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Abstract

We show that almost all closed surfaces admit a Whitney triangula-
tion whose underlying graph is clique convergent. The possible excep-
tions are the sphere, the projective plane, the torus and the Klein bottle.
We also prove that any Whitney triangulation of the disk is clique null,
provided that the degree of each interior vertex is at least 6.

1 Introduction

A clique of a (simple, connected) graph G is a maximal complete subgraph
of G. We often identify induced subgraphs with their vertex sets; in particular,
v € G means v € V(G). The clique graph K(G) has all cliques of G as vertices,
and {Q,Q'} € E(K(Q)) iff @ # Q' and Q@ N Q' # . Tterated clique graphs
are inductively defined by K°(G) = G and K""'(G) = K(K"(G)). The graph
G is K-divergent if lim,,_,o, |V (K™(G))| = co. We say that G is K -convergent
if K(G) & K?(G) for some i > 0, p > 1; if i and p are minimal, they are
the transition inder and the period of G. Any graph is either K-convergent
or K-divergent, but not both. A K-null graph G is such that K"(G) is the
trivial graph K; for some n (so G is K-convergent). The K-behaviour of G
can be either K-null, K-convergent but not K-null, or K-divergent. Extensive
bibliography on clique graphs can be found in [8].
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If 7 is a triangulation (simplicial decomposition) of a compact surface X,
and G is the underlying graph (1-skeleton) of 7, then any face (2-dimensional
simplex) of T is a triangle of G. We call T a Whitney triangulation if any
triangle of GG is a face of 7. Thus a Whitney triangulation 7 is determined by its
1-skeleton G: the faces of T are just the triangles of G. This justifies identifying
G with 7. Whitney triangulations have other names and have been studied
before [1,3,5,9,10]; in particular, the description of their K-behaviour in the
regular case has been completed in [5]. The tetrahedron K, is the underlying
graph of an exceptional Whitney triangulation of the sphere: indeed, K, is
more a 3-dimensional object than a 2-dimensional one. For instance: If G is a
Whitney triangulation then, except for Ky, the cliques of G are precisely the
faces of the triangulation.

The problem addressed in this work is: If G is a Whitney triangulation
of some compact surface X, to what extent the topology of X and the K-
behaviour of G are related? For example, if G is K-null, Prisner proved [7] that
H,(X,Zs) = 0, and it is even known [5] that 7 (X) = 1, so X must be either the
sphere or the disk. Another relation: If G # K} is regular and X is closed, then
G is K-convergent if and only if the Euler characteristic x(X) is negative [5].
This changes if we drop the regularity condition: We shall prove elsewhere that
every closed surface X admits a K-divergent Whitney triangulation, but we will
prove here that every such X also admits a K-convergent Whitney triangulation
with the possible exceptions of the sphere, the projective plane, the torus and
the Klein bottle.

These possible exceptions are interesting because they let live our conjecture
that every Whitney triangulation G # K, of the sphere is K-divergent. A
related conjecture is that every Whitney triangulation G' of the disk is K-null,
and in our last section we will prove this for the case in which the interior
vertices have degree at least 6.

2 A Triangulation of T#P

We denote by T and P the torus and the projective plane. Here we shall
construct a K-convergent Whitney triangulation of the connected sum T#P,
the closed surface with Euler characteristic —1.

Given a graph G, the neighbourhood N(zx) of a vertex z € G is the subgraph
of G induced by the set of adjacent vertices of z in G. Given two graphs G
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and H, we say that G is locally H if N(x) is isomorphic to H for any vertex
xz € G. Given a family of graphs H = {H;, Hs, ...} we say that G is locally ‘H
if for each z € G there is an H; € H with N(z) & H;. We denote by C, and
P, the cycle and the path on n vertices. We say that G is locally cyclic if it is
locally {C), : n > 3}. The following characterization seems to be well known in
the literature (see [6]) a proof can be found in [5].

Theorem 2.1 G is the underlying graph of a Whitney triangulation of a closed
surface (resp. compact surface) if and only if G is locally cyclic (resp. G is
locally {C, Py, : m > 3,m > 2}).

The projective plane with an open disk removed is just the Mobius band.
We will construct our triangulation of T#P from a triangulation of the torus
with a disk removed and one of the Mobius band.

We obtain our triangulation of the Mobius band by the circulant M =
Cy(1,4), i.e. V(M) = Zg and E(M) = {{u,v} : u — v = £1,+4}. This graph
is depicted in Figure 1.

2 ' 7

Figure 1: The Mdbius band M = Cy(1,4).

Now consider the locally Cg graph 7' in Figure 2 (identify opposite sides
in orientable manner). T is obtained by taking V(T') = Z5 & Zs and E(T) =
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Hu,v} : u—v = £(1,0),£(0,1),£(1,-1)}. It is clearly a Whitney triangu-
lation of the torus. The shaded triangle in Figure 2 is the disk that we will
remove in order to take the connected sum.

(0,5)

(0,0) (4,0)  (5,0)

Figure 2: A torus T on Zs & Zs.

Accordingly, take T and remove the vertex (2,2) together with all its edges
and also remove the edges {(1, 3),(2,3)}, {(1,2),(2,1)} and {(3,1),(3,2)}. Call
the resulting graph 7".

We construct the sought graph H by taking the disjoint union of M and
T’ and identifying the borders. More precisely, we identify the following pairs
of vertices: {0,(1,4)}, {1,(2,3)}, {2,(3,2)}, {3,(4,1)}, {4,(3,1)}, {5,(2,1)},
{6,(1,1)}, {7,(1,2)} and {8,(1,3)}. A direct verification shows that H is
locally {Cs,Cs} and therefore a Whitney triangulation of a surface. Since
this is just the connected sum of T and P, H is a Whitney triangulation of
T#P. Alternatively, just check that |[H| =V = 24, E = 75 and F = 50, so
xX(H)=V—-FE+F=-1.

Now, a computer verification (we used GAP [2]) shows that H is indeed
clique convergent (note that 7' is clique divergent by [4]) with transition index
6 and period 2. The sequence of orders of the iterated clique graphs of H is
24,50,74,92,100, 105, 106, 106, 106 . . .
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Thus we know that T#P admits a clique convergent Whitney triangulation.
We will use this fact to construct clique convergent Whitney triangulations for
most surfaces using triangular covering maps.

3 Triangular Covering Maps

If G isa graph and v € G, the closed neighbourhood of v is N[v] = N(v)U{v}.
If G and H are graphs, a triangular covering map p : G — H is just a local
isomorphism, i.e. a mapping p : V(G) — V(H) such that the restriction p; :
N[v] — N[p(v)] is a graph isomorphism for any v € G. All the fibers p—(w)
have the same cardinality: this is the number of sheets of p. We call p finite if
it has a finite number of sheets. For an equivalent definition in terms of unique
lifting properties and for more details we refer to [4].

Theorem 3.1 [4] If p : G — H is a finite triangular covering map, there is
another such map px : K(G) — K(H) with the same number of sheets. In
particular, G and H have the same K-behaviour.

Theorem 3.2 Fach closed surface X with x(X) < —1 admits a clique conver-
gent Whitney triangulation.

Proof: Let us denote by Y the surface Y = T#P. We first observe that there is
a finite (topological) covering map 7 : X — Y. This is easy: If non-orientable,
X is a sphere with one handle and k£ > 1 crosscaps (X =Y for k£ = 1); now use
the k-to-1 covering map from T to itself. If X is orientable, it is a sphere with
h > 2 handles; now use the 2-to-1 covering map from the sphere to P and the
(h — 1)-to-1 covering map from T to itself.

Now consider the Whitney triangulation H of Y constructed in the previous
section. We can look at H as an embedded graph in Y: the vertices of H are
points in Y and the edges of H are continuous curves in Y; the components
of Y — H are topological disks, and each triangle of H bounds precisely one of
these disks. We now define the graph G (embedded in X) by lifting along the
covering map 7 : X — Y: the vertex set of G is V(G) = U{r ' (v) : v € H},
and the edges of G' are the curves v : I — X such that 7 oy is an edge of H.

Finally, define p: G — H as the restriction of 7. As shown in [4], p is then
a triangular covering map, which is finite because 7 is so. Since p is a local
isomorphism, G is locally cyclic. By Theorem 3.1, G and H have the same
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K-behaviour, but as H is K-convergent so is G.

The following problem immediately arises:

Problem 1 Determine if there exist clique convergent Whitney triangulations
for the sphere (not K, ), the projective plane, the torus and the Klein bottle.

We have however a lot of experimental evidence suggesting that the sphere
might not have such a triangulation.

Conjecture 2 [5] Except for K4, every Whitney triangulation of the sphere is
clique divergent.

Note that an affirmative answer to this conjecture implies, by Theorem 3.1,
that also every Whitney triangulation of the projective plane is clique divergent.
However, it seems that just the opposite is true for triangulations of the disk:

Conjecture 3 [5] Every Whitney triangulation of the disk is clique null.

We shall prove a weak version of this conjecture in the following section.

4 Triangulations of the Disk

Let z,y € G. We say that = is dominated by y if N[z] C N[y|. However, we
say that x is dominated (without specifying who is y) only when it is dominated
by some y # .

If H C G, we say that G s dismantleable to H if we can obtain H from G by
successively removing dominated vertices. If G is dismantleable to a vertex, we
just say that G is dismantleable. Prisner gave a different but (straightforwardly)
equivalent definition of a dismantleable G, and proved the following:

Theorem 4.1 (Prisner [7]) If G is dismantleable, then G is K-null.

Theorem 4.2 Let G be a Whitney triangulation of the disk. Let ¢ and e be
the numbers of interior and exterior vertices of G. Let d; and d, be the average
degrees of the interior and exterior vertices. Then

- 6
(6-d)—-+14

de =

Q| .
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Proof: Counting the external face, by Euler: y =V — E + F = 2. Here
V=it+e F= % (z d; +e- Je) and if 7" is the number of triangles, we have
i-d;+e-d, = 3T +e (i.e. the sum of the degrees is equal to the number of faces
counted as many times as the number of vertices belonging to them). Thus
F=T+1=§(i-cfi+e-cze—e)+1 and then:

’L"di—f—@'de i-di+e-de—e

2 = ite— 1
t+e 5 + 3 +
2o Yidive-d) 4

= i+-e—=(i-di+e-d .
3 6

So we have 6 = 6i+4e—i-d;—e-d., and it follows that d, = £ (6 — d;) —$+4.
O

Theorem 4.3 Let G be a Whitney triangulation of the disk satisfying d; > 6.
Then G has at least two exterior vertices with degree at most 3.

Proof: If all but one of the external vertices had degree at least 4 and d; > 6,
we would have:

N P 6
dy = ~(6-d)—~+4<4—-
€ € €
- 4_2:4(6—1)+2SJ6

€ €

which is a contradiction.

Theorem 4.4 Let G be a Whitney triangulation of the disk such that each

interior vertex has degree > 6. Then G s dismantleable to any of its vertices.

Proof: Let u € G be the vertex we want to dismantle G to. Thanks to the
previous theorem there is an exterior vertex v € G, u # v with degree at most
3, but then the open neighbourhood of v induces a path of at most 3 vertices
and v is dominated by a vertex w of this path. Then G is dismantleable to
G —wv. If G —w is a triangulation of the disk, we finish by induction. Otherwise,
G — v is either an edge or it is the union of two subgraphs of G — v, say B and
C, which share exactly one vertex, namely w.
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If G — v is an edge, it is clearly dismantleable to any of its vertices, so G is
dismantleable to u. Otherwise B and C' may be a pair of edges, an edge and a
triangulation of the disk, or a pair of triangulations of the disk. Without loss
of generality, we may assume that u € B. Then, since C' is dismantleable to
w (by inductive hypothesis or because any edge is dismantleable to any of its
vertices), we have that G — v is dismantleable to B. Finally B is dismantleable

to u either by inductive hypothesis or because B is an edge.
d

Theorem 4.5 Let G be a Whitney triangulation of the disk such that every
interior verter has degree > 6. Then G is K-null.

Proof: By the previous theorem, G is dismantleable. Then use Theorem 4.1.
O
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