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Abstract

The clique operator maps a graph G into its clique graph K(G); which
has as vertices all the cliques of G and two vertices are adjacent if their
corresponding cliques have non-empty intersection. As far as we know
all Helly graphs subclasses, studied up to now, are fixed or closed under
K or fixed under K2. It is easy to see that Comparability N Helly is
not closed under K but it is under K2. We prove that this class is not
fixed under K? showing a comparability and Helly graph G# for which
there is no comparability and Helly graph G, with K%(G) = G#. The
conclusion follows from results obtained about the Helly property on the
family of maximal chains of a poset.

1 Introduction and Basic Definitions

A graph is a pair (V(G), E(G)) where V(G) and E(G) are the vertex set and
edge set of GG, respectively. An edge with = and y as extremes is noted by
xy or yx. In this note all graphs are simple, i.e., without loops or multiple
edges.

A graph G is a comparability graph if there is a partial order relation: <
on V(G) such that zy € F(G) if and only if x < y or 2 > y, we say that < is
associated with G. By Comparability we denote the class of all comparability
graphs. A clique of a graph GG is a maximal complete set of vertices of G.

A family of sets has the Helly (resp. m-Helly ) property if each pairwise
intersecting subfamily (resp. with at most m members) has non-empty inter-
section. We say that a graph whose family of cliques has the Helly property is
Helly and we call Helly the class of all Helly graphs.
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The operator K was studied in different classes of graphs and three be-
haviours were observed. First, we can mention that K of the class of interval
graphs is the class of proper interval graphs [6]. By consequence, this class is
closed under K.

Second, K of the class proper interval graphs is the class of proper interval
graphs [6], i.e. this class is fixed under K. Later, Bandet and Prisner [1]
generalized this result, finding sufficient conditions for a Helly class to be fixed
under K.

We can observe the last behaviour through the following example. In [2, 4]
the authors proved that K iterates between C'hordalNH elly and DuallyChordal.
Moreover these results were generalized in [5] for all Helly classes of intersection
graphs of paths in a tree [7].

The characterization of K(Comparability) is still open, and concerning
with this, it is known that K(Comparability) ¢ Comparability and
K (Comparability N Helly) ¢ Comparability N Helly, (see figure 1). Since
Helly is a class fixed under K [3], Comparability is an hereditary class and
K?(@G) is an induced subgraph of G for all Helly graphs [3], it follows that
K?(Comparability N Helly) C Comparability N Helly. We wondered if both
classes were equal or in other words, if Comparability N Helly is fixed under
K?. In this work we conclude that the answer to this question is no.

Escalante [3] proved that if G is a reduced (i.e. with no twins vertices) Helly
graph, then K?(G) is a subgraph of G obtained by deleting dominated vertices
of G. This is the reason we studied the dominated vertices in comparability
graphs.

Since each comparability graph G has an associated partial order on V(G),
<, and the cliques of G are exactly the maximal chains of (V(G), <), we studied
the Helly property on the family of maximal chains of a poset.

We say that (A, <) is a poset if A is a non-empty set and < is a partial
order on A.

The article is organized as follows. In section 2 we present the results con-
cerning posets. We prove that the family of maximal chains of a poset has the
Helly property if and only if it has the 3-Helly property, and also characterize
these posets by a forbidden configuration on their diagrams.

In section 3 we present a graph G# and applying the results of the previous
section we justify that it is not the image under K2 of any comparability Helly
graph.
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G K(G)

Figure 1: K(Comparability N Helly) € Comparability N Helly

2 Poset’s results

Given a poset (A4,<), an element z € A is covered by y € A if z < y and
there is no z € A such that £ < z < y. For an element a of A we define:
C,={y € A|ais covered by y} C, = {y € A| y is covered by a}. We denote
v~ qif and only if [v < a Vv > a.

Definition 1 Let (A, <) be a poset, y,z € A with z <y. We say that z is
above dominated by y if
T>2z=>x~Y

Analogously, if z > y, we say that z is below dominated by y if
T z2=>T~Y
Observations
1. If z is below dominated by y and y € C, = C, = {y}.
2. If z is below dominated by y; and also by y., then y; ~ ys.

3. Let (A,<) be a poset, and a,b € A such that a < b and b is not below
dominated by a. Then there exists v < b | v ¢ a.

4. If z is below (or above) dominated by y and M is a maximal chain con-
taining x, then y € M.

Lemma 1 Let (A, <) be a poset, a,b € A, such that a + b and they are not both
below dominated by a same vertex. Then there exist a’ and V', not both below
dominated by a same vertex, such that a' = a (respectively b' = b) whenever a
(respectively b) is minimal, else o' € C, (respectively b € Cy).
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Proof: If ¢ and b are minimal, then it is obvious. In case that only one of these
vertices is minimal, let say b is minimal and C, is non-empty. Since a is not
below dominated by b, then there exist ' € C, such that o’ is not comparable
with b and therefore, not below dominated by 6. Then let consider the case
neither a nor b is minimal. C, = {a;...a,} and Cy = {b; ...b,}. Suppose that
each pair {a;,b,;} with 1 <7 <nand 1 < j <m is below dominated by a vertex
w;;. We can assume that w;; = min{w | a; and b; are below dominated by w}.
This minimum exists by Observation 2. If w;; = 2z for every ¢ = 1...n and
j=1...m, a and b are both below dominated by z, a contradiction. Since b;
is below dominated by w; and ws;, these vertices are comparable. We claim
that w1 = wey. In fact, suppose that wy; < we;. By minimality of wey, we
know that as is not below dominated by wq;. Then, by Observation 3, there is
x < ag such that x o¢ wy1. Since ay is below dominated by we; then x ~ wo;. If
T > wey then x > wqq, a contradiction. If x < wy; then x < by and since by is
below dominated by w; then z ~ w; , a contradiction. Thus wy; = wy;. Let
Wp = Wi = Wo1 = ... = Wy. In general, w; = wi; = wy; = ... = w,j, observe
that w; is the minimum vertex which below dominates {a1,as...ay,b;} for 1 <
7 < m. Since a; is below dominated by w1y, ws . .. w,,, this set is totally ordered
and we can assume, without loss of generality, that w; > ws > ... > w,,.

Now we claim w; = w; for 7 # j. Suppose w; < w;. By minimality, b; is not
below dominated by w;. Then there exists v < b; | v % w;. Since b; is below
dominated by w; we have v ~ w;. In case v > w; = v ~ wj, a contradiction. On
the other hand, v < w; = v < a; and v # w;. Then @, is not below dominated
by w;, a contradiction.

It follows that w; = w; for ¢ # j. Therefore, there is a vertex w which below
dominates a and b, a contradiction.

|

Lemma 2 Let (A, <) be a poset, a,b € A such that a < b and they are not both
below dominated by a same vertex. Then, there exist b’ € {v < b | v & a}, such

that a and b’ are not both below dominated by a same vertex.

Proof: Since b is not below dominated by a, there exists v < b such that
v o a. Let {bj,j : 1...n} be all the vertices which satisfy these conditions.
Suppose that each pair {a,b;} with 1 < j < n is below dominated by a vertex
z;j. Then the set {z;,1 < j < n} is linearly ordered and we can consider
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z =min{z;,1 < j <n}.

Now, let z < b. If x < a then x ~ z; if a < x < b then x > z and thus x ~ 2
and in case = ¢ a then z = b with 1 < k£ < n and by, is below dominated by z.
But z < 2z < by and that implies z ~ z. Therefore, b results below dominated
by z, a contradiction.

O

Lemma 3 Let (A, <) be a poset, and a,b € A such that they are not both below
dominated by a same vertex in (A, <). Then, there ezist two disjoint chains:

my1 — a and my — b, where my; and mo are minimals of A.

Proof: We have two cases. Suppose first that a ¢ b, by Lemma 1, there are
vertices ai, b, with a; = a or a; € éa and by = bor b, € C’b such that they are
not both below dominated by a same vertex in A. In case a < b, by Lemma 2,
there are a;,b; with a; = a and by € {x < b |z ¢ a} such that they are not both
below dominated by a same vertex in A. It is clear that the chains: (a; —a) (in
case a; = a the chain (a; —a) is simply a) and (b; —b) (where (b; —b) is any chain
from b; to b), verify (a; —a)N(b; —b) = (. Iterating this procedure with a := a;
and b := b; until ¢ and b are minimals of A, the result follows. Indeed, we know
that (ap — ap_1) N (b — bp—1) = 0. If (ap, — ap_1) N (b, — b—1) # @ for any
n > m, let say, a, = b,,_1 then a,_1 > b,,_1 and therefore a,,_1 > b,_;. But in

this case, by Lemma 2, a,, should be not comparable with b,_;, a contradiction.

O

In what follows, we will characterize the posets whose family of maximal
chains satisfies the 3-Helly property, by presenting a forbidden configuration on
their diagram.

Definition 2 Let (A, <) be a poset. (A, <) has the 2GN configuration if its
diagram has a cycle C which is the union of two paths: (p < ... <d < ...<
n) U (u < ...<mn) such that: d and p are not both below dominated by a same
vertex, d and n are not both above dominated by a same vertex.

Theorem 1 Let (A, <) be a poset. The family of the mazimal chains of (A, <)
1s not 3-Helly if and only if it has a 2-GN configuration.
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Proof: Suppose first that (A, <) has a 2-GN configuration as described be-
fore. By Lemma 3, since d and p are not below dominated by a same vertex
there exist two disjoint subchains (m; — d) and (mg — ) with m; and my min-
imal of (A, <). Analogously, there exist two disjoint subchains (d — M;) and
(n — Ms) with M; and M, maximal of (A, <). Let C; and Cj be the two sub-
chains of the cycle C' defined as follows: C} contains y, d,n and Cy = C—C;. We
construct three pairwise intersecting chains with empty total intersection as fol-
lows: Fi = (mg —p)U(p—n)U(n—My). Fo=(mi —d)U(d—n)U(n— M,).

—_— —— ~—— —_— Y—— ——

gCQ §C1
Fy=(mge—p)U(p—d)U(d— M).
—_———— ——— N —

ct
Conversely, suppose that the family does not satisfy the 3 — Helly prop-

erty. Then there exist Fi, Fy, F3, three pairwise intersecting maximal chains
with empty total intersection. Let z € F; N Fy; y € Fy, N F3 and
z € F3 N Fi. Without loss of generality we suppose z < y < z. Let z* =
max{w € FiNF, : w < y} and z* = min{w € FiNF3 : w > y}. Then
(@ <...<y)Uy<...<2")U(g" <...<2")is a cycle and since F; N F, N

/ ~ / ~ v
~~ ~~

CFy CF3 CF1
Fy; = (), observation 4 tells us that z* and y are not below dominated by a

same vertex and that y and z*are not above dominated by a same vertex. Thus
(A, <) has the 2-GN configuration.
O

The next theorem will show that having the 3-Helly property is a sufficient
condition to have the Helly property for the family of maximal chains of any
poset.

Theorem 2 Let F be the family of mazimal chains of a poset (A, <) andn > 4.
Then F has the (n-1)-Helly property if and only if it has the n-Helly property.

Proof: Suppose that F has the (n — 1)-Helly property but it does not satisfy
the n-Helly property. Then there exists an intersecting subfamily (C});cs, with
|J| = n, NjesC; = O but for every I C J, we have that N;c;C; # 0. Let
ar € Niz1Ci, a1 € C1;5 a2 € N Ci, ag & Co...ay € gy, Ci and a,, € C.
Since ai,as...a, are all different and pairwise comparable, we can suppose
that a; < ap < ... < a,. Take any j such that 2 < 7 < n — 1. Since a; € C;
and a;_1,a;4+1 € C; we can consider p = maz{zr < aj_1 | z € Cj_1 N C,},
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n=min{z > a;_1 | x € C;_1NC;} and take the cycle (u —n) U (1 — aj_1 — 7).
—_——— —— —

Cji—1 C;j
Observe that p and a;_; are not both below dominated by a same vertex.

Indeed, suppose that z below dominates p and a; ;. Since a;_; € ;21 C; then
z € Nizj—1 Ci- On the other hand, since u € C; ; then z € C; ;. Therefore
z € Ni<i<n Cs, a contradiction. In the same way, n and a;_; are not both above
dominated by a same vertex. Then (A, <) has a 2-GN configuration. Thus, F
does not satisfy the 3-Helly property, a contradiction. The converse is trivial.
O

3 Comparability Graph’s results

We recall some definitions that we use in this section. Let u be a vertex of
a graph G. Nu] = {u}U{v € V(GQ) | vu € E(G)}. We say that u and
v are equivalent when N[u] = N[v]. G* will denote the graph obtained by
cancelling out the equivalence relation, i.e., the vertices are equivalence classes,
and adjacency holds between equivalence classes if and only if it holds between
their representatives. Finally, if G ~ G* we say G is reduced.

A vertex u of a graph G is dominated by a different vertex v if its closed
neighborhood, N[u], is contained in N|v].

Let us remind the following theorem due to Escalante.

Theorem 3 [3] Let G be a Helly graph. K*(G) is the graph obtained deleting
dominated vertices of the reduced graph of G.

In spite of this theorem, if G is a Helly graph and we are interested in finding
the set K—2(G) N Helly we have to consider:

e If H € Helly such that K?(H) = G, then G is an induced subgraph of H.
e If H* is the reduced graph of H, K*(H) = K*(H*).
e A graph is helly if and only if its reduced graph is so.

From the previous observations we can limit ourselves to reduced graphs. If
H is a reduced graph of K—2(G) N Helly, then no vertex in G is dominated in
H.
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AR

Figure 2:

Proposition 1 Let G be a comparability graph, u,v different vertices in V(G).
Then u is dominated by v if and only if for every partial order < in V(G)

associated to G, u is above or below dominated by v in (V, <).

In figure 2, we present a Helly comparability graph G# and we assign a
direction to its edges according to an associated order <. Observe that this
graph admits only two associated orders, each one reversal of the other. Notice
that the vertices of G# verify that: ¢ and d are both dominated by a, c and d
are both dominated by b, e is dominated only by a, f is dominated only by b.
Observe that in the poset (V(G#), <) we have ¢ and d below dominated by a

Figure 3: Diagram for the poset (V(G#), <)

and above dominated by b. Vertex e is below dominated by a and f is above
dominated by b.

Theorem 4 K %(G*) N Hellyn Comp =0

Proof: Let H be a reduced comparability graph in K~2(G#). Since G¥ is
an induced subgraph of H, each associated order of H induces an associated
order of G#. Call < an order of H which induces the order considered on G#.
Since, by Proposition 1 and Theorem 3, no vertex in (V(G#), <) is above/below
dominated by a different vertex in (V' (H), <), it follows that (b, ¢, a, d) is a cycle
in the diagram of (V(H), <) satisfying that b and ¢ are not above dominated
by a same vertex, and ¢ and a are not below dominated by a same vertex.
Therefore (V(H), <) has the 2-GN configuration and H is not Helly.

O



COMPARABILITY N HELLY IS NOT FIXED UNDER K? 79

Corollary 1 K?(Comp N Helly) # Comp N Helly
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