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Abstract

Since the Motzkin-Straus result on the clique number of graphs, pub-
lished in 1965, where they show that the size of the largest clique in
a graph can be obtained by solving a quadratic programming problem,
several results on the continuous approach to the determination of the
clique number of a graph or, equivalently, to the determination of the
stability number of its complement, have been published. In this pa-
per, a Motzkin-Straus-like approach to the stability number of graphs is
presented and extended to the study of graphs for which the stability
number is equal to the optimal value of a convex quadratic programming
problem (called graphs with convex-QP stability number) as well as the
determination of convex quadratic lower and upper bounds on the stabil-
ity number of arbitrary graphs. In the presence of adverse conditions, it
is proved that the recognition of graphs with convex-Q P stability number
is equivalent to the recognition of graphs with a particular combinato-
rial structure (called regular-stable graphs). Additionally, for particular
types, as is the case of line graphs of forests or threshold graphs, the
polynomial-time recognition of graphs with convex-Q P stability number
is introduced.

1 Introduction

A stable set of a graph is a set of mutually non-adjacent vertices. The deter-
mination of a maximum size stable set (which is called maximum stable set)
and/or the determination of its size (which is called stability number) in a graph,
are central combinatorial optimization problems. However, given a nonnegative
integer k, to determine if a graph G has a stable set of size k is N P-complete
[13]. Fortunately, there are several graph classes for which the stability number
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can be determined in polynomial-time, as is the case of perfect graphs [14],
claw-free graphs [18] and [23], (Ps, C4)-free graphs [19] and (Ps, banner)-free
graphs [15], among many others. Several continuous optimization approaches
to approximate the stability number of arbitrary graphs have been developed,
since the publication of the Motzkin-Straus result [20] on the clique number of
graphs, where they show that the size of the largest clique in a graph (which is
equal to the stability number of its complement) may be obtained by solving an
indefinite quadratic programming problem (that is, a quadratic programming
problem with an objective function which has an indefinite Hessian matrix).
Among several papers on continuous optimization approach to the maximum
stable set problem or equivalent problems (as is the case of the maximum clique
problem) we refer [11] and [3]. The focus of this paper is the study of graphs
for which the stability number can be determined by solving a convex quadratic
programming problem. Such graphs were introduced in [6] and are called graphs
with convex-Q) P stability number.

In this paper we consider undirected simple graphs, G = (V(G), E(G)), where
V(G) denotes the nonempty set of vertices and F(G) the set of edges. It is
assumed that G is of order n > 1, i.e., [V(G)| = n > 1. An element of E(G),
whose endpoints are the vertices v and w, is denoted by vw and, in such case,
we say that the vertex v is adjacent to the vertex w. If v € V(G), then we call
neighborhood of v the vertex set denoted by Ng(v) = {w : vw € F(G)} and
the degree of v, dg(v) = |[Ng(v)|. If G is such that Vv € V(G) dg(v) = k then
we say that G is k-regular (in particular, when k& = 3 the graph is called cubic).
Given a graph G and a set of vertices U C V(G), the subgraph of G induced by
U, G[U], is such that V(G[U]) = U and E(G[U]) = {vw € E(G) : v,w € U}.
Consider that the set of vertices X = {x1,zs,...,2x} C V(G) is such that
zixi € E(G) Vi € {1,...,k — 1}. If the vertices of X are all distinct, then
we say that X defines a path (and if they are all distinct but z; and xj, which
are equal, then we say that X defines a cycle). A graph G is connected if
Vi,j € V(Q) there exists a path between i and j and is disconnected if it is not
connected. A component of a graph G is H, a connected subgraph of GG, such
that Vv € V(G) \ V(H) the induced subgraph G[V (H) U {v}] is disconnected.
A graph G with p vertices such that Vz,y € V(G) zy € E(G) is designated
complete graph and it is denoted by K.

Throughout this paper, Ag will denote the adjacency matrix of the graph G
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with vertices V(G) = {v1,...,v,}, that is, Ag = (a;;),,,,, is such that

G — 1 ,if’l)i’l)j EE(G)
Y1 0 ,otherwise

and Apin(Ag) the minimum eigenvalue of Ag. As it is well known, if G has at
least one edge then A\, (Ag) < —1. Indeed, A\pin(Ag) = 0 iff G has no edges;
Amin(Ag) = —1 iff G has at least one edge and each component of G is complete
and, otherwise, A\pnin(Ag) < —v/2 [9]. Throughout this paper it will be consider
only graphs G with at least one edge, and then with A, (Ag) < —1. A set
of vertices is called stable (clique) set if no (every) two vertices are adjacent.
A stable (clique) set is called maximum stable (clique) set if there is no other
stable (clique) set with greater number of vertices. The number of vertices,
in a maximum stable (clique) set of a graph G, is called the stability (clique)
number of G and is denoted by a(G) (w(G)). The complement of G, denoted
by G, is such that V(G) = V(G) and E(G) = {vw : v,w € V(G)Avw & E(G)}.
It is well known that «(G) = w(G) and then the determination of the stability
number is equivalent to the determination of the clique number.

As introduced in [1], a graph G is 7-regular-stable if there exists a maximum
stable set of GG, S, such that

Yo e V(G)\ S [Ng(v)NS| =T

The figure 1 exemplifies a T-regular-stable graph, with 7 = 2.

Figure 1: The cubic 2-regular-stable graph (1, with maximum stable set S =
{a,b,d,e}.

The 7-regular-stable graphs are particular cases of graphs with convex-QP
stability number when 7 = —\;,(Ag)- According to [1], if G is T-regular-stable
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where, as usually, A(G) = max{dg(v) : V € V(G)} and §(G) = min{dg(v) :
V € V(G)}. Therefore, if G is k-regular and 7-regular-stable then a(G) = 7.
A matching in a graph G is a subset of edges, M C E(G), no two of which have a
common vertex. A matching with maximum cardinality is designated maximum
matching. Furthermore, if for each vertex v € V(G) there is one edge of the
matching M incident with v, then M is called a perfect matching. A line graph
of a graph G is the graph L(G) constructed by taking the edges of G as vertices of
L(G), and joining two vertices in L(G), by an edge, whenever the corresponding
edges in G have a common vertex. Then, from [1], we may conclude that a
connected graph, with more than one edge, has a perfect matching if and only
if its line graph is 2-regular-stable. Note that the determination of a maximum
stable set of a line graph L(G) is equivalent to the determination of a maximum
matching of the original graph G.

The remainder of the paper is organized in four parts. The next section contains
a Motzkin-Straus-like approach to the determination of the stability number of
a graph, including the determination of convex-quadratic programming upper
and lower bounds to the stability number of graphs. In section 3 the graphs
with stability number equal to the optimal value of a convex quadratic program
(called graphs with convex-QP stability number) are characterized and their
main properties are presented. In section 4 the recognition of graphs with
convex-@Q P stability number is analyzed and, for particular types of graphs,
results which allows its polynomial-time recognition are introduced. In section
5, final remarks and open problems are presented.

2 A Motzkin-Straus-like approach to the sta-
bility number of a graph

Consider the quadratic programming problem
1
(Pa(r)) ve(7) = max{2&'z — 2T (ZAg + L)z : 2 > 0},
T

with 7 > 0, where é is the all ones vector and I, is the identity matrix of order
n (these notations will be used throughout the paper).
Given a subset of vertices of a graph G, S C V(G), the vector z € R with
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z, = 1ifv € Sand z, = 0if v &€ S is called the characteristic vector of S.
An optimal solution, z*, of (Pg(7)) is called spurious when vg(7) = a(G) but
x* not defines the characteristic vector of a maximum stable set. The presence
of spurious solutions among the optimal ones of the Motzkin-Straus quadratic
programming problem [20] first observed in [21], has been deeply studied (see,
[22] and [4]).

According to [7], we may conclude that

V7 >0 1 <wg(r) <mn,

with vg(7) = 1if G is a clique and vg(7) = n if G has no edges. Furthermore,
the following holds,

o V7 > —A\nin(Ag) (Pg(T)) is a convex program.
e If 2*(7) is an optimal solution for (Pg(7)) then
Vie V(G) 0< [z*(r)i < 1,
where [2*(7)]; denotes the i-the component of z*(7).
Theorem 2.1 [7] Given a graph, G, the function
vg 10, +o0[ — [1,n]
T ~ vg(7)
verifies the properties:
1. V7 > 0 o(G) < vg(r).
2. 0< 1 <1 =vg(n) < vg(m).
3. Assuming 7" > 0, then the following statements are equivalent.

e 37 €]0, 7*[ such that vg(T) = va(T*);

o vg(7*) = a(G) and V7 €]0,7*[ (Pg(r)) has no spurious optimal
solutions;

o vr €0,7] v(r) = a(G).

4. YU C V(G) V7 >0 vg_u(T) < vg(T), where G —U denotes the subgraph
of G induced by V(G)\ U.
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Given an arbitrary graph G, from the above properties, we conclude that
ve(7) is a monotone upper bound on the stability number of G. Furthermore,
being 7* = max{7 : ve(7) = a(G)} (and then, as will be seen later on, 7* > 1),
we may conclude that V7 €]0,7*[ (Pg(7)) has no spurious optimal solutions.
The figure 2 illustrates the graph of the function vg(7), obtained for the graph
G depicted in figure 1, for which a(G) = 4.

L0 e

: | | } } } — T
2 5 10 15 20 25 30

Figure 2: Graph of vg(7), where G is the graph of the figure 1, for which a(G) = 4.

From the next theorem follows that the indefinite quadratic program of
Motzkin-Straus [20] is a particular case of the family of quadratic programming
problems (Pg(7)).

Theorem 2.2 [7] Let us define the quadratic programming problem
) Ag
(Qa(m))  ve(r) = min{z" (— +1I)z:éTz=1,2> 0},

with T > 0. ]f:v* and z* are optimal solutions for Pg(T) and Qg(7), respectively,
then (

Ug( ) VGI(T) .

] and =~ ( y are optimal solutions for Pg(7) and Qa(1), respectively, and

Considering the Motzkin-Straus result on the stability number of graphs
[20], which is equivalent to the equality

1
min{z"(Ag + I,,)z : €Tz = 1,2 > 0}

= o(G), (1)

(see proposition 2 in [11]) and, combining this result with theorem 2.2, we may

conclude that vg(1) = %(1) = o(QG).
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If z* is an optimal solution of (Pg(7)), with 7 > 1, then

Ug(T)2
.’L‘*T(AG +In)$* < CY(G) < UG(T)’ (2)
2% = (1 = 2)(va(1) — [|2*]]*) £ (G) < wa(T). (3)

The lower bounds in (2) and (3) were obtained in [6] and [7], respectively. The
graphs G such that vg(—Apin(Ag)) = a(G), will be called, as in [6], graphs
with convex-QP stability number (where QP means quadratic programming).

3 Characterization of graphs with convex-()P
stability number

The upper bound vg(7) on the stability number of G, with 7 = — X\, (4g),
was introduced in [17], where the following necessary and sufficient condition
to obtain the equality is given.

e a(G) = vg(—Amin(Ag)) if and only if for a maximum stable set S of G
(and then for all),

min(Ag) < min{|[Ng()) N S| 3 ¢ S} (4)

There exists an infinite number of graphs with convex-Q) P stability number. In
fact, according to [6], a connected graph, with at least one edge, which is nor a
star neither a triangle, has a perfect matching if and only if its line graph has
convex-@) P stability number. Note that, as referred in section 1, the line graphs
of graphs with a perfect matching are 2-regular-stable and then, since one of
the basic properties of line graphs L(G) is that Amin(Ar) > —2, applying
condition (4) the conclusion follows.

Figure 3: The 2-regular-stable graph G, for which vg,(2) = a(G2) = 3.
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The graphs of figures 1, 3 and 4 are examples of graphs with convex-QP
stability number. The graphs G; and G, of figures 1 and 3, respectivelly, are
both 2-regular-stable and Apin(Ag,) = Amin(Ag,) = —2. The graph G of figure
4 is 6-regular-stable and A, (Ag,) = —3.

N~
71 IR

Figure 4: The 6-regular-stable graph Gj, for which vg,(3) = a(Gs) = 12.

Let us denote by Q the class of graphs with convex-QP stability num-
ber. This class of graphs is not hereditary (that is, is not closed for induced
subgraphs) [16]. However, according to [6], Q is closed under deletion of a-
redundant subsets of vertices, defining an a-redundant subset of vertices as
being a subset U C V(G), such that a(G) = a(G — U), where G — U denotes
the subgraph of G induced by T'=V(G) \ U.

Theorem 3.1 [6] Let G be a graph and 7 = —Apin(Ag).
1. If G € Q and U C V(G) such that a(G) = a(G —U) then G —U € Q.

2. If v € V(G) such that ve(1) # max{vg_{}(7), Va-ngw)(T)} then G ¢
Q.

8. Consider that vg_{,}(T) 7# Ve N () (T)-

(a) If va(T) = Vo—1v}(T) then G € Q iff G — {v} € Q.

(b) If va(T) = Va—Ngw)(T) then G € Q iff G — Ng(v) € Q.
Assuming 7 = — A\ (Ag), we may conclude the following:

e Every graph G has a subgraph H such that vg(7) = a(H) = a(G) (note
that deleting as many a-redundant vertices of G as necessary such sub-
graph H is obtained !).

'In the worst case we may delete all vertices not belonging to a maximum stable set and
then the remaining subgraph H has no edges. Therefore, the corresponding adjacency matrix
is the null one and vy (7) = |V (H)]|.
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e If G has convex-QP stability number then Vv € V(QG)
vg(T) = max{vg_1v} (), Va—ng ) (T) }-

e Assume that Vv € V(G), vg(r) = max{vg_1s}(7), Va—ng)(T)} and also
that Jv € V(G), such that vg_{}(T) # Ve—ng@) (7). Then to recognize
if G € Q is equivalent to recognize if an induced subgraph (G — {v}
if ve(T) = va_{u}(T) or G — Ng(v) if v(T) = Ve—Ng@)(T)) has or not
convex-@ P stability number.

Therefore, concerning the recognition of graphs with convex-Q) P stability num-
ber, the problem is what to do when

Yo € V(G) va(T) = va_(u}(7) (5)
= VG- No()(T), (6)

with 7 = —A\in(Ag). However, supposing that G has no isolated vertices (that
is, there is no vertex j € V(G), such that Ng(j) = 0), the equalities (6) imply
the equalities (5). In fact, assuming that Vv € V(G), va(T) = va-ngw)(7),
since G has no isolated vertices, Vu € V(G) Jw € Ng(u) and then, from the
inequalities Va_ng(w)(T) < Va—(uy(T) < va(T), the equality ve_(u) (1) = va(T)
is obtained. So, aiming to recognize if an arbitrary graph has or not convex-
QP stability number, it remains what to do only when the equalities (6) hold.
Designating the equalities (6) by adverse conditions, the next theorem states
that, in the presence of such adverse conditions, to recognize if a graph has
convex-@) P stability number is equivalent to recognize if it is 7-regular-stable.

Theorem 3.2 Let G be a graph such that Vv € V(G) vg(T) = Vg Ngw)(T),
with 7 = —A\pin(Ag). Then G € Q if and only if G is T-reqular-stable.

Proof: Considering the equalities ve(7) = vg-ngw)(T) Vv € V(G), with
T = —Amin(Ag), and assuming that 7** is an optimal solution for (Pg_ n, () (7)),
then, for each v € V(G), we may conclude that z** defined by

e 27 Lif i & Ng(v)

Ti _{ 0 ,otherwise

is an optimal solution for (Pg(7)). On the other hand, by Karush-Kuhn-Tucker
optimality conditions (see, for instance, [2]), y* > 0 such that for any optimal
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solution z* of (Pg(7)),

\“

Agz® = t(é—2") +y", (7)
yTr* = 0. (8)

Therefore, from (7), Vv € V(QG)

v

Z it =1(l-2") +y, & x:”:1+7_

jENg(U)
and thus we may conclude that y} = 0 Vv € V(G) < y* = 0. Note that from
@)V eV(G) z:>0 = y:=0.

e Let us suppose that G € Q and that T is the characteristic vector of a
maximum stable set S of G. Then Z is an optimal solution of (Pg(7))
and, since by (7) AgZ = 7(é — Z), it follows that

VweV(@) Y zi=1(1-2,).

JENG(v)

Hence, Vv € S
Y z;=7 & [Neg(w)nS|=r.

JENG(v)

e Conversely, supposing that GG is 7-regular-stable, it is immediate that the
condition (4) holds and then G € Q.

O

As a consequence of this theorem, in order to recognize if a graph G has

or not convex-QP stability number, in the worst case (that is, when Vv €

V(G) va(=Amin(Ac)) = va-ngw) (—Amin(Ag))), we must recognize if G is
r-regular-stable, with 7 = —\,;, (Ag).

4 Recognition of graphs with convex-QFP sta-
bility number

When \,in(Ag) € Z it is easy to recognize if G has or not convex-Q P stability
number. In fact, assuming that G € Q, if 7 = —\,in(Ag) € Z then every
optimal solution z* for (Pg(7)) verifies the Karush-Kuhn-Tucker optimality
condition (7), with y* # 0, and hence v € V(G such that v (T) # Va—Ng @) (T)-
Therefore, applying theorem 3.1, we may proceed as follows.
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o If ve(T) = va_(}(7) then G € Qiff G—{v} € Q and thus the recognition
may be obtained analyzing G — {v} instead of G.

o If ve(T) = vg-Ngw)(T) then G € Q iff G — Ng(v) € Q and thus the
recognition may be obtained analyzing G — Ng(v) instead of G.

o If vg_(}(T) # va(T) # Va-Ng)(T) then G & Q.

A tree is a connected graph without cycles and a forest is a graph whose com-
ponents are trees. For instance, assuming that G is a forest with at least one
edge, it follows that —2 < Apin(L(G)) < —1 2 and then we may recognize easily
if L(G) € Q. When the forest G has no isolated vertices and has at least one
component with more than one edge, to recognize if L(G) € Q is equivalent to
recognize if the forest G has or not a perfect matching and also to determine
such perfect matching, by convex programming, if there exists.

According to the definition of a regular-stable graph, it is immediate that
if G is a 7T-regular-stable graph then there exists a maximum stable set S for
which the characteristic vector is a solution of the linear system

(& +1,)x = e 9)

-

On the other hand, if 7 = —\;;,(Ag) and the system (9) has a 0 — 1 solution
Z, then Z is the characteristic vector of a maximum stable set of G. The first
implication is obvious and the second follows from the fact that the system
(9) is equivalent to the system Agx = 7(é — ) and, therefore, if Z is a 0 — 1
solution of (9) then z7 AgZ = 0, which is equivalent to say that 7 is the char-
acteristic vector of a stable set S of G. Hence, since 7 = —\pin(Ag), then
is the optimal solution of the convex quadratic programming problem (Pg(7))
and |S| = vg(7) = a(G).
For particular type of graphs, even when \,;,(Ag) # —7, the resolution of
the system (9) allows to conclude if the graph is or not 7-regular-stable. In-
deed, considering again a forest without isolated vertices and with at least one
component which has more than one edge, we have the following result:

2Note that the minimum eigenvalue of any graph with at least one edge is not greater
than —1, with equality iff all of its components are complete. On the other hand, in case of
line graphs, L(H), the minimum eigenvalue is not less than —2, with equality iff the original
graph H has an even cycle or two odd cycles [8].
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Theorem 4.1 Let G be a forest for which each component has more than one
edge. Then G has a perfect matching iff the unique solution of the system
(% + I,)x = é, where m = |V(L(GQ))| = |E(G)|, has 0 — 1 components.
Furthermore, if such 0 — 1 solution exists then it is the characteristic vector
of the mazimum stable set of L(G) corresponding to the edges of the perfect
matching of G.

Proof: Since G is a forest, —2 & 0(Ar(g)), where 0(Ar(s)) denotes the spectrum
of the matrix Ar ), and then the system

Ara
(2L

5 +1,)r = é (10)

is determined. On the other hand, according to [1], a component of G has a
perfect matching iff the corresponding component of L(G) is 2-regular-stable.
Therefore, since G has a perfect matching iff each component has a perfect
matching it follows that G has a perfect matching iff each component and
then L(G) is 2-regular-stable or, equivalently, iff the solution of (10) is the
characteristic vector of a maximum stable set of L(G).

e If G has a perfect matching then L(G) is 2-regular-stable and hence the
characteristic vector of the maximum stable set of L(G) is the solution of
the system (10).

e If the solution of (10) has 0—1 components then it is also the characteristic
vector of a stable set L(M) C V(L(G)) such that Vw ¢ L(M) |Ng)(w)N
L(M)| = 2. Therefore, the corresponding set of edges M C E(G) is a
matching of G such that Vey ¢ M dzv,yw € M. Thus M is a perfect
matching (which implies that L(M) is a maximum stable set of L(G)).

The last part follows, immediately, from the above considerations.
O
Additionally to the line graphs of forests, in what follows, we analyze a few
more types of graphs for which we may recognize, in polynomial-time, if a graph
has or not convex-Q)P stability number.
According to [1] a graph G is 1-regular-stable if and only if each vertex belongs
to exactly one simplex (which is a clique of a graph induced by the neighbors
of some vertex). This is the case, for instance, of the graphs in which each
component is complete. Then, since for such graphs A\in(Ag) = —1, applying
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condition (4), it follows that they have convex-QP stability number. Actually,
such graphs are the only 1-regular-stable graphs with convex-Q) P stability num-
ber.

From now on, let us denote the closed neighborhood of a vertex v by Ng[v]
(that is, Ng[v] = Ng(v) U {v}).

Theorem 4.2 Let G be a T-regular-stable graph with 7 > 1. If Ju,v € V(Q)
such that Ng[u] C Nglv] then a(G) = a(G — {v}) and G — {v} remains 7-
reqular-stable.

Proof: Since G is 7-regular-stable then there exists a maximum stable set
S such that Vw ¢ S |Ng(w) N S| = 7. Let us assume that v € S. Then
Ng(v) C V(G) \ S and, since Ng[u] C Ng[v], it follows that |[Ng(u) N S| =1,
which is a contradiction. Therefore v ¢ S and, consequently, a(G) = a(G—{v})
and G — {v} is 7-regular-stable.
U
Given two vertices u, v € V(G), the vertex v dominates vertex u if Ng(u) C
Ng[v] and then we say that the vertices v and u are comparable. This binary
relation is a preorder (that is, is reflexive and transitive) and is called, in [10],
vicinal preorder. The graph D(G) such that V(D(G)) = V(G) and

E(D(GQ)) = {vw :v,w € V(G) A Ng(v) C Ng|w] or Ng(w) C Ng[v]},

is the comparability graph of the vicinal preorder of GG. Considering the Dilworth
number of a graph G, dilw(G), introduced in [10] as the largest number of
pairwise incomparable vertices of G, then dilw(G) = a(D(G)). Thus, taking
into account that if dilwG) < w(G) then there exists u,v € V(G) such that
Ng[u] € Ng[v], we may conclude the following corollary of theorem 4.2.

Corollary 4.1 Let G be a graph for which dilw(G) < w(G). If G is T-regqular-
stable, with T > 1, then Ju,v € V(G) such that Ng[u] C Ng[v] and hence
a(G) = a(G — {v}) and G — {v} remains T-regular-stable.

As immediate consequence of the above corollary, we may recognize in
polynomial-time if a connected graph without induced connected subgraphs
H such that dilw(H) > w(H), has or not convex-QP stability number. This is
the case of threshold graphs which are graphs with Dilworth number equal to
one (for details about graphs with Dilworth number not greater than two see

[5])-
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5 Final remarks and open problems

According to [24], a (p,o0)-set of a graph G is a subset of vertices T C V(G)
such that |[Ng(v) NT| € pifv € T and |Ng(v) NT| € o if v € T, where
p and o are subsets of {0,1,---,n}. Taking into account this definition, a
graph G is T-regular-stable if and only if there exists a maximum stable set
S which is a ({0}, {r})-set. Then, as a consequence of the results obtained
in [12] we may conclude that, in general, the recognition of 7-regular-stable
graphs is N'P-complete. However, it is expected that, additionally to the above
referred polynomial cases, there are many other graph classes in which we may
recognize in polynomial-time if a graph has or not convex-Q) P stability number.
The determination of such graph classes, namely, the hereditary ones (that is,
the graph classes which are closed under vertex deletion) remains open.
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