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Abstract

Let p > 1 and ¢ > 0 be integers. A family S of sets is (p,q)-
intersecting when every subfamily &’ C S formed by p or less members
has total intersection of cardinality at least ¢q. A family % of sets is
(p, q)-Helly when every (p,q)-intersecting subfamily %’ C # has total
intersection of cardinality at least g. A graph G is a (p, q)-clique-Helly
graph when its family of (maximal) cliques is (p, ¢)-Helly. According to
this terminology, the usual Helly property and the clique-Helly graphs
correspond to the case p = 2,¢g = 1. In this work we present characteri-
zations for (p, q)-clique-Helly graphs. For fixed p, g, this characterization
leads to a polynomial-time recognition algorithm. When p or ¢ is not
fixed, it is shown that the recognition of (p, ¢)-clique-Helly graphs is NP-
hard.

1 Introduction

We say that a family % of sets has the Helly property (or is Helly) when every
subfamily .#' C .Z of pairwise intersecting sets has non-empty total intersec-
tion. When the family of cliques of a graph G satisfies the Helly property, we
say that G is a clique-Helly graph (cfr. [6]).
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We may think of a more general “p-Helly property”, which holds when every
F' C F of p-wise intersecting sets has non-empty total intersection.

The p-Helly property has been studied in the context of hypergraphs [1, 2].
In this work we propose a new direction in which the p-Helly property can be
generalized, by requiring that the subfamilies .#' C % satisfy the following
property:

“if every collection of p members of .#' have ¢ elements in common, then
Z' has total intersection of cardinality at least ¢.”

This leads naturally to the formal definition of the (p,q)-Helly property.
According to this terminology, the usual Helly property corresponds to the case
p=2q9=1.

In Section 2, we give a characterization for (p, ¢)-Helly families of sets. For
fixed integers p and ¢, this characterization leads to a recognition algorithm
whose time complexity is polynomial on the size of the family. Still in this sec-
tion, we consider a slightly generalized form of this property, called the (p, ¢, 7)-
Helly property. A family % is said to be (p, g, r)-Helly when, for every #' C %,
if every collection of p members of .#’ have ¢ elements in common, then .#’ has
total intersection of cardinality at least r. We describe a characterization of
(p, q,7)-Helly families in terms of the (p, ¢)-Helly property.

In Section 3, we study the (p, q)-Helly property applied to the case of the
family of cliques of a graph. We say that a graph G is (p, q)-clique-Helly when
its family of cliques is (p, ¢)-Helly. Clique-Helly graphs are exactly the (2, 1)-
clique-Helly graphs. We show some examples and properties of (p,g)-clique-
Helly graphs and give a characterization for them that leads to a polynomial
recognition algorithm for fixed p and ¢, as we remark in Section 4. We also
show in Section 4 that, when p or ¢ is not fixed, recognizing (p, q)-clique-Helly
graphs is NP-hard.

Finally, in Section 5 we propose some questions concerning the (p, ¢, )-Helly
property.

The proofs of the lemmas and theorems of this extended abstract can be
found in [4]

1.1 Some definitions and notation

Let G be a graph. A vertex w € V(G) is a universal vertex when w is adjacent
to every other vertex of G. If S C V(G), then we denote by G[S] the subgraph
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of G induced by S. A subgraph H of G is a spanning subgraph of G when
V(H) =V(G). A complete is a subset of pairwise adjacent vertices. A clique is
a maximal complete.

If S is a set, then |S| denotes the cardinality of S.

The universe Univ(%) of a family .# of sets is defined as the union of its
members: Univ(.#) = UgegS. The total intersection Int(%) of a family # of
sets is defined as Int(.%) = NgezS. A core of a family % of sets is any subset
contained in Int(.%).

We say that S is a g-set when |S| = ¢, a ¢~ -set when |S| < ¢, and a ¢*-set
when |S| > ¢. This notation will also be applied to other terms used throughout
this work: families, cores, completes and cliques.

2 The Generalized Helly Property

2.1 (p,q)-Helly families of sets

Definition 1 Let p > 1 and ¢ > 0 be integers, and let F be a family of sets.
We say that F is (p,q)-intersecting when every p~ -subfamily #' C % has a

g*-core.

The following proposition lists some immediate consequences of the above
definition:

Proposition 2

(i) For allp > 1 and F, Z is (p,0)-intersecting.
(i) For all p > 1, if F is (p,q)-intersecting then F is (p — 1, q)-intersecting.
(iii) For all ¢ > 0, if F is (p, q)-intersecting then F is (p,q — 1)-intersecting.

We remark that, for itens (ii) and (iii) above, the converse is not true in
general.

Definition 3 Let p > 1 and ¢ > 0 be integers, and let F be a family of sets.
We say that F satisfies the (p, q)-Helly property when every (p, q)-intersecting

subfamily F' C F has a q*-core. In this case, we also say that F is (p,q)-
Helly.

The next proposition is also easy to proof:
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Proposition 4

(i) For allp > 1 and F#, F is (p,0)-Helly.
(ii) For allp > 1, if F is (p — 1,q)-Helly then .F is (p,q)-Helly.

The following lemma will be useful for the characterization of (p, q)-Helly
families of sets.

Lemma 5 Let p > 1 and g > 0 be integers, Q a (p + 1)-family of q-subsets of
U, and ¥ a p~—-family of sets over U such that every member of % contains at

least p members of Q. Then F has a q"-core.

The case ¢ = 1 in the above lemma has been proved in the context of
hypergraphs [1].

Since any family of ¢"-sets is (1, ¢)-intersecting, it is easy to see that a family
Z is (1, q)-Helly if and only if the subfamily formed by the ¢*-sets of % has a
g*-core.

Now let us deal with the case p > 1. The following theorem presents a
characteriztion for (p, ¢)-Helly families of sets in such a case:

Theorem 6 Let p > 1 and g > 0 be integers, and let F be a family of sets.
Then Z is (p,q)-Helly if and only if for every (p+ 1)-family Q of q-subsets of
Univ(.%F), the subfamily F' formed by the members of F that contain at least
p members of Q has a q*-core.

By setting ¢ = 1, we obtain as a corollary of the above theorem the charac-
terization of k-Helly hypergraphs described in [2].

If [Univ(.#)| = n, then the number of (p+1)-families of g-subsets of Univ(.%#)
is O(n?®*1)). Hence, for fixed integers p > 1 and ¢ > 0, Theorem 6 implies that
deciding whether .# is (p, ¢)-Helly can be done in polynomial time on the size
of 7.

2.2 (p,q,r)-Helly families of sets

Definition 7 Let p > 1, ¢ > 0, r > 0 be integers, and let % be a family
of sets. We say that F satisfies the (p,q,r)-Helly property when every (p, q)-

intersecting subfamily F' C F has an r*-core. In this case, we also say that
F is (p,q,r)-Helly.
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The above definition has some direct consequences, listed below:

Proposition 8

(i) For allp > 1 and ¢ > 0, F is (p,q)-Helly if and only if & is (p,q,q)-
Helly.

(ii) For allp>1,q >0 and F, F is (p,q,0)-Helly.

(iii) For allp > 1, if & is (p—1,q,r)-Helly then Z is (p,q,r)-Helly.

(iv) For all ¢ > 0, if F is (p,q — 1,r)-Helly then F is (p,q,r)-Helly.

(v) For allr >0, if F is (p,q,r)-Helly then F is (p,q,r — 1)-Helly.

(vi) For all g,r > 0, F is (1,q,r)-Helly if and only if the subfamily formed

by the q*-sets of F has an r*-core.
(vii) For allT > q > 0, Z is (p,q,r)-Helly if and only if F is (p,r,r)-Helly.

Because of the item (vii) above, from now on we assume that ¢ > r.

We describe now a characterization of (p, g, r)-Helly families of sets in terms
of the (p, ¢)-Helly property.

Let p > 1 and ¢ > r > 0 be integers, and let .# be a family of sets. Denote
by X = {Xi,..., X x|} the collection of the (p,r)-intersecting subfamilies of .7
which are not (p, ¢)-intersecting. Let I = {1,2,...,|X|}. For each F; € Z,
denote I(F;) ={i eI | F; € X;}. For i,k € I, represent by R; an r-set formed
by chosen elements that satisfy R; N Ry = O for i # k and R; N Univ(#) = @.
The augmentation of F relative to (q,r) is a family & of sets, obtained from
Z#, as follows. For each #; € %, the corresponding member of & is A; =
Z; U (Uierqry) Bi)-

Theorem 9 Let p > 1 and ¢ > r > 0 be integers. A family F of sets is
(p,q,7)-Helly if and only if the augmentation of F relative to (q,r) is (p,7)-
Helly.

3 (p,q)-clique-Helly Graphs

3.1 Definition and Examples

We start this section by applying the concepts of the previous section to the
family of cliques of a graph:
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Definition 10 Let p > 1 and q > 0 be integers, and let G be a graph. We say
that G is a (p, q)-clique-Helly graph when its family of cliques is (p, q)-Helly.

In the remainder of this work, we will assume that p > 2 and ¢ > 1, unless
differently mentioned.

It is clear that (p — 1, ¢)-clique-Helly graphs form a subclass of (p, g)-clique-
Helly graphs. The example below shows other relations between classes of
(p, q)-clique-Helly graphs:

Example 11 Define the graph G, , in the following way: V(G,,,) is formed by
a (¢ — 1)-complete @), a p-complete Z = {z1,...,2,}, and a p-independent set
W = {wy,...,wp}. Moreover, there exist the edges (z;, w;), for 7 # j, and the
edges (¢, ), for ¢ € Q and x € Z U W. Figure 1 depicts a scheme of the graph
G, where a dashed line between z; and w; means (z;, w;) € E(Gp)-

Figure 1: The graph G, ,.

The family of cliques of the graph G, , contains exactly p+ 1 members, each
one of sizep+q—1: Q U {z1,...,2,} and Q U (Z\{z}) U {w;}, for 1 <i <p.

Observe that G, is (p, ¢)-clique-Helly, but it is not (p — 1, ¢)-clique-Helly.
Therefore, G, , is (t, ¢)-clique-Helly for ¢ > p, and it is not (¢, ¢)-clique-Helly
for t < p.
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Moreover, Gpi1,4 is not (p, q)-clique-Helly, but it is (p,t)-clique-Helly for
any t # g. Consequently, for distinct ¢ and ¢, (p,q)-clique-Helly graphs and
(p, t)-clique-Helly graphs are incomparable classes.

Define a graph G to be K, -free when the size of the maximum clique of G
is at most r — 1. An interesting fact derived from Definition 10 is that every
K 1q-free graph is (pi, q1)-clique-Helly for p; > p and ¢; > gq.

Theorem 12 Let G be a K, q)-free graph. Then G is (p1, ¢1)-clique-Helly for
allpy > p and ¢ > q.

3.2 Characterizing (p, g)-clique-Helly Graphs

In order to give a characterization for (p, ¢)-clique-Helly graphs, we need some
further definitions and lemmas, presented in the sequel.

Definition 13 [8] Let Z# be a subfamily of cliques of G. The clique subgraph
induced by Z# in G, denoted by G[F]., is the subgraph of G formed exactly by
the vertices and edges belonging to the cliques of % .

Definition 14 Let G be a graph, and let C' be a p-complete of G. The p-
expansion relative to C' is the subgraph of G induced by the vertices w such that
w 18 adjacent to at least p — 1 vertices of C.

We remark that the p-expansion for p = 2 has been used for characterizing
clique-Helly graphs [5, 8]. It is clear that constructing a p-expansion relative to
a given p-complete C' can be done in polynomial time, for a fixed p.

Lemma 15 Let G be a graph, C a p-complete of it, H the p-expansion of G
relative to C, and € the subfamily of cliques of G that contain at least p — 1
vertices of C. Then G[%. is a spanning subgraph of H.

Definition 16 Let G be a graph. The graph ®,(G) is defined in the following
way: the vertices of ®,(G) correspond to the g-completes of G, two vertices
being adjacent in ©,(G) if the corresponding q-completes in G are contained in
a common clique.

Observe that ®,(G) can be constructed in polynomial time, for a fixed g. We
also remark that ®, is precisely the operator @, 5,, studied in [7]. An interesting
property of ®, is that it preserves the subfamily of cliques of G' containing at
least ¢ vertices:
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Lemma 17 (Clique Preservation Property) Let G be a graph. Then there exists
a bijection between the subfamily of g -cliques of G and the family of cliques of
Dy (G).

The graph ®,(G) is the edge clique graph of G, introduced in [3], where the
validity of the Clique Preservation Property was shown to that case.
The following definition is possible due to the Clique Preservation Property:

Definition 18 Let G be a graph. If C is a ¢"-clique of G, denote by ®,(C)
the clique that corresponds to C in ®,(G). If C" is a clique of ®,(G), denote
by (Dq_l(C’) the qT-clique that corresponds to C' in G. If F is a subfamily of
qt-cliques of G, define ®,(F) = {9,(C) | C € F}. If € is a subfamily of
cliques of ®4(G), define ®;'(€) = {®;'(C) | C € ¢}.

Lemma 19 Let G be a graph, F a subfamily of q*-cliques of it, € = ®,(.F),
and H = ®,(G). Then H[%. contains a universal vertez if and only if G[.Z ],

contains q universal vertices.

Lemma 20 Let C be a (p + 1)-complete of a graph G, and let € be a p -
subfamily of cliques of G such that every clique of € contains at least p vertices
of C. Then € has a 11 -core.

Now we are able to present a characterization for (p, ¢)-clique-Helly graphs.
The cases p =1 and p > 1 will be dealt with separately, as in Section 2.

Theorem 21 Let G be a graph, and let W be the union of the q"-cliques of G.
Then G is a (1, q)-clique-Helly graph if and only if GIW| contains q universal
vertices.

Theorem 22 Let p > 1 be an integer. A graph G is a (p, q)-clique-Helly graph
if and only if every (p + 1)-ezpansion of ®,(G) contains a universal vertes.

4 Complexity Aspects

Let p and ¢ be fixed positive integers. If p = 1, testing whether the union of the
gt-cliques of G' contains ¢ universal vertices (Theorem 21) can be easily done
in polynomial time. If p > 1, testing the existence of a universal vertex in every
(p + 1)-expansion of ®,(G) (Theorem 22) can also be done in polynomial time,
since the number of such (p + 1)-expansions is O(|V(G)|?®+1)). Thus:
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Corollary 23 For fized positive integers p,q, there exists a polynomial time
algorithm for recognizing (p, q)-clique-Helly graphs.

But when p (or ¢) is not fixed, the problem of deciding whether a given
graph G is (p, q)-clique-Helly is NP-hard.

Theorem 24 The problem of recognizing (p, q)-clique-Helly graphs when p (orq)
15 part of the input of the problem is NP-hard.

5 Some Questions

It remains open the question of deciding whether there exists a recognition
algorithm for (p, ¢, r)-families of sets which is polynomial on the size of the
input family, for fixed integers p, ¢ and r.

Define a graph to be (p, ¢, 7)-clique-Helly if its family of cliques is (p, g, 7)-
Helly. Another interesting question is to obtain a characterization for (p, g, 7)-
clique-Helly graphs that might possibly lead to a polynomial time recognition
algorithm on the size of the input graph, for fixed p, ¢ and r.
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