by an arithmetic
formula, then either g(x) is an element of S for all but finitely many z, or g(z)
fails to be an element of S for all but finitely many x. Assume that we have such
a function g. Let fi, fo, ... be all arithmetic functions from the natural numbers
to the natural numbers. Skolem showed that the set of all equivalence classes
of the form [f; o g] gives a substructure M of N satisfying true arithmetic. For
a very similar argument, see the statement and proof of Theorem 32.

Skolem’s models do not exhaust the isomorphism types of countable models
of true arithmetic. Thus it is reasonable to ask if there are other countable
models of true arithmetic inside N, not isomorphic to any of those given by
Skolem’s construction. Skolem did not pursue this problem, perhaps because
he did not have the structure N specifically in view. In the early 1970’s, Stanley
Tennenbaum proved that every countable model of true arithmetic is present,
up to isomorphism, in N, via mappings which embed the standard part of the
model canonically, i.e. via mappings which send each standard integer & to
the equivalence class of the constant function < k,k,... >. He also proved
a second, analogous theorem for nonnegative parts of discretely ordered rings.
(See Theorem 4.)

A model of arithmetic contained in N is a more concrete object than one
given by the completeness theorem. The elements of such a model are, on the
one hand, integer-valued functions, and on the other hand, objects that belong
to a certain element type in a model of arithmetic. What is the connection
between the two? For example, if a function f takes on only prime values,
and if [f] belongs to a model of true arithmetic contained in A, must [f] be
prime in that model? The study of the connection between satisfaction and
componentwise satisfaction, i.e. satisfaction in N, is one of the two main topics
of this paper. The other is this: What numerical properties must a function
have in order to belong to a model of a given subtheory of true arithmetic?
For example, can the identity function belong to a model of true arithmetic?
As we shall see, the answer is no. We will see that the functions that belong
to particular subtheories of true arithmetic are of a kind very similar to the
function g of Skolem’s proof.?

2Gee the definition of cohesiveness in Section 6.
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2 Preliminaries

Let LA, the language of arithmetic, be the first order language with non-logical
symbols +,-,0,1, <. N denotes the standard LA structure.

We shall be concerned with the following theories: The V;-Th(N), II;-Th(N),
and the I1o-T'h(N), defined respectively as the set of all V, II; and II, formulas
true in the standard LA structure N. Th(N) is the theory true arithmetic, i.e.,
the set of all the first order sentences in the language of arithmetic true in the
standard structure N.

We shall also be concerned with the theory PA~, which is the theory of
nonnegative parts of discretely ordered rings. For the axioms of PA™ as well as
interesting examples of these models see [7].

Also, we mean by the MRDP Theorem the result of Matiyasevich, Robinson,
Davis and Putnam, which states that every recursively enumerable subset of the
natural numbers has a Diophantine definition.

Finally, we assume throughout that any embedding of a model of arithmetic
we mention has the following property: the standard structure N is embed-
ded into N canonically, i.e. under the embedding the standard integers k are
identified with the equivalence classes of the constant functions [< k&, k, ... >].

3 The Basic Construction

Let LA be as above. If N is the standard LA structure, let A be the reduced
power (of LA structures) N¥/F, where F is the cofinite filter in the boolean
algebra of subsets of N. Let A be the standard LA structure with domain all
nonnegative real algebraic numbers, and let A be the reduced power A“ /F. We
shall see that every countable model of PA~ is contained, up to isomorphism,
in A. Moreover, a countable model of PA~ appears, up to isomorphism, as a
substructure of A if and only if it is Diophantine correct, i.e., a model of the
V1-Th(N).

If f is a function from N to N, let [f] denote the equivalence class of f in
N. We use a similar notation for 4. When no confusion is possible, we will use
f and [f] interchangeably. Central to this paper is the notion of satisfaction in
N, which we refer to via the following special

Definition 1 If ¢(z1,...,2,) is an LA formula, and fi1,..., fn are in N, then
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we say ¢(fi,...fn) holds componentwise or is true componentwise if, for all

sufficiently large i, N = ¢(f1(i), ..., fu(3)).

As we will see, there are substructures of N for which componentwise truth
and the usual satisfaction relation are identical. Let M be such a substruc-
ture. Then in M, the LA formulas satisfied by an element [f] are completely
determined by the LA formulas satisfied by the numbers f(1), f(2),.... For ex-
ample, [f] is prime in M iff for large enough n, the numbers f(n) are standard
primes. Note that M must satisfy Th(N), since all sentences holding in N hold
componentwise. Now in any model M of Th(N), a total recursive function g
from N to N has a unique continuation ¢™ to M, via any ¥; formula defining
the graph of g over N. Because satisfaction and componentwise truth coincide
in M, we get a very concrete picture of the behavior of g™: If [f] is in M, then
g"((f]) = lg o f].

Such a strong relation between truth and componentwise truth is far from
typical. We shall be concerned with the properties of substructures of N~ which
imply and are implied by such relations. We shall characterize the LA theories
that prove the MRDP Theorem in terms of the componentwise behavior of A
formulas in models of those theories. We shall establish a connection between
the componentwise behavior of LA formulas, and the preservation of those for-
mulas in extensions. And we shall also give characterizations of models of PA™,
I1,-Th(N), and II,-Th(N) in terms of componentwise behavior.

We begin by presenting the two embedding theorems of Stanley Tennen-
baum, which represent countable models of PA~ by means of sequences of real
numbers. The proofs are slightly modified versions of the proofs communicated
to us by him.

Theorem 2 (Tennenbaum) Let M be a countable Diophantine correct model
of PA~. Then M can be embedded in N .

Proof. Let my,ms,... be the distinct elements of M. Let Py, P,,... be
all polynomial equations over N in the variables z1,s,... such that M |=
Pi(xz1/my,x9/ma,...). Each system of equations P; A - - - A P, has a solution in
M. Thus, by Diophantine correctness, there is a sequence of natural numbers
v1(n), va(n), ... for which

NEP - N\ Palzi/vi(n), z2/va(n), ..).
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Note that if the variable x; doesn’t appear in P, A --- A P,, then the choice of
v;(n) is completely arbitrary.
Our embedding h : M — N is given by:

m; — [An.v;(n)].

In the figure below, the i-th row is the solution in integers to Py A --- A\ P,
and the i-th column “is” h(m;).

P | vi(1) wy(1) vnyzl)
Py | vi(2) v(2) ... wv,(2)

Note that if m, is the element 0¥ of M, then the polynomial equation z, = 0
appears as one of the P’s. It follows that, for n sufficiently large, v.(n) = 0.
Thus h(0M) is the equivalence class of the zero function. Similarly, » maps every
standard integer of M to the class of the corresponding constant function.

We show that A is a homomorphism. Suppose M = m; +m; = my. Then
the polynomial z; + z; = x; must be one of the P’s, say P.. If n > r, then by
construction v;(n) + v;(n) = vg(n). Hence h(m;) + h(m;) = h(my), as required.
A similar argument works for multiplication. Suppose M = m; < m;. By
an axiom of PA~, for some k, M = m; + my = m;. Thus, as we've shown,
h(m;) + h(my) = h(m;). It follows from the definition of the relation < in N
that h(m;) < h(m;).

To see that h is one to one, suppose that m; # m;. Since in models of PA~
the order relation is total, we may assume that m; < m;. Again by the axioms
of PA~, we can choose my, such that m; + my + 1 = m;. As we have shown,
h(m;) + h(my) + h(1) = h(m;). Since h(1) is the class of the constant function
1, it follows that h(m;) # h(m;).

O

Corollary 3 Let M be a countable model of the ¥1-Th(N). Then M can be
embedded in N.

Proof. The models of the Vi-T'h(N) are precisely the substructures of models
of Th(N). Thus, M extends to a model of PA~, which can be embedded in N/
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as in Theorem 2.
O

Before turning to the theorem for the non-Diophantine correct case, we
observe first that the given embedding depends upon a particular choice of enu-
meration mq, ms, ... of M, since different enumerations will in general produce
different polynomials. We also note that different choices of solution yield dif-
ferent embeddings. Also, as we shall see below, we need not restrict ourselves
to Diophantine formulas: we can carry out the construction for LA formulas of
any complexity which hold in M.

We state next the non-Diophantine correct case of the theorem:

Theorem 4 (Tennenbaum) Let M be a countable model of PA~. Then M
can be embedded in A.

Proof. Given an enumeration my,msg,... of M, we form conjunctions of
polynomial equations P, exactly as before. We wish to produce solutions of
P, \---\ P, in the nonnegative algebraic reals for each n. We proceed as fol-
lows: The model M can be embedded in a real closed field F' by a standard
construction. (Embed M in an ordered integral domain, then form the (or-
dered) quotient field, and then the real closure. See [9].) Choose k so large
that zi, ...,z are all the variables that occur in the conjunction P, A --- A P,.
The sentence 3z1 ... 2, (PLA---ANPu A2t > 0Nz >0--- Axy > 0) is true in
M, hence in F. It is a theorem of Tarski that the theory of real closed fields is
complete. (See [4]). Thus, this same sentence must be true in the field of real
algebraic numbers. This means we can choose nonnegative algebraic real num-
bers v1(n), v2(n) ... satisfying the conjunction Py A --- A P,. Let h : M — A
be given by
m; — [An.v;(n)].

The proof that h is a homomorphism, and furthermore an embedding, proceeds
exactly as before, once we note that the equivalence classes all consist of non-
negative sequences of real algebraic numbers.

O

Remark 5 Under any of the embeddings given above, if M = PA~ then non-
standard elements of M are mapped to equivalence classes of functions tending
to infinity. Why? If f is a function in the image of M, and f does not tend
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to infinity, then choose an integer k such that f is less than k infinitely of-
ten. Since M = PA~, either [f] < [k] or [k] < [f]. The second alternative
contradicts the definition of < in N. Hence [f] < [k], i.e., [f] is standard.

Remark 6 Let F' be a countable ordered field. Then F is embedded in R” /F,
where R s the field of real algebraic numbers. The proof is mutatis mutandis the
same as in Theorem 4, except that due to the presence of negative elements we
must demonstrate differently that the mapping obtained is one to one. But this
must be the case, since every homomorphism of fields has this property. (See

[9].)

Remark 7 For any pair of LA structures A and B satisfying PA~, if A is
countable and if A satisfies the ¥1-Th(B) then there is an embedding of A into

B¥/F. In particular, if M is a model of PA~, then every countable extension
of M satisfying the ¥1-Th(M) can be embedded in M¥ /F.

4 Componentwise Behavior and Open Formu-
las

Let M be a substructure of A/, and let ¢ be a formula with parameters from M.
If ¢ holds in M we cannot conclude that ¢ holds componentwise. For example,
let f: N — N be the function taking even numbers to 0 and odd numbers
to 1. Let M be the substructure of A generated by [f]. If ¢ is the formula
[f] # [0] then ¢ holds in M, but does not hold componentwise. It is just as
easy to find examples where the converse implication fails. What, then, is the
relation between componentwise truth and truth in a substructure of N7 We
shall study classes of formulas ¢ and classes of substructures M of N for which
componentwise truth and satisfaction are connected in interesting ways.

Let M be a substructure of N. An atomic formula with parameters from
M holds in M iff it holds in NV iff it holds componentwise. From this, it follows
that an atomic formula prefaced by a string of existential quantifiers that holds
in M will hold componentwise.

As the example above shows, it is not in general true that open formulas
that are true in M hold componentwise. However, we have

Proposition 8 Suppose M is a substructure of N that satisfies PA~. Then an
open formula with parameters from M 1s true in M iff it holds componentwise.
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Proof. Suppose ¢ is an open formula with parameters from M, and suppose ¢
holds in M. The formula ¢ is equivalent, in any model of PA~, to an atomic
formula prefaced by a string of existential quantifiers. (Using the axioms for
a total order, and the axiom VyVx < ydzx + z = y, one converts inequalities
into equations prefaced by strings of existential quantifiers. One then combines
conjunctions and disjunctions of equations into a single equation.) Thus, by a
previous remark, because ¢ holds in M it
must hold componentwise. Conversely, if ¢ holds componentwise, then the
open formula ~ ¢ cannot hold in M, else, as we have already established, it
would hold componentwise. Hence ¢ must hold in M.
O

From this, we have

Proposition 9 Suppose M is a substructure of N satisfying PA~, and ¢ is a
formula with parameters from M. If ¢ is 3y and M = ¢ then ¢ holds compo-
nentwise. If ¢ is V1 and ¢ holds componentwise then M = ¢.

Proof. The first assertion follows from Proposition 8. As for the second,
suppose ¢ is V1 and ¢ fails to hold in M. Then the 3; formula ~ ¢ holds in M,
hence holds componentwise. Hence ¢ cannot hold componentwise.

O

We note that not every substructure of N satisfies PA~, or the V;-Th(N) for
that matter. For example, N itself fails to satisfy the V; sentence asserting that
the order relation is total. Moreover, there are substructures of A/ satisfying
the Vi-Th(N) but not satisfying PA~. An example is the substructure M of
N generated by the identity function f on N. To see that M = Vi-Th(N), we
observe that M is isomorphic to N[z], the semiring of polynomials over N in
the variable z. But this structure N[z| appears up to an isomorphism in any
nonstandard model of Th(N), as the substructure generated by a nonstandard
element. This means M extends to a model of Th(N). Since universal formulas
are downward preserved, we have shown that M = V;-Th(N). On the other
hand, M fails to satisfy PA~ since, in M, f has no predecessor.

However, we have

Proposition 10 If M is a substructure of N and M = PA~, then M = V-
Th(N).
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Proof. Suppose ¢(Z) is open, and N = VZ¢(Z). Let f be a tuple from M. Then
o( ﬂ holds componentwise. Thus, by Proposition 8, ¢( f) holds in M. Since f
was chosen arbitrarily from M, it follows that M |= VZ¢(Z), as required.

O

For the next result, we need the following

Definition 11 Let M be a substructure of N'. Let ® be a set of LA formulas.
We say that ® behaves componentwise in M if for all tuples ffrom M, and for

= =

all formulas ¢ from ®, M = ¢(f) iff 6(f) holds componentwise.
For which substructures of A do the open formulas behave componentwise?

Theorem 12 (Kennedy-Raffer) 3 Let M be a substructure of N'. Then the
following are equivalent: (i) The open formulas behave componentwise in M.
(1i)) M =V1-Th(N). (iii) M extends to a model of PA™ included in N .

Proof.

(i) implies (ii): Assume (i), and let ¢ be an open formula such that N = VZ¢.
Suppose it was the case that M = 3% ~¢. Choose a tuple f from M such that
M =~ ¢(&/f). Then the latter holds componentwise, so there is a tuple of
integers 7 such that N =~ ¢(Z/77). But this contradicts N = VZ¢.

(ii) implies (iii): Assume (ii). Let M’ be

{a e N :TFb,ce M st.a+b=c}.

Then M’ is a substructure of N' and M’ contains M. We will show that M' =
PA~. Asasubstructure of N, M’ is automatically a partially ordered semiring?.
So we have to check that the order on M’ is total and discrete (meaning that
two consecutive elements cannot bound a third), and that M’ is closed under
nonnegative differences. Note that V; sentences express that the order relation
is total and discrete in M. First we will show that the ordering is total in M.
If @ and b are in M’, choose elements 7, s, 7’ and s’ in M such that a +7r = s
and b+7r" =s. Thena+r+s =b+7r"+s. Nowr+s" and r' + s are in
M, so they are comparable: We will suppose that 7' + s < r + s'. It follows

3Theorems attributed to Kennedy-Raffer are proved jointly with Sidney Raffer and are
published here with his permission.

4 A semiring is a structure of type (+,-,0, 1) obeying all the axioms for a commutative ring
except the one requiring the existence of additive inverses.
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that the formula a < b holds componentwise, hence holds in M’. This proves
that M’ is totally ordered. To prove discreteness, suppose (keeping the same
notation) that a« < b < a + 1. From the relations a +r = s and b+ ' = s’ we
conclude that s + 7' < s’ +r < s+ 7'+ 1. Since M is discretely ordered, it
follows that either s’ + r = s + 7/, in which case a = b, or &' +r = s’ +r + 1,
in which case @ + 1 = b. This proves that the order on M’ is discrete. As for
nonnegative differences, suppose, (with the same notation) that ¢ < b. Choose
¢ in N so that a + ¢ = b. We have to show that ¢ is in M': But the equation
a+7r+s =b+r'+ simplies that that r + s’ = ¢+ ' + s. Thus c is indeed in
M.

(iii) implies (i): Suppose M extends to a model M’ of PA~ included in
N. Let ¢ be an open formula with parameters from M, and suppose ¢ holds
in M. We have to check that ¢ holds componentwise. But this follows from
Proposition 8, and the fact that ¢ holds in M'. Conversely, suppose ¢ holds
componentwise. Then ~ ¢ cannot hold in M, else it would hold in M’ and
therefore would hold componentwise. Hence ¢ holds in M.

O

5 Componentwise Behavior and Y; Formulas

The requirement that a substructure of N satisfy PA~ is not strong enough to
insure that the Ay formulas behave componentwise. For example, let Z[t]™ be
the semiring of all polynomials in ¢ over Z with positive leading coefficients. We
order this semiring by the rule p(t) < ¢(¢) if the leading coefficient of ¢(t) — p(t)
is nonnegative. We then obtain an LA structure satisfying PA~. If f is any
function from N to N, and if f tends to infinity, then Z[t]" can be embedded in
N via the map

p(t) = [lp()I],

where ‘| |” denotes absolute value. (The function p(f) is eventually nonnegative.
The point of the absolute value is to make sure it is always nonnegative.) For
example, take f to be the identity function. Let ¢(x) be the Ay formula “x

is not even and z is not odd.” Then &(f) holds in Z[t]*, but does not hold
componentwise. On the other hand, we have:

Proposition 13 If M is a substructure of N', and M = MRDP + PA~, then
the Ay formulas behave componentwise in M.



ON EMBEDDING MODELS OF ARITHMETIC INTO ... 101

Before proving the proposition, we need the following

Definition 14 We say that an LA structure M satisfies the MRDP Theorem
if every Ay formula is equivalent, over M, to an 3, formula.

Proof. Suppose, then, that M = MRDP. Let ¢(Z) be a Ay formula and let f

=

be a tuple from M. Suppose M = ¢(f). Let (%) be the 3; equivalent of ¢(Z)
over M. Then M = o(f) and ¢(f) holds componentwise. Now the sentence
~YZ(Y(Z) — ¢(F)) is logically equivalent to a 3y formula. If it held in N then,
by the well known “X;-completeness” of PA™ it would hold in M, which it does
not. (Every X sentence true in N is provable in PA~. See [7], chapter 3) Thus

—

N E VZ((Z) — ¢(Z)). It follows that ¢(f) holds componentwise. In order
to complete the proof, we now have to assume that ¢( f) holds componentwise,
and show that it holds in M. But, if it did not, then the above argument carried

out with ~¢(f) in place of ¢(f) would give a contradiction.
O

If the A formulas behave componentwise in M C A, what can we say about
Th(M)?

Proposition 15 Suppose M is a substructure of N in which the Ay formulas
behave componentwise. Then M = I1,-Th(N).

Proof. Suppose ¢(Z) is a Ay formula, and N | VZ¢(Z). Choose f from M.

Then ¢( f) holds componentwise, hence it holds in M. But f in M was arbitrary.
So M = VZ¢(%)

O

Next, we consider the componentwise behavior of 3; formulas. At this point,

it is not clear that there are any substructures of N in which this class of formu-

las behaves componentwise. In fact we will see from the following generalization

of Theorem 2 that there substructures of A in which truth and componentwise

truth coincide for formulas of any prescribed complexity. We will then be able

to construct models of the Th(N) in which all first order formulas behave com-

ponentwise.

Theorem 16 Suppose M is a countable LA structure satisfying the I1,1-Th(N)
(n > 0). Then there is an embedding h of M into N such that in the structure
h(M) both the ¥, and the I1, formulas behave componentwise.
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Proof. The proof proceeds as in Theorem 2, except that instead of enumerat-
ing just Diophantine formulas, one expands the enumeration of polynomials to
include ¥,, and II, formulas.

O

Theorem 17 There are substructures of N satisfying Th(N) for which truth
and componentwise truth coincide.

Proof. Let M be a countable model of Th(N). Embed M in A as in Theo-
rem 16, letting the ¢’s run through all first order formulas holding at mq, mo, . . ..
The argument of Theorem 16 shows that h(M) is the required substructure of
N.

O

It follows that there are substructures of N in which the class of 3; formulas
behaves componentwise: Pick an arbitrary countable model M of the II5-Th(N),
and use Theorem 16 to construct an isomorphic copy in N. In order to give
some properties of these substructures, we need

Definition 18 Let C be a class of L-structures, where L is a first order lan-
guage. A structure M in C'is said to be existentially closed (with respect to C)
if any existential formula with parameters in M that holds in some extension
of M belonging to C already holds in M. We shall be concerned only with the
case that L is LA, and C is all models of V1-Th(N). We will then refer to M
as simply e.c.

The following proposition appears in [3]:

Proposition 19 Every e.c. structure M satisfies I1,-Th(N).

Proof. One first shows that every e.c. structure M satisfies the Vo-Th(N). To
this end, let ¥ = Vz3§¢(Z, i) be an Vs sentence which holds in N. Since the
model M is e.c. it satisfies the V;-Th(N). Hence M extends to a model M’ of
Th(N). (See [8]). The model M’ satisfies ¥, since N does. Now let @ be a tuple
from M. Tt suffices to show that M = 3§¢(d, §). But the structure M’ satisfies
yé(d, 7). Therefore, since M is e.c., M must also satisfy 3§¢(d, 7). But @ was
arbitrary. Therefore M |= VZ3§¢(Z, ), as required. Now the [I,-Th(N) is an

inductive theory (see [2]). The Chang-Los$-Suszko theorem states that inductive
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theories are Vy axiomatizable. (See [1].) But the V5 sentences belonging to the
II,-Th(N) are precisely the Vo-Th(N). It follows that the Vo-Th(N) proves the
[L,-Th(N).

O

Proposition 20 Suppose M is an e.c. substructure of N'. Then the class of
dy formulas behaves componentwise in M.

Proof. Let ¢ be an 3J; formula defined in M, and suppose M = ¢. By
Proposition 19, M = PA~. Thus, by Proposition 9, ¢ holds componentwise.
Conversely, suppose ¢ holds componentwise. Let G be a non-principal ultra-
filter in the boolean algebra of subsets of N, and let N¥ /G be the ultrapower
determined by G. The LA structure N¥ /G is a model of Th(N). Now there is a
natural homomorphism h : N'— N¥ /G given by

[f1= ),

where (f) is the class of the function f in N¥/G. The mapping h is injective
on M: This is a consequence of the non-principality of G, and the fact that
if the formula [f] # [g] holds in M, then it must hold componentwise. Let ¢
have the form 3x(z, g), where g is in . (For simplicity, we assume ¢ has one
quantifier and one parameter, but our argument is perfectly general.) Since ¢
holds componentwise, there is a function £ from N to N such that 1 (k, g) holds
componentwise. Again because G is non-principal, it follows that ¥ ((k), (g)),
and hence 3z (x,(g)) hold in N*/G. But h(M) is e.c. (since h is injective),
hence Jz1)(z, (g)) holds in hA(M). Thus ¢ holds in M, as required.

O

Remark 21 The converse of Proposition 20 is false: There are substructures
of N which are not existentially closed, but in which the class of 3; formulas
behaves componentwise. In fact, let M be any countable nonstandard model of
Th(N). By enumerating all formulas holding in N instead of just Diophantine
formulas, we can find an isomorphic copy M' of M in N in which all formulas
behave componentwise. But by a theorem of Rabin (Theorem 24 of this section),
no nonstandard model of Th(N) is e.c.

Remark 22 The embedding used in Proposition 20 is injective on every sub-
structure of N satisfying the V1-Th(N). Since the ultrafilter G used there was
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arbitrary, it follows that every countable model of the V1-Th(N) can be embedded
in every ultrapower N” /G. This also follows from the w;-saturation of N* /G.

Our next result gives models of Th(N) in which the 3; formulas fail to behave

componentwise.

Proposition 23 Every countable nonstandard model M of Th(N) has an iso-
morphic copy in N under which some 3; formula fails to behave component-

wise.’

Proof. Let M be a countable nonstandard model of Th(N). Let S be a simple
subset of N. This means S is an recursively enumerable set whose complement
is infinite and contains no infinite recursively enumerable set. By the MRDP
Theorem, there is an 3; formula ¢(x) defining S over N. The sentence Vz3y(y >
zA ~¢(x)) holds in N, hence in M. Therefore there is a nonstandard element
m of M such that M =~ ¢(m). Let m = my, my,... be the distinct elements
of M. We embed M in N as in Theorem 2. In the notation of that theorem,
for all n, it is possible to choose vi(n) in S. Why? For each n, the formula in

the single variable z;, given by

3wa, 23, (P \ - \ Pa)

defines over N a recursively enumerable set S,,. Moreover, S, is infinite: Since
m; is nonstandard, there are P;’s of the form =, = x; + r for arbitrarily large
integers r. It follows from the fact that S is simple that each S,, meets S, so we
can choose v;(n) in S for all n, as asserted. But then we obtain an embedding
h such that the 3; formula ¢(h(m1)) holds componentwise. Since ¢(m) fails to
hold in M, and since h is an embedding, the formula ¢(h(m;)) does not hold

in h(M). So ¢(h(my)) does not behave componentwise in h(M).
O

Propositions 20 and 23 imply:

Theorem 24 (Rabin, 1962) 5 If M is a nonstandard model of Th(N) then

M 1s not e.c.

5M need only be a model of the ¥»-theory of N.
6Rabin’s 1962 proof did not make use of the MRDP Theorem. See [10].
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Proof. Assume, on the contrary, that M is e.c. Then any countable elementary
substructure of M is also e.c. (This is a consequence of the joint embedding
property for models of the V;-Th(N). (See [5].) Thus we can assume that M
is countable. By Proposition 23, M has an isomorphic copy in A in which
some J; formula fails to behave componentwise. But by Proposition 20, the d;
formulas behave componentwise in every countable e.c. substructure of N, a
contradiction.

O

If M is a substructure of A/, and if the 3; formulas behave componentwise
in M, what theory must M satisfy?

Proposition 25 If the 3; formulas behave componentwise in the substructure
M of N, then M = TI,-Th(N). Conversely, if M = 11,-Th(N), then the 3;
formulas behave componentwise in some isomorphic copy of M in N .

Proof. Assume the d; formulas behave componentwise in M. First, we shall
show that M = Vo-Th(N). Let ¢(Z, %) be an open formula, and suppose N |=
VZ376(Z,7). Let f be a tuple from M. Then the formula 3§¢(f,7) holds
componentwise, hence it holds in M. Hence M [ VZ3§¢(Z, ), as required.
But it is known that Vo-Th(N) proves the IIo-Th(N). The second assertion
follows from Theorem 16.

O

Finally, we note that if M is a substructure of N, and if, in M, the 3;
formulas behave componentwise, then so must the }; formulas: For by the
previous proposition, M = II,-Th(N). Each ¥; formula is equivalent to an
4; formula over N, and this equivalence persists in M, since it is itself Il,.
Thus these two classes of formulas behave componentwise in exactly the same

substructures of N

6 Cohesiveness

In this section we answer the following question: Let 7" be one of the theories
V1-Th(N), TI,-Th(N), Th(N). For which functions f from N to N is there a
model of T inside N which contains f? We will not answer this question for
general LA theories 7', but we will indicate the form that such an answer might
take. We need a
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Definition 26 Let L be a subset of P(N), the power set of N. Let f be a
function from N to N. We say that f is L-cohesive if for all s in L, the function
f either eventually assumes values in s or eventually assumes values outside of
s.”

For example, if £ is the set of all finite subsets of N, then a function f is
L-cohesive iff it is eventually constant or tends to infinity. If £ is the set of
all recursive sets of integers, then an L-cohesive function is eventually prime or
eventually composite, eventually even or eventually odd, and so on. In this case
we will refer to f as r-cohesive. In the the case that L is the set of recursively
enumerable sets of integers, we will refer to f as simply cohesive.®

As a first application of this definition, we establish

Proposition 27 Let L be the set of finite subsets of N. A function f is con-
tained in a substructure of N satisfying ¥1-Th(N) iff f is L-cohesive.

Proof. Suppose f is L-cohesive. Either f is eventually constant or f tends to
infinity. In the first case, the substructure of N generated by f is isomorphic
to the standard model, which satisfies the required theory. Assume f tends to
infinity. Then the substructure generated by f is isomorphic to the polynomial
semiring N[z|. But this is a model of V;-T'h(N), see remarks after Proposition 9.
Conversely, assume f is contained in a model of V;-T'h(N). In the discussion
following Theorem 2, we show that f is either eventually constant or tends to
infinity.
O
The next sequence of lemmas is devoted to proving an analog of Proposi-
tion 27 for IIo-Th(N).

Lemma 28 Let M C N be a model of the II,-Th(N). If [f] € M, then the

function f is r-cohesive.

Proof. Let R be a recursive set of natural numbers, and let S be the com-
plement of R in N. Making use of the MRDP Theorem, let p(z) and o(x) be
7, formulas defining R and S in the structure N. We note that M satisfies

"There is an analogous definition of cohesive sets of integers in [11], page 231. A function
f tending to infinity is cohesive in our sense iff it has a cohesive range in Rogers’ sense.
8 This conforms to Rogers’ definitions for sets.
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the sentence Vx(p(x) V o(x)), since this sentence holds in N, and is logically
equivalent to a Il sentence. Thus M satisfies one of the formulas p(f), o(f).
In the first case, by Proposition 9, p(f) holds componentwise. In the second
case o(f) holds componentwise. But this means either f is eventually in R or
f is eventually in S. Thus f is r-cohesive.

O

Lemma 29 Let M be a substructure of N which satisfies the ¥1-Th(N). Sup-
pose further that M is closed under the componentwise application of recursive
functions, i.e., given any recursive function g : N — N, if [f] € M then
[go fl € M. If [f] is an element of M, then f is r-cohesive.

Proof. Let R be a recursive set of natural numbers with characteristic function
Xr- We observe that [xro f] € M, since M is closed under the componentwise
application of recursive functions. Since M satisfies V,-Th(N), it follows from
Proposition 27 that the function ygo f is £L-cohesive, where L is the set of finite
subsets of N. By the discussion preceding Proposition 27, x o f is eventually
constant. Hence f is eventually in R or eventually in the complement of R, as
required.

O

Cohesiveness is related in a natural way to componentwise behavior:

Lemma 30 Let M be a substructure of N which satisfies the V1-Th(N). Sup-
pose that M is closed under the componentwise application of recursive functions

from N to N. Then the Ay formulas behave componentwise in M.

Proof. We note first that if ¢ : N — N is recursive (for any m > 0) and
fi,--., fm are in M, then so is g(f1,---, fm). To see this, let o,(z1,...,x,) be
the iterated Cantor pairing function, defined inductively as follows.

o1(z) =z
JQ(x’y) = (w—l—y)(;—ky—kl) +y
on(T1y ... xn) = 09(21,0n-1(29,...2,)) for n>2

The function 2™ - gy, is a polynomial o, over N. It follows that the function
ol (fiy---y fm) isin M. Let ¢’ : N — N be defined by

"(z) = 9(z1,...,2n) fx=0(21,...,2m)
I 0 if z is not in the range of o/,
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Then the function ¢’ o), (f1,..., fm) isin M, ie., g(fi,..., fm) isin M, as
required.

We now turn to the proof that A, formulas behave componentwise in M.
We proceed by induction on the complexity of the Ay formula ¢.

If ¢ is atomic then it is immediate that ¢ behaves componentwise. If ¢ is
a conjunction then the componentwise behavior of ¢ follows immediately by
induction.

Assume now that ¢ has the form ~1)(Z). For this case we will require the
Cantor projection functions m;(z), which we define as follows:

y=mi(x) iff FJwq,...,wip <z(x =0 (wr,. .., wi) ANy = w;).
The 7; are total recursive functions from N to N satisfying

Ti(Oip1 (21, -, Tig1)) = 4.

Thus, by the closure property of M, if [f] is in M then so is [m; o f].

Now suppose M =~ 9(fi,..., fr). Then it is not the case that M =
W(fi1,--., fr). Therefore by

the induction hypothesis it is not the case that v (fi, ..., fr) holds compo-

nentwise. This means, for infinitely many n,

N E=~9(fi(n),..., filn)).

By the closure property of M, the function f(z) defined by o, (f1(x),- .., fu(z))
is an element of M. Hence f is r-cohesive, and ;(f(z)) = fi(z) for all i < n.
But the formula ~ (7 (z), ..., 7 (x)) defines a recursive subset of N containing
f(n) for infinitely many n. It follows that f is eventually in this set. Hence,
the formula ~1(fi, ..., fr) holds componentwise, as required.

Conversely, suppose that ~ ¥(f1,..., fr) holds componentwise. Then it is
not the case that the formula ¥(fi,..., fr) holds componentwise. Thus, by
induction, the formula ~(fi, ..., fi) must hold in M.

Finally, suppose ¢ has the form 3z < y ¢(z,y, 21, - - -, Zm), and suppose that

M |:3$§f¢($7faglaagm)

Then
MEYh fg, - gm) NR< f
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for some h € M. By the induction hypothesis and the componentwise behavior
of atomic formulas, the formula

Y, frg1s-- o gm) AR f

holds componentwise. But this means the formula

dz < f oz, f01,-- -, 9m)

holds componentwise.
Conversely suppose the formula 3z < f (=, f, ¢1,- - -, gm) holds componen-
twise. We wish to show that

M ’:angw(mafaglaagm)

Define r : N**! — N as follows: 7(u,v1,...,v,) is the least x such that N |=
z < uAY(z,u,v,...,0n), if there is such an z, and 0 otherwise. The function
r is total recursive. Let s be defined by

s(n) =r(f(n),g1(n)...., gn(n)).

Then [s] is in M, by the closure property of M and the note at the beginning
of this lemma. But we have defined s so that the formula (s, f, g1,...,gm)As <
f holds componentwise. Thus, by induction,

M‘:w(safagla---agm)/\SSf-

Therefore
M |: dx S fw(xafagla"':gm)a

as required.

We mention the following characterization of models of Il — Th(N):

Theorem 31 (Kennedy-Raffer) Let M be a countable substructure of N sat-
isfying the V1-Th(N). Then M = II,-Th(N) iff M is closed under the compo-

nentwise application of total recursive functions.

Proof. Suppose M |= IIo-Th(N) and suppose g : N — N is total recursive. Let
f be an element of M. We wish to show that go f isin M. Using the MRDP
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Theorem, we choose an 3; formula §(z, z) defining the graph of ¢ in N. That
is, for all z and y in N,

N o(z,y) iff y = g(z).

The II, formula Vz3lyd(z,y) holds in N, hence it also holds in M. Choose a
function A in M such that M = 6(f, h). Since M satisfies V;-Th(N), by Propo-
sition 9, the formula §(f, h) holds componentwise. Also the formula §(f, g o f)
holds componentwise. Since ¢ defines in N the graph of a function, it follows
that [h] = [go f]. Thus [go f] is in M, as required.

Conversely, suppose M has the stated closure property. Let ¢(Z, i) be a A,
formula and let ® be the sentence VZ3yp(Z, 7). We assume that @ holds in N,
and we wish to show that it holds in M. Choose fi,..., f,, arbitrarily from
M. Tt suffices to show that M = 3gd(fi1,- .., fm, 7). To this end, we define the
function A on N™ by:

h(Z) = the least y such that N = ¢(Z, m1(y), ..., m(y)),

where the functions m; are defined in Lemma 30. Because N satisfies ®, h is a

total function. Moreover A is recursive. Now let f be the function defined on
N by

f(@) = h(fi(=). ..., fm(@)).
By the remarks at the beginning of the proof of Lemma 30, the function f

must be in M. Thus, by the assumed closure property of M, the functions
m o f,...,m,o f are all in M. But, since ® holds in N, the formula

(ls(fla"'afmaﬂ-lOf:"'aﬂ-nof)

holds componentwise. By Lemma 30, this formula holds in M. Therefore

M =3yé(f1,---, fm,¥), and the proof is complete.
O

We can now answer the question, concerning II,-Th(N), stated at the be-
ginning of this section:

Theorem 32 Let f be a function from N to N. Then f is contained in some
substructure of N satisfying 1ls-Th(N) iff f is r-cohesive.
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Proof. Suppose M C N is a model of II,-Th(N) containing f. By Lemma 28,
f is r-cohesive.

Conversely, suppose f is r-cohesive. Let
M ={[go f] : g is a recursive function from N to N}.

We will show that M is a model of II,-Th(N). Since the recursive functions are
closed under addition and multiplication, M is a substructure of A. Moreover,
M is closed under the componentwise application of total recursive functions.
We wish to apply Theorem 31, but first we have to prove that M satisfies V-
Th(N). By Theorem 12, it suffices to show that M is a model of PA~. Now
M inherits from N the axioms for a partially ordered semiring, since these
axioms are V;. Thus we need only check that the order relation in M is total
and discrete, and that M is closed under nonnegative differences. For totality,
suppose g and h are recursive functions, and suppose M =~ [go f] < [ho f].
Then f does not eventually assume values in the set {n : g(n) < h(n)}. But
f is r-cohesive, and this is a recursive set. Thus f eventually assumes values
in {n : h(n) < g(n)}. Thus M = [ho f] < [go f]. This proves that < is
total in M. Discreteness (which asserts that if < y < x + 1 then z = y or
x =y + 1) is proved similarly. As for nonnegative differences, we observe that
the function giving the nonnegative difference of two integers is recursive, thus
by an argument similar to the one at the beginning of Lemma 30, M is closed
under this function. We have shown that M is a model of PA™. It follows that
M satisfies V;-Th(N). Thus, by Theorem 31, M satisfies II,-Th(N).

O

Next, we consider the problem, when is a function f contained in a model
of Th(N)? Cohesiveness provides a sufficient condition:

Theorem 33 (Kennedy-Raffer) Let f be cohesive. Then f is contained in
a substructure M C N satisfying Th(N).

Proof. Let ¢(z), ¢2(x), ... be all 3; and V; formulas in one free variable such
that for each 4, f is eventually in @Y. (If #(x) is a formula and M is a structure,
we use ¢M to denote {m € M : M = ¢(m)}.) Let c be a new constant symbol
added to LA, the language of arithmetic, and let [ be the theory

Th(N) U {61(c), 42(c), - - .}.
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Because f is eventually in each of the sets @Y, we can satisfy any finite subset
of I' in the standard model N, by taking ¢ sufficiently large.

Choose, by compactness, a countable model M of I'. To prove the theorem,
we will construct an embedding of M into A which maps the element ¢ to
)

Let mq, Mo, ... be an enumeration of M for which ¢™ = m;. Let P, P,, ...
be a sequence of polynomials which can be used to construct an embedding of
M into N, as in Theorem 2. That is, for each n,

M ): Pn(l'l/ml,CL'Q/mg, .. )

Let D,(z1) be the formula 3z, x3, . .. Py(x1, T2, - . ., k). It would be possible to
map c™ to [f] using the argument of Theorem 2, if we knew that N = D, (f(n))
for all sufficiently large n. However, the P,’s may be ordered in such a way that
this is impossible. We will show that there is a re-ordering of the P,’s such that
an embedding of the required type can be constructed.

We first observe that for each k, f is eventually in D}. To see this, suppose
otherwise. Then because the function f is cohesive, and because the set DY is
recursively enumerable, it must be that f is eventually in ~ DY. Thus ~ Dy
appears as one of the ¢'s, say ¢,. But for all n, M = ¢,(my). Thus M E~
D;(my), a contradiction.

Now for each integer i, let P, Pjs,... be an enumeration of the following
set of polynomials:

{P;:j>1and foralln>1i, f(n) € D}'}.

We have shown that f eventually assumes its values in each of the sets DY. Tt
follows that each of the P,’s appears (in fact infinitely often) as one of the P;;’s.
Now let

Qn: /\ Pij(xl,...,a:n).

0<i,5,<n

It follows that for each n,

N E 3o, 23, ... Qu(f(n), x2, 23, .. .).

Finally, choose, at each stage n, a sequence of natural numbers vy(n), v3(n), . ..
such that

NEQ A \@u(z1/f(n),z2/v2(n),...).
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With the @,,’s replacing the P,’s, we then obtain the embedding we set out to
construct, i.e., an embedding which sends ¢ to [f].
O

We do not know a necessary and sufficient condition for a function f to be
contained in a substructure of N satisfying Th(N). We now give an example to
show that the condition given in Theorem 33 is not necessary.

Proposition 34 There is a substructure M of N satisfying the Th(N), and a
function f in M such that f is not cohesive.

Proof. Let M be a countable nonstandard model of Th(N). We will show
that there is an embedding h of M into A such that under h, an element of
M is mapped to a function which is not cohesive. Let the 3; formula ¢(x)
define a simple set S in N. Arguing as in Proposition 23, there is a nonstandard
element m € M such that M E~ ¢(m). Using the notation of Theorem 2
and Theorem 4, let Py, P, ... be all the polynomial equations over N such that
M = Pj(z1/mq,x2/my,...). We construct our embedding as follows: At stage
n, for n odd, choose natural numbers v;(n), va(n), ... for which

NP\ \Palzi/vi(n), z2/va(n), . ..,) A d(vi(n)).

That such a tuple of natural numbers exists follows from the simplicity of
@Y, as in the proof of Proposition 23. At stage n, for n even, choose natural
numbers v; (n), va(n), ... for which

NE PN\ Pazi/vi(n), 22 /va(n), ... )N ~(vi(n)).

That such a tuple of natural numbers exists follows from the fact that we
can expand the set of formulas witnessed in the construction of the embedding

as in Theorem 16. As in Theorem 2 and Theorem 4, we define our embedding
h: M — N by:
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m; — [Ak.w(i(k)].

But then we obtain an embedding h such that vi(n) € S, if n is even,
vi(n) ¢ S, if n is odd. But this means the function v, (n) is not cohesive.
O
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