1

Some high level cognitive abilities, like logic or language, are frequently studied
by following a classical symbolic approach. Proof systems, rewriting systems,
production rules, finite automata have all proven useful in modeling such kinds
of abilities, especially when working with domains for which embodiment is not
an issue. That is the case of mathematical domains, where we refer only to

TOWARDS A MODEL OF HETEROGENEOUS
COMMONSENSE REASONING

Maricarmen Martinez

Abstract

A preliminary version is presented of a model for commonsense rea-
soning, developed in joint work with Jon Barwise. Among others, the
model addresses the question of how the symbolic representations used
by a reasoning agent (like words in natural language) are linked to the
reality outside the reasoner’s “mind”. In our framework, a collaborative
approach is used, in which the symbolic-linguistic level of representation
interacts with a pre-symbolic level given by a state space. The structure
of the state-space allows to encode regularities of the world in an implicit
(more analogous) manner, just as it is common practice in mathemati-
cal modeling in science and more specifically in many models of animal
cognition. The interaction between both levels also opens the window to
the possibility of simultaneous use of symbolic and numerical tools for
inference. Formally, we introduce a logical system based on reduction
rules and we show how it relates to classical logical systems based on
Gentzen rules. At a more practical level, we present S3, an inference
engine implemented in Mathematica, which has been used as a prototype
to test ideas from the formal model and to get new insights to enrich
it. Non-monotonicity and context dependence seem to be some of the
phenomena that can be addressed in a novel way by using our proposed
framework. !

Introduction

Keywords: heterogenous logic, commonsense reasoning, knowledge representation
T am grateful to Larry Moss and to two anonymous referees for their useful comments

and suggestions on this paper.

142 M. MARTINEZ

abstract objects which inhabit the realm of the mind, not the external phys-
ical world that we perceive through our senses. Purely symbolic approaches,
however, do have difficulties when trying to capture in a fully satisfactory way
phenomena like non-monotonicity in commonsense embodied reasoning. They
also pose a difficult question regarding the nature and origin of the connection
that must exist between mental representations and the external world. Classi-
cal semantical approaches usually relate symbols to their referents in the world,
but it is not clear how the connection is created in the first place.

These problems arise when we acknowledge that in modeling a situated agent
there is an environment to be taken into account, and that situated reasoning is
relative to the agent’s knowledge of the world, much of which is acquired from
experience. In fact, when it comes to modeling biologically plausible ways in
which an agent can get “attuned” to its world by experience, one has to say that
more numerical-oriented approaches, like neural networks or dynamical systems,
are quite appealing. One reason is that in these models mental representations
are points in a (normally multidimensional) state space endowed with certain
structure, like a topology or a metric. Much of the structure of the world can
then be mapped into the structure of the state space without having to make
everything explicit. This is the case with similarities: in a model using a metric
state space, similar objects or situations in the world are mapped to close points
in the state space, while very dissimilar objects are mapped to distant points.
This way, knowledge about similarity relations in the world is available to the
agent for its use, even if it is not stated explicitly by any sort of symbolic
representation. On the other hand, these models alone seem to be insufficient
when trying to obtain from them the powerful insights and tools that classical
approaches do provide in areas such as logical reasoning.

The framework presented in this paper (joint work with Jon Barwise) intends
to be an initial step towards an account of high-level cognitive abilities like
logic and language that integrates the insights provided by both classical logic
semantics and the methods of modeling with state spaces used in science. Here
we focus on logical reasoning and, more concretely, on the question of how an
agent can judge a claim about the world as being valid or invalid, based on
its empirically acquired understanding of the world. The rationale behind our
proposed solution to this problem includes the following ideas.

e A sophisticated agent needs to manipulate information encoded in dif-
ferent systems of representation. Instead of assuming the existence of
an interlingua, we take it that there is no translation of representations
within the agent’s mind, but rather negotiation processes between differ-
ent systems of representation. This is what we call a heterogeneous system.
Different systems of representation are justified because of their adequacy
in dealing with specific or local tasks. In particular, since symbolic sys-
tems have proven useful in modeling (at the very least the non-situated

TOWARDS A MODEL OF HETEROGENEOUS COMMONSENSE ... 143

version of) logical reasoning, and since numerical models based on struc-
tured state spaces have been successful in modeling the way in which an
agent develops mental representations of the world based on experience,
we work with a heterogeneous representation system that includes both a
symbolic and a pre-symbolic level of representation, the latter based on a
structured state space.

e We adhere to the reasons given by Gardenfors in [G 00] in favor of the ex-
istence of a conceptual level that stands somewhere in the middle between
the symbolic level (where the structure of a symbol does not resemble the
structure of the referent) and the perceptual level (where we have highly-
dimensional state spaces that capture lots of fine structure in the world,
but whose dimensions have frequently no psychological significance). Our
pre-symbolic level corresponds closely to Gardenfors’s conceptual level:
our state space has few dimensions, all of them intended to be psycholog-
ically significant. Moreover, we use some special families of sets of states
whose geometry permits to combine them in useful ways. 2

e We borrow ideas from Barwise’s and Seligman’s suggestion that phenom-
ena like non-monotonicity or the frame problem in commonsense reasoning
can arise from shifts in the contexts under which logical reasoning takes
place (See [BS 97]). Within a fixed context, though, the classical rules
of logic, including Weakening, apply as expected. In our framework, the
question “Is ' A wvalid?” is always formulated in a context that im-
poses biases in the reasoning process, so that answers to the same question,
when asked in different contexts, can be different.

e Our solution reflects the Inverse Relationship Principle which guides the
pragmatical theory of modality proposed by Jon Barwise in [B 97].

Inverse Relationship Principle: Whenever there is an increase in avail-
able information there is a corresponding decrease in possibilities, and
viceversa.

Following this, the question “Is I' - A valid?” is approached by gradu-
ally shrinking the set of situations that could possibly falsify the sequent.

Our work so far has yielded two kinds of results. First, an inference engine
implemented in Mathematica, which we have called S® (for Structured State
Spaces). We present it in Sections 2 and 3, stressing knowledge representation
and the algorithm for testing whether a claim about the world (a sequent) is
valid in a certain context. The second kind of result, the topic in Section 4, is a

2However, the class of subsets of a state space from which Gardenfors takes concepts is
different to ours. The operations by which special sets are combined are also different.

144 M. MARTINEZ

proof system based on reduction rules which act on (sets of) extended sequents.
The “extended sequents” used in both S® and the formal proof system reflect the
hybrid nature of knowledge representation, since they include a special subset
of the state space which represents a region of the state space, a set of possible
situations, where attention is focused on. The main result here compares our
reduction system with a more standard proof system based on Gentzen rules,
and says that as far as standard deduction goes (using Cut, Weakening and
Identity), our reduction system performs as well as possible. One reason to
prefer the reduction system to the standard Gentzen rules is that the former
better reflects the Inverse Relationship Principle.

2 The S° inference engine.

The S? inference engine, implemented in Mathematica, is a system that allows us
to model physical systems and assess the validity of claims about such systems.
Although in principle any sort of simple physical system could be modeled
(thermostats, elevators...) we are especially interested in the case where the
model is intended to be the model an agent might maintain about its world in
order to reason about it. We will continue using intuitions associated to the
modeling of an agent’s knowledge, although the reader should keep in mind that
our methodology is more general. This section is intended to give the reader a
basic understanding of S®. The next section contains several concrete examples
that illustrate what is described in this one.

In S® knowledge representation involves two levels. At what we call the
symbolic level, there is a simple vocabulary of types with which assertions about
the system can be made. The second level, the pre-symbolic level, is based on a
product space with some additional structure, where the dimensions are features
of the world which are perceived by an agent (or measured by a scientist in the
more general case). A basic intuition linking the two levels is that in order
to reason about the environment an agent has learnt some concepts (special
subsets of the state space) by which it categorizes situations, and each important
concept has a type that names it. We will use letters A, B, C, ... for types and
uppercase Greek letters I', A . .. for sets of types.

To have a more concrete setting to think about, imagine a simple robot,
Rob, which is able to reason about a bulb controller which consists of only two
parts: a bulb and a slider by which one can change the intensity of light. When
the slider is completely up, the bulb intensity is maximum, and when the slider
is completely down, the bulb is off, and in general the intensity increases as the
slider is pulled up. There are four things Rob can observe or perceive. He can
perceive the current slider’s position, how much natural light enters the room
and the overall level of illumination in the room at a given moment. Rob can

TOWARDS A MODEL OF HETEROGENEOUS COMMONSENSE ... 145

also observe something which is not an aspect of the external world, but rather
an internal preference. Namely, at each moment Rob has a favorite level of
illumination that he would like to perceive (as the total of the natural light and
artificial light contributions). Rob is able to change the position of the slider,
and he does so guided by his current preferences?.

In order to work, S? is fed with a model, which is provided by the user
and consists of a symbolic and a pre-symbolic part. The pre-symbolic part
of a model in S? is the definition of a state space Q@ = [[;_; dom(d;), where
the observables di,...d, are basic features of the world which an agent (or
scientist) is able to perceive and dom(d;) is the set of all possible values for
d;. In S3, dom(d;) is always a finite union of intervals in the real line. The
set Observables of observables is partitioned into two subsets: the set J of
input observables and the set O of output observables. The value of an input
observable is independent of the values of the other input observables, while the
value of an output observable is a function of the input observables. The normal
state space €y is the set of all those n-tuples in (2 that satisfy the regularities
described by the output functions. This kind of knowledge would allow an agent
to discriminate between states in 2 which are realizable (those in €2) and those
which are not realizable but still conceivable (those in Q2 \ Q).

So in the case of Rob, we use pre-symbolic (vectorial) representations of the
form

(slider,natural light, preference, room illumination)

to characterize particular configurations of the world. Rob’s “understanding”
of the world is based then in four basic features. If we suppose that the status
of each feature in a particular moment can take values between 0 and 1, then
an example of the state corresponding to a particular configuration of the world
could be a tuple like (0, 0.8, 0.8, 0.8), meaning that the slider is completely down,
the level of natural light is 0.8 (quite good), Rob’s current preference is 0.8 (so
he happens to be happy with the current situation) and the level of light in the
room is 0.8 (since only the natural light contributes). A S® model for Rob’s pre-
symbolic understanding about its world is summarized in the following table,
together with the function F.

Observable Name | Kind | Domain
Slider position slid | input [0,1]
Natural light nat | input [0, 1]
Preference goal | input [0, 1]
Room illumination | inten | output | [0,1]

with inten = F(slider, nat), where F(z,y) = maz(z?,y).

3...although we will not speak about actions here. We don’t worry either about how Rob’s
preferences change with time.

146 M. MARTINEZ

The state space here is = [0, 1]* and the normal state space is
Qo ={(z,y,w,2) €| 2= F(z,y)}.

At the pre-symbolic level, given the definition of particular Q and €, S*
deals with representations for single partial states in €2 and for simple subsets
of €, called basic sets. The class B of basic sets, is the smallest class of subsets
of |, , " which contains the intervals in ® and is closed under finite unions,
complements, cartesian products and projections. Equivalently, 8 is the class
containing all finite unions of “boxes”. The reason why we need partial states
and basic sets is that they make it possible to model things such as reasoning
about approximate information. For example, we might imagine Rob being able
to notice that at certain moment the slider is positioned somewhere between
0.3 and 0.7, without knowing the exact position, and still being able to make
useful inferences from this piece of approximate information.

What about the symbolic level of representation? At this level we give to
S3 a simple language £ with basic lexicon L. The elements of L are called
basic types. A basic type is intended to be a way to classify situations®. The
link between a type (as understood by an agent) and a real-world situation
is provided by the state space. A situation is represented by a partial state.
Therefore, the extension of a type A, which is a set of situations, corresponds
to the subset of {2 formed by states that represent situations of type A. We
call these special subsets of Q concepts. In S® to each type A we associate
its concept by defining a function x4 : Q@ — {0, 1}, such that for all o € Q,
Xa(o) = 1if and only if o is of type A. The function x4 may actually depend
only on a subset of observables. We call that subset LivesOn(A) and we say
that A lives on LivesOn(A). The intuition is that when using A, an agent’s
attention is focused on the set of dimensions LivesOn(A).

As an example, Rob’s basic lexicon could be

L = {bulbInten[a], wantLight[more|, wantLight[equal], wantLight|[less|,useful }

where bulbInten|a] stands for “the bulb brightness is a” (a a real number be-
tween 0 and 1), wantLight[p] stands for "I want more/less/equal light” (de-
pending on what p is) and “useful” stands for “I think that the bulb’s light is
useful”. We will set things up to model the case where Rob thinks that the
bulb’s light is useful when the two following conditions hold: (1) the bulb’s in-
tensity is at least .1 more than the intensity of natural light, and (2) the bulb’s

4A situation is just a part of the world. Situation semantics is a form of model theory in
which, instead of possible worlds, possible situations are used. Situation theory arose, among
other things, from trying to acknowledge the importance of context in semantics. See [BP 83]
for the original formalization of situation semantics.

TOWARDS A MODEL OF HETEROGENEOUS COMMONSENSE ... 147

intensity lies in the range Rob likes. The table below presents some examples
of reasonable concepts associated with Rob’s types:

Type A Concept €24
bulbInten|a] {0 € Q| slid € (a—0.05,a+ 0.05)}
wantLight|less] {o € Q |inten + 0.1 < goal}
wantLight[equal] {o € Q| |inten — goal| < 0.1}
wantLight[more] {0 € Q| inten — 0.1 > goal}
useful {0 € Q] slid®> > nat + 0.1 A |goal — inten| < 0.1}

Observe that, €24 can very well be, as in the case of Quuiprnienfo.5), a “simple”
basic set or it could be, as in the case of {5y, a non-trivial subset of Q2. In
general then, it is important to note that there might be €24’s which are not
basic sets.

Although we have argued above that basic sets are useful even when working
only at the pre-symbolic level, the main use for them in S® is to provide the
link between symbolic and pre-symbolic representations that allow both levels

to interact in useful ways. So in S® to each type A we also assign functions,
Necy, Sufa B — B, such that for all ® € B and all o € €,

Necy(®) C 9,

Squ(Q) g@,

0 € Sufa(®) — o€ QaN®, and
0 & Neca(®) — o € Q4N D.

The idea is that for each possible “window” given by a basic ®, Nec4(®P) and
Sufa(®) approximate the “shape” of the region Q4 in terms of basic sets.

S3 is an inference engine. Once a model has been provided by the user,
consisting of both a symbolic and a pre-symbolic part, S* uses this knowledge
in order to solve gqueries of the form

Is I' - A valid in the context U? (1)

A query consists of a sequent I' - A and a context ¥, which is a product of
1-dimensional basic sets encoding information available to the agent regarding
the possible values for each observable. For example, in the case of Rob, one
might have a context DarkOutside = [0, 1] x [0,0.3] x [0,1] x [0, 1]. This does
not encode any special information about most dimensions, except that natural
light is very dim.

The process of trying to solve a query in S® has two stages. First, the query
above is transformed into an extended sequent I' = A (on @), where @ is a basic
set that contains the context ¥ and depends on both ¥ and I' = A. The second
stage tries to find out whether the extended sequent I' = A (on ®) is valid. The
extended sequent is valid only if every state o € Qy N ® that satisfies all the

148 M. MARTINEZ

types in ', satisfies at least one of the types in A. It is in testing for the validity
of extended sequents that the functions Nec and Suf are used once and again,
as we will see. We should stress that €2, the normal state space, might not be a
basic set. Here, however, we will assume that {2 is basic, and even more, that

Oy = Q, in order to facilitate the discussion®.

Stage 1: From queries to extended sequents.

In a query like (1), we can think of the context ¥ as an encoding of default
assumptions about the values of the different observables in the moment the
query is made. On the other hand, when we want to test for the validity of
[' - A, we can look at I as forcing us to consider as set of possible counterex-
amples a set of states that is more general than ¥, for in order to assess the
validity of I' = A, one needs to consider all the possible (partial) states that
satisfy I'. How is this done in S3? Well, in order to test if a state o is of type
A, one looks only at the values of dimensions in LivesOn(A). Therefore, it is
natural to say that if one wants to take into account all of the possible config-
urations regarding I', one should free any constraint that the current context
¥ = [[Y, I, may be imposing on dimensions in Uuer LivesOn(A), and then
test whether the sequent holds of all states in that enlarged basic set ®. For-
mally, S® transforms the query (1) into the extended sequent I' = A (on @),
with @ = [[Y, Ji, where J; = dom(d;) if d; € Uuer LivesOn(A) or if d; is an
output dimension , and J; = I; otherwise.

It is in this stage where phenomena like non-monotonicity can arise, because
a question about I' - A made in two different contexts ¥, U5, might lead to
two different extended sequents with conditions @, ®,. It might very well hap-
pen that only one of the extended sequents is valid. In the examples we have
implemented in S® such a situation occurs when some of the LivesOn dimen-
sions for I' are output dimensions. Those output dimensions might depend on
some other input dimensions for which the constraints imposed by the original
contexts U; are unchanged when we move from the context ¥ to the extended
conditions ®;, i= 1, 2. We look at this as a way to model the role of atten-
tion in commonsense reasoning. That is, for us the LivesOn dimensions are
attentional parameters that impose biases in the reasoning process, and which
depend on the particular query to be solved, as will be illustrated later, with
concrete examples, in the next section.

Stage 2: Testing the validity of an extended sequent.

The product of the first stage is an extended sequent I' A (on @) for which
S3 should try to find out whether it is valid or not. An extended sequent is
valid only if there is no counterexample for it. S tries to show that an extended

5The issue of the non-constructibility of Qg in some cases is interesting in the sense that
it is another point of the framework where continuous methods seem to be useful. We have
not really gone deeply into this issue.

TOWARDS A MODEL OF HETEROGENEOUS COMMONSENSE ... 149

sequent is valid by showing that the set of possible counterexamples is empty.
To do that, it identifies a set that must contain all possible counterexamples
for the sequent, and it starts a process of gradual shrinking that at each step
throws away states which are discovered to satisfy the sequent. The hope is
that after finitely many shrinking steps the empty set will be reached. If that is
the case, the sequent has been shown to be valid, for there is no counterexample
that might be found for it. If the empty set is not reached, then a narrowing of
the initial set has been performed that at least would allow the system to make
a more informed search for counterexamples in a third stage of the proccess®.
Here is how the shrinking process in S® works.

It follows from the definition of validity of an extended sequent that
' A (on ®) is not valid if and only if t

(@an®) - [J©sna) (2)

AeTl BeA

is not empty, where €, is the set of states of type A7. Observe that when all
the Qg’s and €24’s are basic sets, we can check for validity directly by using
(2), since B is closed under intersection and complementation. The situation
is more complicated when some of the Q4’s (or 25’s) are non-basic. However,
in these cases we still can use the functions Necy and Sufs by defining the
operator

veeL'F A on [@])sur =aer () Neea(®) — | J Sufs(®). (3)

because it is an easy observation that any counterexample to I' = A (on ®), if
there is any, must also belong to the set

(I>1 —Nec (F = A on [CI)])Sufa

although not necessarily every element of @, is a counterexample to' = A (on).
In other words, it is always true that I' = A (on @) is valid if and only if the
sequent I' = A on @, is valid, where ®; C ® is the set defined above. But now
we can iterate the reduction process in order to obtain a third sequent I' - A
on ®, which is valid if and only if I' = A on ®, is valid, and so on®. If we let
&y = ®, at step n + 1 we obtain a sequent I' - A (on ®) on &, 4, with

(I)n—l—l =Nec (F |_ A on [q)n])Suf

6This third stage is not fully described here, for it is quite undeveloped so far.

"In fact, we should have said that the sequent is not valid if and only if the intersection of
(2) and Qo is not empty . However, since we are taking Qo to be basic here, this additional
checking is not problematic, and we will ignore it through this section.

8We have presented here a simplified version of the reduction process, where only the
contexts change, not the sequents. This is not the case in S® though, where sequents do
change due to another use of necessary and sufficient conditions not explained here.

150 M. MARTINEZ

and such that the set of counterexamples for this sequent is exactly the set of
counterexamples for the original sequent I' = A (on ®). An upper bound M is
imposed for the number of iterations of this shrinking process that are allowed in
53, since there is no guarantee that a fixed point exists for an arbitrary sequent
(unless certain conditions on the Nec and Suf functions are met). That is, the
process stops as soon as S® reaches an N such that ®y = &y _;, or N = M,
whichever occurs first.

There are four cases to consider after the iteration process in S® has finished.

1. &5 = (0. In this case S? says that the sequent is valid.

2. ®y is a finite set. S* uses the functions x4, which define the meaning
of the types, to test whether each one of the states in ®y satisfies the
sequent. The system says that the sequent is valid if no counterexample
is found. Otherwise, it exhibits the first counterexample it finds.

3. @y is infinite and the set © = [, Sufa(®n) —Upea Necs(@y) is non-
empty. Notice that © is not the same as the set ®.; because Nec and
Suf are shifted. Since every state ¢ € © is a counterexample for I' = A
(on ®p), the system answers that the original sequent is not valid.

4. ®y is infinite and the set © is empty. Here S? cannot tell, based only on
the Nec and Suf functions, whether the original sequent is valid or not.
S3 triggers a search for counterexamples in ®y, but so far this search is
quite blind. We believe that some additional structure of the state space
(like probability distributions for the dimensions) should be used to guide
the search and ideally give some measure of the strength of the belief on
sequent for which no counterexamples are found.

3 Some concrete examples using S°

The goal in this section is to show how Mathematica notation is used in S® and
to illustrate with a few examples (still concerning the robot example) how S® be-
haves. This section is designed to appear just like a Mathematica notebook that
uses S. In what follows, text that is enclosed by frames indicates Mathematica
notation. Each frame corresponds to what is called a cell in Mathematica. Cells
with boldface text represent input cells, while cells with regular text indicate
output cells.

3.1 Defining the grounding state space (2

The first thing we need to do to in order to implement an example in S? is to
load a few packages (that is, to load S? itself). To do this, it is necessary to

TOWARDS A MODEL OF HETEROGENEOUS COMMONSENSE ... 151

evaluate the following cell.

Off [General :: spelll |;

Get [“SSSIE ‘BasicSets‘” |;
Get [“SSSIE ‘Pdd‘ ” ;

Get [“SSSIE ‘StateSpaces* ” |;

Remember that Rob’s “understanding” of the world is based on four basic
features and that each state will have the generic form

o = (slider, natural light, preference, room illumination)

A S3 model for Rob’s pre-symbolic understanding about its world that captures
our previous description is given to S® as follows.

First, we need to define the state space 2. In so doing, we begin by defining
domains and labeling them, one for each dimension of the state space. This is
done by defining a matrix with three columns and as many rows as there are
dimensions in the space, in this example, four. We also tell how many of these
dimensions are input dimensions, three in our case. By convention, these input
dimensions always come first in the matrix. The first column contains the labels
we will use in displaying values of states, the second contains the name of the
variable used by Mathematica to refer to the various dimensions, and the third
column defines the domain of valid values for each one of those variables.

Slider position slid [0,1]

dimensionsAndDomains = Natural light nat 0, 1] ;
Preference goal [0,1]
]

Room illumination inten [0,1

number of Inputs = 3;

We feed the information on dimensions given above to the general system
by means of the command SetObservables, used as follows.

SetObservables|labelsAndDomains, numberOfInputs |;

Here is the definition of the output function that allows to calculate the
value of our output dimension inten, given the values of the input dimensions.

intensityFunction := Max|slid?, nat |;

152 M. MARTINEZ

We say now that the function above is the one that corresponds to the up
now the output dimension inten. When more output dimensions exist, a matrix
with as many rows as output dimensions must be created.

outputFunctions = (inten intensityFunction)

This matrix is passed as the parameter to the command SetOutput Functions,
which makes S create internally the associations between output dimensions
and their corresponding functions.

SetOutputFunctions[outputFunctions |;

3.2 Defining the propositional language and grounding
it on (2

Let’s remember Rob’s basic lexicon:

e bulbInten[a]: The bulb brightness is a (with a tolerance of plus or minus
0.05).

e wantLight[less]: The robot’s preference is lower than the overall inten-
sity of light (with a tolerance of 0.1).

e wantLight[equal]: The robot’s preference coincides with the overall in-
tensity of light (with a tolerance of 0.1).

e wantLight[more]: The robot’s preference is higher than the overall in-
tensity of light (with a tolerance of 0.1).

e useful: We will set things up to model the case where Rob “thinks” that
the bulb’s light is useful when the two following conditions hold: (1) the
bulb’s intensity is at least 0.1 more than the intensity of natural light, and
(2) the bulb’s intensity lies in the range of brightness that Rob likes.

In what follows, we show the formal definition for these types is given to S3.
For each type, its definition includes the characteristic function, the necessary
and sufficient conditions. In S it is necessary also to declare the type as a
valid one that can be used in forming queries. So, for a type «, a function
validTypeQ[a] with boolean values is defined in such a way that the value
True is returned only if its argument is a syntactically correct atomic type.
For most types, the function is very simple, basically always returning T'rue.
However, in cases like the family of types bulbInten|a], an extra check must be
made so to ensure that a is an admissible value (in our case a value in [0, 1]).
Here are then the definitions of our types in S3.

TOWARDS A MODEL OF HETEROGENEOUS COMMONSENSE ... 153

validTypeQ[bulbInten[a]]:

0<a<l;
meaning[bulbInten[a]] := a — 0.05 < inten < a + 0.05;

necessarypylblnten[a][®-] := Shrink[®,
inten € OpenBasicInt[a — 0.05,a + 0.05 ||;

Suﬂ:icientbulblnten[a] [‘ﬁ_] = Shrink[@,
inten € OpenBasicInt[a — 0.05,a + 0.05 ||;

Notice that in the definition of bulbInten|a] given above, the “meaning”
function for the type, is simply the characteristic function for it. As for the
necessary and sufficient conditions, which in this case coincide, the definitions
above say that when ® is a boolean set,

Necyufintena)) (®) = {0 € ® | inten € (a — 0.05,a + 0.05)}.

The command Shrink[®,w f f] simply calculates the intersection of the boolean
set ® and the boolean set defined by the well formed formula wf f. The com-
mands OpenBasicInt[min, mazx] and ClosedBasicInt[min, max] (that we’ll
use below) represent the open interval (min, maz) and the closed interval [min,
max], respectively. Now we can define the “wantLight” types, as follows.

validTypeQ[wantLight[more || := True;
meaning[wantLight| more || := inten + 0.1 < goal;
NecessaryyantLight[more] | ®-] := Shrink[®,
goal € ClosedBasicInt[BasicInf[Project[®, inten]] + 0.1, co] A
inten € ClosedBasicInt[—oco, BasicSup[Project[®, goal]] — 0.1]];
sufficient yantLight[more][®-] := If|
BasicSup[Project[®, inten]] + 0.1 < BasicInf[Project|[®, goal]],

P, False|;

In the definition of wantLight[more], it should be clear that the meaning
function above captures exactly what the intended meaning of the type is,
according to our informal description of it. As for the necessary and sufficient
conditions, the code above tells us that

154 M. MARTINEZ

e In order to calculate necessary conditions for the type wantLight[more] to
hold inside the boolean set ®, observe that any state o € ® that satisfies
this type must comply with two constraints. First, the value goal, must
be at least 0.1 larger than the minimum possible value that the inten
dimension can take in ® (which is the g.l.b. of the projection mpten(P)).
Second, the value inten, must be at least 0.1 smaller than the maximum
possible value that the goal dimension can take in ® (which is the g.l.b.
of the projection myou(P)).

e As for sufficient conditions, if it happens that the projection mten(®) of
® on the dimension inten is a basic set that is completely at the left (in
the real line) of the basic set my,(®) by a distance of at least 0.1, then
clearly the whole set ® consists of states that satisfy wantLight[more].In
any other case, the function for sufficient conditions above returns simply
the empty set (which is described by the well formed formula False).

The definitions of wantLight|less] and wantLight[equal] have the same fla-
vor, and are given below.

In the definition of the type wantlightlequal], a few Mathematica notation
observations are necessary here. The absolute value function is denoted by Abs.
Also, the Mathematica construct Module[list, body| is used, where list is a list
of local variables and body is a sequence of commands separated by semicolons.
The value of the last command is the value of the construct. Finally, && is the
Mathematica notation for the boolean and operator. The A notation is our own
extension to the system, and is only to be used in our own defined well formed
formulas that describe boolean sets.

validTypeQ[wantLight[less || := True;
meaning[wantLight[less || := inten — 0.1 > goal;
NecessaryyantLight[less|[®-] := Shrink[®,
inten € ClosedBasicInt[BasicInf[Project[®, goal]] + 0.1, co] A
goal € ClosedBasicInt|—oco, BasicSup[Project[®,inten|] — 0.1]];
sufficient yantLight[less][®-] :== If][

BasicSup[Project[®, goal]] + 0.1 < BasicInf[Project|[®, inten]],

®, False];

TOWARDS A MODEL OF HETEROGENEOUS COMMONSENSE ... 155

validTypeQ[wantLight| equal]] := True;
meaning[wantLight|equal]] := Abs|[inten — goal] < 0.1;
NecessarywantLight|equal][®-] := Module[{temp, templ},
temp = BasicIntersection[Project[®, goal|, Project[®, inten]|;
templ = OpenBasicInt[BasicInf[temp]| — 0.1, BasicSup[temp] + 0.1];
Shrink[®, goal € templ A inten € templ]][;
sufficient wan¢Light[equal[®-] := Module[{temp, temp1},
prl = Project[®, goal]; pr2 = Project[®,inten];
If[Abs[BasicInf[prl] — BasicSup[pr2]] < 0.1 &&

Abs[BasicInf[pr2] — BasicSup[prl]] < 0.1,

®, False];

Finally, here is the definition of the type useful.

validTypeQ[useful] := True;
meaning[useful] := slid? > nat + 0.1 && Abs|goal — inten] < 0.1;

necessaryyseful[®_] := Shrink[necessary[wantLight[equal]|[®],

slid € ClosedBasicInt[/BasicInf[Project[®, nat]] + 0.1, oo]] A
nat € ClosedBasicInt[—co, BasicSup[Project[®,slid]]2 — 0.1]];
sufficient ygeru1[®-] := Shrink[sufficient[wantLight[equal]][®],

If[BasicSup[Project[®, nat]] + 0.1 < BasicInf[Project[®, slid]]?

®, False];

3.3 Contexts

S3provides a couple of different ways to set context assumptions, but we’ll only
use the ChangeContext command here. As with any other command in S3

156 M. MARTINEZ

(and any command in Mathematica), you can access a brief description of the
command C'hangeContext by writing its name preceded by a question mark.

‘ ?7ChangeContext

ChangeContext[{{dim1,basici },...,{dimy, basicy}}] modifies the current
context by changing the domains of some of the dimensions as indicated
by the argument. For all the other dimensions the domains are unchanged.

Here are the commands that we’ll use in this example.

Preference[a_] := ChangeContext| {{goal, ClosedBasicInt|a,a]}} |;

SetSlider[a_] := ChangeContext| {{slid, ClosedBasicInt|a, a]}} |;

DarkOutside := ChangeContext[{{nat, ClosedBasicInt[0, 0.25]}}];

3.4 Entailment examples.
We will test the following sequents using a few different contexts.

Sequent; : wantLight[more] + —wantLight|less].
Sequents, : bulbInten[0.4] + —wantLightlequal].
Sequentg : bulbInten|[0] V bulbInten[l] + -—wantLight[equal.

3.4.1 Queries using the default context.

The default context is the one where no constraints are imposed on the dimen-
sions. It can be set in S® as follows.

ClearContext; ShowContext;

slid ~ [0,1]
nat [0, 1]
goal [0,1]
inten [0,1]

The command used to input the query T' = A in S% is ValidQ[Sequent|T, A]].
Here is how S® behaves when asked about the validity of the three above se-
quents.

TOWARDS A MODEL OF HETEROGENEOUS COMMONSENSE ... 157

ValidQ[Sequent[{ “wantLight[more]” }, { “wantLight[less|” }] |;

The sequent is valid because it reduces to
{wantLight[less|, wantLight[more]} F {} constrained on the empty set.”

The change from the original sequent to
{wantLight[less|, wantLight[more]} F {}

results from eliminating the — connective by applying the usual Gentzen rules
for natural deduction.

The two last sequents are found to be invalid, and counterexamples are
shown.

‘ ValidQ[Sequent[{ “bulbInten|0.4])” }, { “wantLight[equal]” }]];

After investigating only 1 critical case for the sequent, I found
Slider 0

Natural Light 0.4

Preference 0

Intensity 0.4

the counterexample

| ValidQ[Sequent[{ “bulbInten[0] V bulbInten[1]"}, { “~wantLight| equal]”}]];

After investigating only 1 critical case for the sequent, I found
Slider 0
Natural Light 0
Preference 0
Intensity 0

the counterexample

3.4.2 Judging sequents under a different context.

We can modify the current context (which is the default we used in the previous
example) as follows.

DarkOutside; Preference[0.2]; ShowContext;

slid ~ [0,1]
nat [0,0.25)
goal {0.2}

inten [0,1]

158 M. MARTINEZ

These are the results when we ask S® to judge the validity of the same three
sequents.

‘ ValidQ[Sequent[{ “wantLight[more|” }, { “wantLight|[less|” }] |;

The sequent is valid because it reduces to
{wantLight[less|, wantLight[more]} F {} constrained on the empty set.”

No matter in which context we ask S? to evaluate the previous sequent, since
the sequent is globally true, there is no way to come up with a counterexample
for it, regardless of the context.

ValidQ[Sequent[{ “bulbInten[0.4]” }, { “wantLight[equal]” }] |;

After investigating only 1 critical case for the sequent, I found
Slider 0.6

NaturalLight 0

Preference 0.2

Intensity 0.36

the counterexample

Observe that although both with the default context and our new current
context S® finds counterexamples for this second sequent, the counterexamples
are different. By looking at the characteristic function of bulbInten/0.4] the
reader can see that LivesOnyyprntenfo.4) cOnsists only of the dimension inten,
and therefore this is the only dimension for which constraints are dropped when
starting the reasoning process. The constraints on all other dimensions are kept
as defaults, and so our counterexample here is one that complies with the two
conditions imposed by the current context on the dimensions nat and goal:
Notice that our counterexample is one where nat = 0 (it is therefore dark
outside), and goal = 0.2.

Finally, by comparing the results for the third sequent when evaluated in the
default and our new current context, the reader can see how nonmonotonicity
effects appear in S3. While it is possible to easily find a counterexample for the
sequent when working in the default context (when thinking in a non-situated
way), it is not possible to find such a counterexample when the defaults on the
dimensions nat and goal are kept. Notice, again, that these defaults are not
dropped because these dimensions do not belong to LivesOnpuprnten[q) for any
a.

‘ ValidQ[Sequent[{ “bulbInten[0] V bulbInten[1]”}, { “~wantLight[equal]” }]];

TOWARDS A MODEL OF HETEROGENEOUS COMMONSENSE ... 159

The sequent is valid. It reduces to a list of simple sequents which are valid
because they are constrained on the empty set. The list of simple sequents is
{{bulbInten[0], wantLight|equall}, {},

{bulbInten[1], wantLight| equal]}, {}}

After dropping any default assumptions on dimensions of LivesOnpuprnteno]
and LivesOnpypintent) (Which in this case amounts to doing nothing), S3 elim-
inates boolean connectives by using the usual Gentzen rules for natural deduc-
tion. Indeed, the sequent

bulbInten[0] V bulbInten[1] F —wantLight| equal]

reduces this way to the pair of sequents

bulbInten[0], wantLight| equal] F {}
bulbInten[1], wantLight[equal] F {}
Since both of these sequents are judge as valid by S® in our current context,
so is the original sequent.
3.4.3 A final example.

Suppose now that we work in a context where it is still dark outside, but the
robot’s preference for light is 0.9 and the slider’s position is 0.9.

Preference[0.9]; SetSlider[0.9]; ShowContext;

slid {0.9}
nat [0,0.25)
goal {0.9}

inten [0,1]

This is what we get if we now ask S® about the validity of sequents,.

ValidQ[Sequent[{ “bulbInten[0.4]” }, { “wantLight[equal]” }] |;

The sequent holds of all of the 101 critical cases I checked so it is
probably valid in the current context. ”

160 M. MARTINEZ

This example shows again nonmonotonicity (compare with the results for
this sequent using the other contexts). Observe that the answer S* gives here
is not a definite one. The reason is that the set of possible counterexamples for
this sequent could not be proven to be empty, so a sampling of states was made
for testing. Since all of those states satisfy the sequent, S® judges the sequent
as “probably valid”.

4 Reasoning with sequents

We are interested in formalizing, generalizing and enriching the ideas which
have been already implemented in S3. This section presents a first step in this
direction. Namely, we study ways to re-use sequents which have been previously
proved to be valid (this is something that S® does not do currently). Ideally,
such sequents should be added to the resources provided by the Nec and Suf
functions when trying to prove a new sequent.

So through this section we postulate the existence of a set Givens of ex-
tended sequents, which acts as a set of axioms. We study how our reduction
strategy can use such a general set of axioms and we ask ourselves how we can
compare the framework that we will obtain with more standard proof systems.
Two preliminary remarks are in order. First, regarding ways to link standard
proof systems and our framework here, it is an easy observation that the stan-
dard rules of Identity, Weakening and Cut can be naturally formulated in terms
of extended sequents. For example, the Cut Rule looks as follows

I'AFA (on @) and ' A, A (on @)

(Standard Cut) TT A (on)

The second remark has to do with the relationship between this section and the
previous one. After reading this section, it should be an easy exercise for the
reader to see that the procedure to shrink condition ® used by S can be seen
as a particular case of the procedure described in this section, when we set

Givens = {AF A (on Sufs(Pn)) | Ais a type}
U {AF A (on Q — Necy(®y)) | A is a type}

where A is our notation for the empty set of types.

Back to the main discussion, we are assuming in this section an arbitrary set
of axioms called Givens which contains all of the identity axioms A - A (on ®).
Our goal is still to tell the validity of a sequent I' = A (on ®). Furthermore,
we want to do it by resorting to a shrinking strategy like the one used by S3.
The following relation intends to capture the general idea behind the process of
shrinking the set of possible counterexamples as much as possible.

TOWARDS A MODEL OF HETEROGENEOUS COMMONSENSE ... 161

Definition 1 Let Seq, Seqi, Seqo, ..., Seq, be extended sequents. Then
Seq => Seqy, Seqs, ..., Seq,

if the set of counterexamples to Seq is the union of the sets of counterexamples
to Seq,, Seqs, ..., Seq,.

Proposition 1 The following are properties of the => relation.
1. If Seq => Seq; then Seq; => Seq.
2. If Seq => Seqy, ..., Seq,, Seq* and Seq* => Sequi1,...,S€qn 1k, then

Seq => Seqla B SEQYU Seqn—l—la SBQH—HC-

3. If Seq => Seq, ..., Seq,, Seqx, and Seqx is a valid sequent then

Seq => Seqq, ..., Seq,.

4. 1f
tEA (on W), ..., TpoFA, (on¥), T,EA, (on V)

I'FA (on)

1s a sound rule which is either reversible or has n = 0, then it is also true
that: If Uy B A, (on W) is valid, then for any condition (i.e. basic set) ®

F'FA (on®)=> ThFA (on®NVY),....[, A, (on @NT),
I'FA(on®—V)

The proof of this proposition is immediate from the definition of =>. In the
statement of property (4), which will play a key role in the definition of our
reduction system, “reversible rule” means simply a rule which is bi-directional
in the sense that if you know that the premises are valid then the conclusion
is valid, and if you know that the conclusion is valid, then all the premises are
valid.

Now, we want our reduction system to be at least as powerful as the deduc-
tion system given by the three classical deduction rules. So following (4), we
define three sound reduction rules, Substitution, Arrow-Weakening and Arrow-

Cut, as follows. First, we have a Substitution Rule, which is simply property
(2) above.

Substitution. If Seq => Seq, ..., Seq,, Seq* and Seq* => Seq, 1, ..., S€qn 1k,
then
Seq => Sequ, ..., Seqn, Seqny1, S€qn -

162 M. MARTINEZ

In order to obtain Arrow-Cut and Arrow-Weakening, we use a different
form of the classical Cut rule which is equivalent to Standard Cut, but whose
translation obtained by using property (4) above does give us the deduction
power that we want®.

Definition 2 If ', A, S are finite sets of types, and ® is a condition (i.e. a
basic set), then

S(S,T,A,®) = {[,I" - A, A’ (on ®) | A'NT' = 0 and A'UT' = S}
is the set of weakenings of T' = A (on ®) induced by S.

Proposition 2 Standard Cut rule is equivalent to the set of rules

(S, T, A, d)

(Cuts) T A (on @)’

for S finite

Proof. Let CUT = {Cuts | S is finite}. To see that Standard Cut follows
from CUT, it is enough to observe that

[AFA (on @) and T'H A, A (on @)
I'HA (on @)

is simply C'ut (A} Now we need to prove that for each S finite, Cutg follows

from Standard Cut. We proceed by induction on |S|. The base case, |S| = 0,
is trivial. Assume now that we have proven the result for every finite set of
cardinality n. Let S be a set with n + 1 elements, say S = T U {A}, where
A ¢ T. We want to see that if we have proofs of each sequent in X(S, T, A, @)
we also have a proof of I' = A (on ®). By the inductive hypothesis, it is enough
to show that we have a proof for each sequent in X(7',T', A, ®). Then let Seq =
[, A, A’ (on @) be a sequent such that A'NTY = Pand A'UT' =T, so
that Seq € X(T,T', A, ®). Hence, the two sequents

OTARAA (on®) and T,T'FA,A", A (on ®)

belong to (S, T, A, ®), so they are provable, and from Standard Cut it follows

that Seq is provable as well.
O

o«

Our Arrow-Cut reduction rule (the “=>" version of the Cut rule) is in fact
a blend of the standard Cut and Weakening rules, and is given below.

9There are counterexamples which show that the translation of the Standard Cut rule
induce a weaker reduction system.

TOWARDS A MODEL OF HETEROGENEOUS COMMONSENSE ... 163

Arrow-Cut. If there is an extended sequent I'* = A* (on ¥) in the Givens
such that (N T*) U (AN A*) #) then for any condition @,

'FA (on®)=>{TFA(on®—-V)}U (XS, [A, &N T) — {Seq}).

where S = (I — ') U (A" — A) and Seq =T, T"" - A, A" (on &N V).

There are two important observations regarding this reduction rule. First
of all, the non-disjointness condition in Arrow-Cut is a relevance condition
saying “look only at sequents in the Givens which are somehow related to
I' A (on ®)”. The second observation is that Arrow-Weakening, the reduc-
tion rule corresponding to the standard Weakening rule, is just a particular
case of Arrow-Cut, which occurs when the set S turns out to be the empty set
of types. Just for completeness, we state the Arrow-Weakening reduction rule
below.

Arrow-Weakening. If I' - A (on V) is a weakening of a sequent I'" - A* (on V)
in the Givens, then for any condition @,

THA (on®) =>TFA (on®—0).

Derivations, as defined below, are the counterpart of standard proofs in
standard Gentzen-style proof systems.

Definition 3 Let Seq be a extended sequent and let SEQ be a set of extended
sequents. A derwation of Seq => SEQ from the Givens is a sequence

Seqy => SEQ
Seq; => SEQ,
Seq, => SEQ,

of instances of => such that:
1. Seqq = Seq, = Seq and SEQ, = SEQ.
2. For each k, 0 < k <n, Seqr = Seqq or Seqy € U0§i<k SEQ;.

3. For each k, 0 < k < n, Seqr, => SEQy is an instance of Arrow-Cut or
Seqr => SEQ)y is obtained by Substitution from previous elements in the
sequence.

In what follows, we will use the word derivation only in the sense of the previ-
ous Definition, while the word proof will always refer to proofs in Gentzen-style
systems with rules like Cut and Weakening. Here is an example of a derivation

164 M. MARTINEZ

in our framework.

Example. Assume that the set of Givens is

A,B,CF D (on &),
A,B+C,D (on &),
At B,C,D (on &),
A,CF B,D (on ®3)

Givens =

and we want to check for the validity of A+ D (on ®). Well, by Arrow-Cut
with S = {B,C} we have

AF D (on ®Ndy),

A, BFC,D (on &N dy),
AF B,C,D (on ® N dy),
A,C+ B,D (on &N &)

Applying Arrow-Weakening several times, we also get

AF D (on &) =>

A+ D (on &N),

ABFC,D (on ®N®;Nd,),
AF B,C,D (on ®N®yN y),
A,CF+ B,D (on ® N @y N d3)

AF D (on @) =>

Observe that the union of the conditions in the left is @ — (2NPyNP; NP, N D3).
Those are exactly the states for which a contradiction could be proven from

Standard Cut when using a standard proof system.
O

The following proposition says that we can extract as much information
from the Givens by using derivations as we can extract by using proofs based on
Standard Cut, Identity and Weakening. More concretely, it follows immediately
from this proposition that if you are trying to establish the validity of a sequent
I' F A (on ®) and this sequent can be proven from the Givens using a standard
proof system, then our reduction system is guaranteed to shrink the set of
possible counterexamples for I' = A (on ®) from ® to the empty set. That is,
in this case the reduction system can prove that there are no counterexamples
for the sequent.

Proposition 3 Assume that from the Givens you can prove I' = A (on W) us-
ing Standard Cut and Weakening. Then for every ® there is a set of extended
sequents SEQ = {Seq,...,Seq,} such that the union of the conditions that
appear in SEQ is ® — V¥ and ' A (on &) => SEQ is derivable.

In order to prove the Proposition, we prove the following lemma first.

TOWARDS A MODEL OF HETEROGENEOUS COMMONSENSE ... 165

Lemma 1 Assume that from the Givens you can prove ' = A (on @) by us-
ing only Weakening and Standard Cut. Then from the Givens you can prove
['F A (on @) by using only Weakening and the rules Restricted Cut given by:

(S, IV, A", W)

(Restricted Cuts,y) T - A (on 0)

where there is a sequent Seq € X(S, T, A', W) which is a weakening of a sequent
I = A* (on U*) in the Givens such that S = (I —T') U (A* — A') and (T* N
M) U (A*NA") # 0.

Proof of Lemma. Suppose that ' A (on ®) follows from X(S, T, A, ®)
by Standard Cut, that all the sequents in 3(S,T', A, ®) are provable by us-
ing only Weakening and Restricted Cut and that no sequent in X(S,T, A, @)

is a weakening of some sequent I'* = A* (on ®') in the Givens such that S =
(I =T)U(A* = A) and (T*NT) U (A* N A) #).

e CASE 1: Suppose that there is a sequent I'* = A* (on ®*) in the Givens
such that (" NT)U (A*NA) # 0, and let S* = I'™ U A*. Now, since
each one of the sequents in 3(S, ', A, ®) are provable by using only Weak-
ening and Restricted Cut, each one of the sequents in (S U S*, T, A, @)
is also provable by using only Weakening and Restricted Cut (because
only Weakening is needed to get proofs for sequents in (S U S*, T, A, @)
from proofs for sequents in X(S, T, A, ®)). But now, I' H A (on ®) can be
proven from 3(SUS* ', A, ®) by an application of Restricted Cut, and
we are done.

e CASE 2: Suppose that there is no sequent I'* - A* (on ®*) in the Givens
such that (I*NT)U (A*NA) # (. Then all the types in ' U A have been
introduced in the proofs of the sequents in X(S,T", A, ®) by Weakening.
For each sequent Seq € X(S,I', A, ®), let Ps,, be a proof for it. Modify
Psq by deleting all the occurrences of elements in I' U A. Then we have
that all the sequents in X(S*, 0,0, ®) are provable. Hence A+ A (on @)
follows from Cut, and now by applying Weakening we can also prove
I'FA (on ®).

0

Proof of Proposition. By the above lemma it is enough to prove that if from
the Givens you can derive I' - A (on W) by using Restricted Cut and Weak-
ening, then there exists a set of extended sequents SEQ = {Seqi,...,Seq,}
such that the union of the conditions in SEQ is ® — ¥ and T' - A (on &) =>
SE(Q is derivable. We proceed by induction on proofs. Let P be a proof for
I'F A (on V) from the Givens that uses only Weakening and Restricted Cut.

166 M. MARTINEZ

e The base case is |[P| = 1. If ' = A (on ¥) belongs to the set of Givens.
Then
'FA (on®)=>{I'FA (on®—¥)},

is just an instance of Weakening.

e Now assume that I' = A (on ¥) follows from I'' = A’ (on ¥) by Weaken-
ing, that is, I C T" and A’ C A. Moreover, assume that we have a proof
for I+ A’ (on W¥). Then by induction hypothesis there is a set SEQ' such
that

'+ A’ (on &) => SEQ'

is derivable (by a derivation D, say) and the union of conditions in SEQ’
is @ — W. Observe that then we obtain a derivation of

' A (on ®) => SEQ'

by modifying @ slightly. Namely, replace each sequent I'; - A; (on ¥')
that appears in ® by Iy UT' = A; UA (on ¥').

e Finally, assume that I' = A (on W) follows from X(S, T, A, ¥) by Restricted
Cut. Let 3X(S,I',A,¥)) = {Seq; (on V),...,Seq, (on V), Seq* (on ¥)}
and using the inductive hypothesis suppose that for each Seg; (i = 1,...,n)
with Seq; = I',I'; H A, A;, there is a set SE(Q); and a derivation 3; of
Seq; (on ¥) => SEQ; such that the union of conditions in SEQ); is
the empty set. Assume also that Seq* (on ¥) is a weakening of a sequent
"+ A* (on ¥*) which belongs to the Givens and such that (I'"NT)U(A™N
A)#Pand S=(I'"=T)U(A*—A). Let Xg = {Seq: (on ¥),...,Seq, }
(on). Then,

FFA(on®) => {TFA(on®-T)}UXg
Do
o,
F'FA(on®) => {TFA(on®-7T)}U(Es—{Seq (on ¥)}) USEQy

F'FA(on®) => {TFA(on®—T)}U(Es—{Seqy (on ¥),Seq; (on ¥)})
U SEQyUSEQ:

'FA (on®) => .{I‘ FA(on @ - V)t UU,c, SEQ;

is a derivation such that the union of conditions in the right is & — ¥, as
desired. The first step in the derivation is an instance of Arrow-Cut, and
the last n steps are instances of Substitution.

g

TOWARDS A MODEL OF HETEROGENEOUS COMMONSENSE ... 167

5 Conclusions and Future Work

We have described S3, an inference engine implemented in Mathematica, which
performs inference based on the existence of knowledge at two levels. The pre-
symbolic level is modeled by means of a state space and the symbolic level by a
logical language of (situation) types. In principle, there is no perfect translation
between representations from one level to equivalent representations in the other
level. Instead, both levels interact and cooperate in order to draw conclusions.

In addition, S? features inference which is context dependent, non-monotonic
phenomena and a possible model of attentional effects in inferences performed
by cognitive agents. We have presented also a first step towards a formalization
and generalization of the inference process used by S? by means of reduction
rules. The reduction rules capture the strategy used by S®, namely, trying to
shrink the set of possible counterexamples for a sequent as much as possible.

Our formalization generalizes the reduction process in S® in the sense that
it provides a way to use sequents which have been already proved to be valid,
while in S? that kind of memory does not exist currently. However, the whole
dynamics of the process of iterative shrinking performed by S® when solving
queries, which involves updating the necessary and sufficient conditions to be
used at each step, is not captured yet by our reduction rules system. This is just
one of the various things that need to be solved in the future. As an example,
another direction of improvement has to do with the use of additional structure
of the state space in order to guide different parts of the process, especially the
search for counterexamples which has to be done in cases where the shrinking
process lead by reduction rules has finished without allowing a decision about
the validity of a sequent.

A lot of work has been done in areas that overlap with our project, espe-
cially heterogeneous reasoning (as in [AB 96]) and commonsense reasoning (as
in [ABTY 01], [A 97], [TA 97]).

References

[AB 96] Allwein, G;. Barwise, J. eds., Logical Reasoning with Diagrams, Oxford
Universiy Press, (1996).

[ABTY 01] Akman,V.; Bouquet, P.; Thomason, R.; Young R. A. eds., Modeling
and Using Context, Third International and Interdisciplinary Conference,
CONTEXT, 2001, Dundee, UK, July 27-30, 2001. Proceedings. Lecture
Notes in Artificial Intelligence 2116, Springer Verlag.

[A 97] Akman, V.; Surav, M., The Use of Situation Theory in Context Model-
ing, Computational Intelligence 13 (3), (1997), 427-438.

168 M. MARTINEZ

(B 97] Barwise, J, Information and Impossibilities, Notre Dame Journal of
Formal Logic 38 (4), (1997), 488-515.

[BS 97] Barwise, J.; Seligman, J., Information Flow: The Logic of Distributed
Systems, Cambridge Tracts in Theoretical Computer Science 44, Cam-
bridge University Press, (1997).

[BP 83] Barwise, J.; Perry, J., Situations and Attitudes, MIT Press, (1983).
[C 92] Casti, J., Reality Rules, I. Wiley Interscience, New York, (1992).

[G 00] Gardenfors, P., Conceptual Spaces: The Geometry of Thought, MIT
Press, (2000).

[TA 97] Tin, E.; Akman, V., Situated Non-monotonic Temporal Reasoning with
BABY-SIT, Al Communications 10 (2), (1997), 93-109.

Indiana University

Department of Mathematics

Rawles Hall, Bloomington, IN 47405
USA

E-mail: martinez@indiana.edu

