A NEW CHARACTERIZATION OF CLIQUE GRAPHS

Liliana Alcón Marisa Gutierrez

Abstract

The clique graph, K(H), of a given graph H is the intersection graph of the family of maximal completes of H. A graph G is said to be a clique graph if there exists H such that G = K(H). The only characterization of Clique Graphs known so far is due to Roberts and Spencer [2], however recognizing clique graphs through this characterization is in general difficult; the computational complexity of recognizing clique graphs is a long-standing open problem. In this paper we present a new characterization of clique graphs based on assignments of a vertex u_T to each triangle T of the graph.

1 Definitions and introduction

We consider finite, simple and undirected graphs. V(G) and E(G) denote the vertex set and the edge set of the graph G respectively. A complete of G is a subset of V(G) inducing a complete subgraph. A clique is a maximal complete. We also use the terms complete and clique to refer to the corresponding subgraphs. A triangle is a complete with exactly three vertices, T(G) denotes the set of triangles of G.

Given a set family $\mathcal{F} = (F_i)_{i \in I}$, the sets F_i are called members of the family. $F \in \mathcal{F}$ means that F is a member of \mathcal{F} . \mathcal{F} is pairwise intersecting if the intersection of any two members is not the empty set. The intersection or total intersection of \mathcal{F} is the set $\cap \mathcal{F} = \bigcap_{i \in I} F_i$. The family \mathcal{F} has the Helly property or is a Helly family, if any pairwise intersecting subfamily has nonempty total intersection.

The intersection operator, L, maps a set family $\mathcal{F} = (F_i)_{i \in I}$ into the graph $L(\mathcal{F})$ satisfying

$$V(L(\mathcal{F})) = \{F_i, i \in I\} \text{ and } E(L(\mathcal{F})) = \{F_i F_{i'} / F_i \cap F_{i'} \neq \emptyset\}.$$

If G is a graph, C(G) denotes the clique family of G. The clique graph of G, denoted by K(G), is the graph L(C(G)). G is a clique graph if there exists another graph H such that G = K(H). K(Graph) is the set of all clique graphs.

The edge with end vertices u and v is represented by uv. We say that the complete C covers the edge uv when u and v belong to C. A complete edge cover of a graph G is a family of completes of G, covering the edges of G. A Helly complete edge cover of G is an complete edge cover of G satisfying the Helly property. Although clique graphs have been study widely, see for instance [3], the following is the only characterization of clique graphs known so far. This characterization has not led to an efficient algorithm for clique graphs: the computational complexity of the clique graph recognition problem reminds open.

Theorem 1 (Roberts and Spencer, [2]) $G \in K(Graph)$ if and only if there exists a Helly complete edge cover of G.

We say that the subsets V_1 and V_2 of V(G) are stuck one on the other if $V_1 \cap V_2$ contains at least two vertices. We also say V_1 is stuck on V_2 or V_2 is stuck on V_1 . If \mathcal{F} is a complete edge cover of G and $V \subseteq V(G)$, \mathcal{F}_V denotes the subfamily of \mathcal{F} formed by all the members which are stuck on V, if any exists. It is easy to prove that a complete edge cover \mathcal{F} of G, has the Helly property, if and only if,

$$T \in T(G) \Longrightarrow \cap \mathcal{F}_T \neq \emptyset.$$
 (I)

Using this idea the characterization of clique graphs due to Roberts and Spencer is formulated in [1] as following.

Lemma 1 [1] $G \in K(Graph)$ if and only if there exists a complete edge cover \mathcal{F} of G such that, $T \in T(G)$ implies $\cap \mathcal{F}_T \neq \emptyset$.

This Lemma says that G is a clique graph if and only if there exists a complete edge cover of G such that for every triangle T of G the intersection of all those members containing at least two vertices of T is not empty. It follows that if G is a clique graph every triangle of G can be related with a subset of vertices of G and so, in particular, with one vertex of G:

$$T \in T(G) \longrightarrow u_T \in \cap \mathcal{F}_T$$
.

It is natural to ask if it is possible to develop a set \mathcal{P} of properties independent of \mathcal{F} , such that if every triangle of G is related with a vertex of G, satisfying the properties in \mathcal{P} , then G is a clique graph. In section 2 we present different results about \mathcal{P} . In section 3 we show an affirmative answer to that question, and we obtain a new characterization of clique graphs. We think that this new characterization is a potential useful tool to be used to solve the clique graph recognition problem.

It is known that G is a clique graph if and only if the graph obtained from G by removing the edges which are not in a triangle, is a clique graph, thus, without loss of generality, we will only consider graphs whose edges belong to some triangle.

2 The main results

A t-v assignment of a graph G is a function $\mathbf{u}: T(G) \to V(G)$, $(\mathbf{u}(T))$ is denoted by u_T , such that for every triangle $T = \{x_1, x_2, x_3\}$ of G either

- 1. $u_T \in T$, or
- 2. u_T is adjacent to x_1 , x_2 and x_3 , and, in this case, $u_T = u_{T_1} = u_{T_2} = u_{T_3}$, where $T_1 = \{x_2, x_3, u_T\}$, $T_2 = \{x_1, x_3, u_T\}$ and $T_3 = \{x_1, x_2, u_T\}$.

Remark 1 Notice that if **u** is a t-v assignment of G and $uv \in E(G)$ then there exists some triangle T of G covering uv and satisfying $u_T \in T$.

In the following, given a t-v assignment \mathbf{u} and a vertex subset V' of a graph G, a new vertex subset $A_{\mathbf{u}}(V')$ is obtained progressively by adding the vertices u_T assigned to the triangles which are stuck on. Let us put this idea into proper form: given \mathbf{u} , a t-v assignment of G, $V' \subseteq V(G)$, and s a positive integer, let $A_{\mathbf{u}}^{s}(V')$ be the vertex set:

$$A_{\mathbf{u}}^{1}(V') = V' \cup \{u_{T}, T \in T(G), T \text{ stuck on } V'\},$$

 $A_{\mathbf{u}}^{s}(V') = A_{\mathbf{u}}^{1}(A_{\mathbf{u}}^{s-1}(V')).$

It is clear that for any $V' \subseteq V(G)$, there exists $s_{V'}$ such that

$$A_{\mathbf{u}}^{s_{V'}}(V') = A_{\mathbf{u}}^{s_{V'}+1}(V')$$

and then for every $k \geq s_{V'}$

$$A_{\mathbf{u}}^{s_{V'}}(V') = A_{\mathbf{u}}^k(V').$$

We define

$$A_{\mathbf{u}}(V') = A_{\mathbf{u}}^{s_{V'}}(V').$$

Remark 2 Notice that $A^1_{\mathbf{u}}(A_{\mathbf{u}}(V')) = A_{\mathbf{u}}(V')$, thus, if T is stuck on $A_{\mathbf{u}}(V')$, then u_T belongs to $A_{\mathbf{u}}(V')$.

The following lemma shows that a particular t-v assignment of a graph can be obtained from a given Helly complete edge cover.

Lemma 2 Let \mathcal{F} be a Helly complete edge cover of a graph G. Given $T \in T(G)$, choose $u_T \in V(G)$ such that $u_T \in \cap \mathcal{F}_T$ and, if it is possible, $u_T \in T$. The application $\mathbf{u}: T(G) \to V(G)$, defined by $\mathbf{u}(T) = u_T$, is a t-v assignment of G satisfying

$$T \subseteq F \in \mathcal{F} \Longrightarrow A_{\mathbf{u}}(T) \subseteq F.$$

Proof: Since \mathcal{F} is a Helly complete edge cover of G, then for every triangle T of G, $\cap \mathcal{F}_T \neq \emptyset$, thus for every triangle T of G, it is possible to choose a vertex $u_T \in \cap \mathcal{F}_T$; we also ask the simple condition that, if it is possible, $u_T \in T$. Let us see that the application defined by $\mathbf{u}(T) = u_T$ is a t-v assignment of G: let $T = \{x_1, x_2, x_3\}$ be a triangle of G and assume that $u_T \notin T$, then $\cap \mathcal{F}_T \cap T = \emptyset$. It follows that $x_1, x_2, x_3 \notin \cap \mathcal{F}_T$, thus (since every edge of T is covered by some member of \mathcal{F}) there exist members of \mathcal{F} satisfying: $x_1 \notin F_1 \supseteq \{x_2, x_3, u_T\}$, $x_2 \notin F_2 \supseteq \{x_1, x_3, u_T\}$ and $x_3 \notin F_3 \supseteq \{x_1, x_2, u_T\}$ (See Figure 1).

Clearly, u_T must be adjacent to x_1 , x_2 and x_3 . Consider the triangles $T_1 = \{x_2, x_3, u_T\}$, $T_2 = \{x_1, x_3, u_T\}$ and $T_3 = \{x_1, x_2, u_T\}$, we have to prove that $u_{T_1} = u_{T_2} = u_{T_3} = u_T$. By symmetry it is enough to prove that $u_{T_1} = u_T$. First notice that, since F_2 is stuck on T_1 and $x_2 \notin F_2$, and since F_3 is stuck on T_1 and $T_2 \notin T_3$, then

$$u_{T_1} \neq x_2 , u_{T_1} \neq x_3.$$

On the other hand, if $\{x_2, x_3\} \subseteq F \in \mathcal{F}$ then $u_T \in F$, thus u_T belongs to any member of \mathcal{F} stuck on T_1 , i.e. $u_T \in \cap \mathcal{F}_{T_1} \cap T_1$. It follow from how u_{T_1} was chose, that $u_{T_1} = u_T$.

We have proved that **u** is a t-v assignment. Now, let $T \in T(G)$ and $F \in \mathcal{F}$

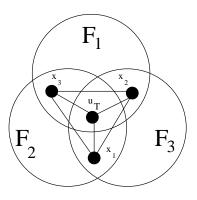


Figure 1: The members F_i , $1 \le i \le 3$.

such that $T \subseteq F$. To show that $A_{\mathbf{u}}(T) \subseteq F$ we will prove by induction over s that $A_{\mathbf{u}}^{s}(T) \subseteq F$.

Let s=1,

$$A^1_{\mathbf{u}}(T) = T \cup \{u_{T'}, T' \text{ stuck on } T\}.$$

If T' is a triangle which is stuck on T, since $T \subseteq F$, then T' and F are stuck, i.e. $F \in \mathcal{F}_{T'}$ thus $u_{T'} \in F$.

The inductive hypothesis says for s = k that

$$A_{\mathbf{u}}^k(T) \subseteq F$$
.

Let s = k + 1,

$$A_{\mathbf{u}}^{k+1}(T) = A_{\mathbf{u}}^{1}(A_{\mathbf{u}}^{k}(T)) = A_{\mathbf{u}}^{k}(T) \cup \{u_{T'}, T' \text{ stuck on } A_{\mathbf{u}}^{k}(T)\}.$$

By inductive hypothesis $A_{\mathbf{u}}^k(T) \subseteq F$, thus if T' is stuck on $A_{\mathbf{u}}^k(T)$ then T' is stuck on F, i.e. $F \in \mathcal{F}_{T'}$. It follows $u_{T'} \in F$.

The following lemma shows that it is possible to get a Helly complete edge cover of a given graph from a t-v assignment \mathbf{u} satisfying a particular condition. The set of triangles of G holding $u_T \in T$ will be denoted by $T(G)_{\mathbf{u}}$.

Lemma 3 Let **u** be a t-v assignment of a graph G such that, for every $T \in T(G)_{\mathbf{u}}$, $A_{\mathbf{u}}(T)$ is a complete of G. Then $(A_{\mathbf{u}}(T))_{T \in T(G)_{\mathbf{u}}}$ is a Helly complete edge cover of G.

Proof: Let $\mathcal{F} = (A_{\mathbf{u}}(T))_{T \in T(G)_{\mathbf{u}}}$. By Remark 1, the members of \mathcal{F} cover the edges of G, and by hypothesis, they are completes; thus \mathcal{F} is a complete edge cover of G. To show that \mathcal{F} has the Helly property, it is enough, by implication I, to prove that $T \in T(G)$ implies $\cap \mathcal{F}_T \neq \emptyset$. We claim that u_T belongs to that intersection, so it is not empty. Indeed, let $T \in T(G)$ and $A_{\mathbf{u}}(T')$ be a member of \mathcal{F} belonging to \mathcal{F}_T , then T is stuck on $A_{\mathbf{u}}(T')$. It follows from Remark 2 that $u_T \in A_{\mathbf{u}}(T')$, as we wanted to show.

3 A new characterization of Clique Graphs

The following theorems are characterizations of clique graphs. The proof of the theorems are obtained from the lemmas of the previous section immediately.

Theorem 2 A graph G is a clique graph if and only if there exists \mathbf{u} , a t-v assignment of G, such that $A_{\mathbf{u}}(T)$ is a complete of G, for every triangle T of G satisfying $u_T \in T$.

Proof: Let G be a clique graph. By Theorem 1, there exists \mathcal{F} , a Helly complete edge cover of G. Let \mathbf{u} be a t-v assignment of G obtained from \mathcal{F} as described in Lemma 2. We have to prove that if $u_T \in T$ then $A_{\mathbf{u}}(T)$ is a complete of G. If $u_T \in T$, it is clear that there exists $F \in \mathcal{F}$ such that $T \subseteq F$, then, since Lemma 2 is satisfied, $A_{\mathbf{u}}(T) \subseteq F$, thus, as F is a complete, $A_{\mathbf{u}}(T)$ is a complete of G. The converse of the present theorem arises from Lemma 3 and Theorem 1.

Theorem 3 A graph G is a clique graph if and only if there exists \mathbf{u} , a t-v assignment of G, such that $A_{\mathbf{u}}(e)$ is a complete of G for every $e \in E(G)$.

Proof: Let G be a clique graph and \mathbf{u} a t-v assignment of G satisfying Theorem 2. Let e be an edge of G. If every triangle T, which is stuck on e, is such that $u_T \in e$, then $A_{\mathbf{u}}(e) = e$, thus it is a complete. If there exists a triangle T which is stuck on e and $u_T \notin e$, then there exists a triangle T' that is stuck on e (T' can be the same T), such that $u_{T'} \in T'$ and $u_{T'} \notin e$. It is easy to see that $A_{\mathbf{u}}(e) = A_{\mathbf{u}}(T')$. By Theorem 2, $A_{\mathbf{u}}(T')$ is a complete of G, then the proof

follows.

Conversely, let **u** be a t-v assignment of G satisfying the hypothesis. Let T be any triangle of G such that $u_T \in T$. Let e be the edge of T satisfying u_T is not an end vertex of e. It is clear that $A_{\mathbf{u}}(e) = A_{\mathbf{u}}(T)$, then $A_{\mathbf{u}}(T)$ is a complete; it follows from the previous theorem that G is a clique graph.

References

- [1] Alcón, L.; Gutierrez, M., Cliques and Extended Triangles. A necessary condition to be Clique Planar Graph, accepted by Discrete Applied Mathematic.
- [2] Roberts, F. S.; Spencer, J. H., A characterizations of clique graphs, Journal of Combinatorial Theory B. 10 (1971), 102-108.
- [3] Szwarcfiter, J. L., A survey on Clique Graphs, In: Recent Advances in Algorithms and Combinatorics, C. Linhares and B. Reed, eds., Springer-Verlag, to appear.

Departamento de Matemática Universidad Nacional de La Plata C. C. 172, (1900) La Plata, Argentina E-mail: {liliana,marisa}@mate.unlp.edu.ar