THE (p,q)-HELLY PROPERTY AND ITS APPLICATION TO THE FAMILY OF CLIQUES OF A GRAPH

Mitre C. Dourado* Fábio Protti[†] Jayme L. Szwarcfiter[‡]

Abstract

Let $p \geq 1$ and $q \geq 0$ be integers. A family \mathcal{S} of sets is (p,q)-intersecting when every subfamily $\mathcal{S}' \subseteq \mathcal{S}$ formed by p or less members has total intersection of cardinality at least q. A family \mathscr{F} of sets is (p,q)-Helly when every (p,q)-intersecting subfamily $\mathscr{F}' \subseteq \mathscr{F}$ has total intersection of cardinality at least q. A graph G is a (p,q)-clique-Helly graph when its family of (maximal) cliques is (p,q)-Helly. According to this terminology, the usual Helly property and the clique-Helly graphs correspond to the case p=2,q=1. In this work we present characterizations for (p,q)-clique-Helly graphs. For fixed p,q, this characterization leads to a polynomial-time recognition algorithm. When p or q is not fixed, it is shown that the recognition of (p,q)-clique-Helly graphs is NP-hard.

1 Introduction

We say that a family \mathscr{F} of sets has the Helly property (or is Helly) when every subfamily $\mathscr{F}' \subseteq \mathscr{F}$ of pairwise intersecting sets has non-empty total intersection. When the family of cliques of a graph G satisfies the Helly property, we say that G is a clique-Helly graph (cfr. [6]).

Keywords: Clique-Helly Graphs, Helly Property, Intersecting Sets

^{*}Partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, Brasil

[†]Partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ, Brasil

[‡]Partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ, Brasil

We may think of a more general "p-Helly property", which holds when every $\mathscr{F}' \subseteq \mathscr{F}$ of p-wise intersecting sets has non-empty total intersection.

The p-Helly property has been studied in the context of hypergraphs [1, 2]. In this work we propose a new direction in which the p-Helly property can be generalized, by requiring that the subfamilies $\mathscr{F}' \subseteq \mathscr{F}$ satisfy the following property:

"if every collection of p members of \mathscr{F}' have q elements in common, then \mathscr{F}' has total intersection of cardinality at least q."

This leads naturally to the formal definition of the (p, q)-Helly property. According to this terminology, the usual Helly property corresponds to the case p = 2, q = 1.

In Section 2, we give a characterization for (p,q)-Helly families of sets. For fixed integers p and q, this characterization leads to a recognition algorithm whose time complexity is polynomial on the size of the family. Still in this section, we consider a slightly generalized form of this property, called the (p,q,r)-Helly property. A family \mathscr{F} is said to be (p,q,r)-Helly when, for every $\mathscr{F}' \subseteq \mathscr{F}$, if every collection of p members of \mathscr{F}' have q elements in common, then \mathscr{F}' has total intersection of cardinality at least r. We describe a characterization of (p,q,r)-Helly families in terms of the (p,q)-Helly property.

In Section 3, we study the (p,q)-Helly property applied to the case of the family of cliques of a graph. We say that a graph G is (p,q)-clique-Helly when its family of cliques is (p,q)-Helly. Clique-Helly graphs are exactly the (2,1)-clique-Helly graphs. We show some examples and properties of (p,q)-clique-Helly graphs and give a characterization for them that leads to a polynomial recognition algorithm for fixed p and q, as we remark in Section 4. We also show in Section 4 that, when p or q is not fixed, recognizing (p,q)-clique-Helly graphs is NP-hard.

Finally, in Section 5 we propose some questions concerning the (p, q, r)-Helly property.

The proofs of the lemmas and theorems of this extended abstract can be found in [4]

1.1 Some definitions and notation

Let G be a graph. A vertex $w \in V(G)$ is a universal vertex when w is adjacent to every other vertex of G. If $S \subseteq V(G)$, then we denote by G[S] the subgraph

of G induced by S. A subgraph H of G is a spanning subgraph of G when V(H) = V(G). A complete is a subset of pairwise adjacent vertices. A clique is a maximal complete.

If S is a set, then |S| denotes the cardinality of S.

The universe Univ(\mathscr{F}) of a family \mathscr{F} of sets is defined as the union of its members: Univ(\mathscr{F}) = $\bigcup_{S \in \mathscr{F}} S$. The total intersection Int(\mathscr{F}) of a family \mathscr{F} of sets is defined as Int(\mathscr{F}) = $\bigcap_{S \in \mathscr{F}} S$. A core of a family \mathscr{F} of sets is any subset contained in Int(\mathscr{F}).

We say that S is a q-set when |S| = q, a q^- -set when $|S| \le q$, and a q^+ -set when $|S| \ge q$. This notation will also be applied to other terms used throughout this work: families, cores, completes and cliques.

2 The Generalized Helly Property

2.1 (p,q)-Helly families of sets

Definition 1 Let $p \ge 1$ and $q \ge 0$ be integers, and let \mathscr{F} be a family of sets. We say that \mathscr{F} is (p,q)-intersecting when every p^- -subfamily $\mathscr{F}' \subseteq \mathscr{F}$ has a q^+ -core.

The following proposition lists some immediate consequences of the above definition:

Proposition 2

- (i) For all p > 1 and \mathscr{F} , \mathscr{F} is (p, 0)-intersecting.
- (ii) For all p > 1, if \mathscr{F} is (p,q)-intersecting then \mathscr{F} is (p-1,q)-intersecting.
- (iii) For all q>0, if $\mathscr F$ is (p,q)-intersecting then $\mathscr F$ is (p,q-1)-intersecting.

We remark that, for itens (ii) and (iii) above, the converse is not true in general.

Definition 3 Let $p \geq 1$ and $q \geq 0$ be integers, and let \mathscr{F} be a family of sets. We say that \mathscr{F} satisfies the (p,q)-Helly property when every (p,q)-intersecting subfamily $\mathscr{F}' \subseteq \mathscr{F}$ has a q^+ -core. In this case, we also say that \mathscr{F} is (p,q)-Helly.

The next proposition is also easy to proof:

Proposition 4

- (i) For all $p \ge 1$ and \mathscr{F} , \mathscr{F} is (p, 0)-Helly.
- (ii) For all p > 1, if \mathscr{F} is (p-1,q)-Helly then \mathscr{F} is (p,q)-Helly.

The following lemma will be useful for the characterization of (p, q)-Helly families of sets.

Lemma 5 Let $p \ge 1$ and $q \ge 0$ be integers, \mathcal{Q} a (p+1)-family of q-subsets of U, and \mathscr{F} a p^- -family of sets over U such that every member of \mathscr{F} contains at least p members of \mathcal{Q} . Then \mathscr{F} has a q^+ -core.

The case q = 1 in the above lemma has been proved in the context of hypergraphs [1].

Since any family of q^+ -sets is (1, q)-intersecting, it is easy to see that a family \mathscr{F} is (1, q)-Helly if and only if the subfamily formed by the q^+ -sets of \mathscr{F} has a q^+ -core.

Now let us deal with the case p > 1. The following theorem presents a characterization for (p, q)-Helly families of sets in such a case:

Theorem 6 Let p > 1 and $q \ge 0$ be integers, and let \mathscr{F} be a family of sets. Then \mathscr{F} is (p,q)-Helly if and only if for every (p+1)-family \mathscr{Q} of q-subsets of $Univ(\mathscr{F})$, the subfamily \mathscr{F}' formed by the members of \mathscr{F} that contain at least p members of \mathscr{Q} has a q^+ -core.

By setting q = 1, we obtain as a corollary of the above theorem the characterization of k-Helly hypergraphs described in [2].

If $|\operatorname{Univ}(\mathscr{F})| = n$, then the number of (p+1)-families of q-subsets of $\operatorname{Univ}(\mathscr{F})$ is $O(n^{q(p+1)})$. Hence, for fixed integers p>1 and q>0, Theorem 6 implies that deciding whether \mathscr{F} is (p,q)-Helly can be done in polynomial time on the size of \mathscr{F} .

2.2 (p, q, r)-Helly families of sets

Definition 7 Let $p \geq 1$, $q \geq 0$, $r \geq 0$ be integers, and let \mathscr{F} be a family of sets. We say that \mathscr{F} satisfies the (p,q,r)-Helly property when every (p,q)-intersecting subfamily $\mathscr{F}' \subseteq \mathscr{F}$ has an r^+ -core. In this case, we also say that \mathscr{F} is (p,q,r)-Helly.

The above definition has some direct consequences, listed below:

Proposition 8

- (i) For all $p \ge 1$ and $q \ge 0$, \mathscr{F} is (p,q)-Helly if and only if \mathscr{F} is (p,q,q)-Helly.
- (ii) For all $p \geq 1$, $q \geq 0$ and \mathscr{F} , \mathscr{F} is (p, q, 0)-Helly.
- (iii) For all p > 1, if \mathscr{F} is (p-1,q,r)-Helly then \mathscr{F} is (p,q,r)-Helly.
- (iv) For all q > 0, if \mathscr{F} is (p, q 1, r)-Helly then \mathscr{F} is (p, q, r)-Helly.
- (v) For all r > 0, if \mathscr{F} is (p,q,r)-Helly then \mathscr{F} is (p,q,r-1)-Helly.
- (vi) For all $q, r \geq 0$, \mathscr{F} is (1, q, r)-Helly if and only if the subfamily formed by the q^+ -sets of \mathscr{F} has an r^+ -core.
- (vii) For all $r \geq q \geq 0$, \mathscr{F} is (p,q,r)-Helly if and only if \mathscr{F} is (p,r,r)-Helly.

Because of the item (vii) above, from now on we assume that $q \geq r$.

We describe now a characterization of (p, q, r)-Helly families of sets in terms of the (p, q)-Helly property.

Let $p \geq 1$ and $q \geq r \geq 0$ be integers, and let \mathscr{F} be a family of sets. Denote by $X = \{X_1, \ldots, X_{|X|}\}$ the collection of the (p, r)-intersecting subfamilies of \mathscr{F} which are not (p, q)-intersecting. Let $I = \{1, 2, \ldots, |X|\}$. For each $F_j \in \mathscr{F}$, denote $I(F_j) = \{i \in I \mid F_j \in X_i\}$. For $i, k \in I$, represent by R_i an r-set formed by chosen elements that satisfy $R_i \cap R_k = \emptyset$ for $i \neq k$ and $R_i \cap \text{Univ}(\mathscr{F}) = \emptyset$. The augmentation of \mathscr{F} relative to (q, r) is a family \mathscr{A} of sets, obtained from \mathscr{F} , as follows. For each $\mathscr{F}_j \in \mathscr{F}$, the corresponding member of \mathscr{A} is $A_j = \mathscr{F}_j \cup (\bigcup_{i \in I(F_i)} R_i)$.

Theorem 9 Let $p \geq 1$ and $q \geq r \geq 0$ be integers. A family \mathscr{F} of sets is (p,q,r)-Helly if and only if the augmentation of \mathscr{F} relative to (q,r) is (p,r)-Helly.

3 (p,q)-clique-Helly Graphs

3.1 Definition and Examples

We start this section by applying the concepts of the previous section to the family of cliques of a graph:

for t < p.

Definition 10 Let $p \ge 1$ and $q \ge 0$ be integers, and let G be a graph. We say that G is a (p,q)-clique-Helly graph when its family of cliques is (p,q)-Helly.

In the remainder of this work, we will assume that $p \geq 2$ and $q \geq 1$, unless differently mentioned.

It is clear that (p-1,q)-clique-Helly graphs form a subclass of (p,q)-clique-Helly graphs. The example below shows other relations between classes of (p,q)-clique-Helly graphs:

Example 11 Define the graph $G_{p,q}$ in the following way: $V(G_{p,q})$ is formed by a (q-1)-complete Q, a p-complete $Z = \{z_1, \ldots, z_p\}$, and a p-independent set $W = \{w_1, \ldots, w_p\}$. Moreover, there exist the edges (z_i, w_j) , for $i \neq j$, and the edges (q, x), for $q \in Q$ and $x \in Z \cup W$. Figure 1 depicts a scheme of the graph $G_{p,q}$, where a dashed line between z_i and w_i means $(z_i, w_i) \notin E(G_{p,q})$.

Figure 1: The graph $G_{p,q}$.

The family of cliques of the graph $G_{p,q}$ contains exactly p+1 members, each one of size p+q-1: $Q \cup \{z_1,\ldots,z_p\}$ and $Q \cup (Z\setminus\{z_i\}) \cup \{w_i\}$, for $1 \leq i \leq p$. Observe that $G_{p,q}$ is (p,q)-clique-Helly, but it is not (p-1,q)-clique-Helly. Therefore, $G_{p,q}$ is (t,q)-clique-Helly for $t \geq p$, and it is not (t,q)-clique-Helly

Moreover, $G_{p+1,q}$ is not (p,q)-clique-Helly, but it is (p,t)-clique-Helly for any $t \neq q$. Consequently, for distinct q and t, (p,q)-clique-Helly graphs and (p,t)-clique-Helly graphs are incomparable classes.

Define a graph G to be K_r -free when the size of the maximum clique of G is at most r-1. An interesting fact derived from Definition 10 is that every $K_{(p+q)}$ -free graph is (p_1, q_1) -clique-Helly for $p_1 \geq p$ and $q_1 \geq q$.

Theorem 12 Let G be a $K_{(p+q)}$ -free graph. Then G is (p_1, q_1) -clique-Helly for all $p_1 \geq p$ and $q_1 \geq q$.

3.2 Characterizing (p,q)-clique-Helly Graphs

In order to give a characterization for (p, q)-clique-Helly graphs, we need some further definitions and lemmas, presented in the sequel.

Definition 13 [8] Let \mathscr{F} be a subfamily of cliques of G. The clique subgraph induced by \mathscr{F} in G, denoted by $G[\mathscr{F}]_c$, is the subgraph of G formed exactly by the vertices and edges belonging to the cliques of \mathscr{F} .

Definition 14 Let G be a graph, and let C be a p-complete of G. The p-expansion relative to C is the subgraph of G induced by the vertices w such that w is adjacent to at least p-1 vertices of C.

We remark that the p-expansion for p = 2 has been used for characterizing clique-Helly graphs [5, 8]. It is clear that constructing a p-expansion relative to a given p-complete C can be done in polynomial time, for a fixed p.

Lemma 15 Let G be a graph, C a p-complete of it, H the p-expansion of G relative to C, and $\mathscr C$ the subfamily of cliques of G that contain at least p-1 vertices of G. Then $G[\mathscr C]_c$ is a spanning subgraph of H.

Definition 16 Let G be a graph. The graph $\Phi_q(G)$ is defined in the following way: the vertices of $\Phi_q(G)$ correspond to the q-completes of G, two vertices being adjacent in $\Phi_q(G)$ if the corresponding q-completes in G are contained in a common clique.

Observe that $\Phi_q(G)$ can be constructed in polynomial time, for a fixed q. We also remark that Φ_q is precisely the operator $\Phi_{q,2q}$, studied in [7]. An interesting property of Φ_q is that it preserves the subfamily of cliques of G containing at least q vertices:

Lemma 17 (Clique Preservation Property) Let G be a graph. Then there exists a bijection between the subfamily of q^+ -cliques of G and the family of cliques of $\Phi_q(G)$.

The graph $\Phi_2(G)$ is the *edge clique graph* of G, introduced in [3], where the validity of the Clique Preservation Property was shown to that case.

The following definition is possible due to the Clique Preservation Property:

Definition 18 Let G be a graph. If C is a q^+ -clique of G, denote by $\Phi_q(C)$ the clique that corresponds to C in $\Phi_q(G)$. If C' is a clique of $\Phi_q(G)$, denote by $\Phi_q^{-1}(C')$ the q^+ -clique that corresponds to C' in G. If $\mathscr F$ is a subfamily of q^+ -cliques of G, define $\Phi_q(\mathscr F) = \{\Phi_q(C) \mid C \in \mathscr F\}$. If $\mathscr C$ is a subfamily of cliques of $\Phi_q(G)$, define $\Phi_q^{-1}(\mathscr C) = \{\Phi_q^{-1}(C) \mid C \in \mathscr C\}$.

Lemma 19 Let G be a graph, \mathscr{F} a subfamily of q^+ -cliques of it, $\mathscr{C} = \Phi_q(\mathscr{F})$, and $H = \Phi_q(G)$. Then $H[\mathscr{C}]_c$ contains a universal vertex if and only if $G[\mathscr{F}]_c$ contains q universal vertices.

Lemma 20 Let C be a (p+1)-complete of a graph G, and let \mathscr{C} be a p^- -subfamily of cliques of G such that every clique of \mathscr{C} contains at least p vertices of G. Then \mathscr{C} has a 1^+ -core.

Now we are able to present a characterization for (p, q)-clique-Helly graphs. The cases p = 1 and p > 1 will be dealt with separately, as in Section 2.

Theorem 21 Let G be a graph, and let W be the union of the q^+ -cliques of G. Then G is a (1,q)-clique-Helly graph if and only if G[W] contains q universal vertices.

Theorem 22 Let p > 1 be an integer. A graph G is a (p, q)-clique-Helly graph if and only if every (p + 1)-expansion of $\Phi_q(G)$ contains a universal vertex.

4 Complexity Aspects

Let p and q be fixed positive integers. If p=1, testing whether the union of the q^+ -cliques of G contains q universal vertices (Theorem 21) can be easily done in polynomial time. If p>1, testing the existence of a universal vertex in every (p+1)-expansion of $\Phi_q(G)$ (Theorem 22) can also be done in polynomial time, since the number of such (p+1)-expansions is $O(|V(G)|^{q(p+1)})$. Thus:

Corollary 23 For fixed positive integers p, q, there exists a polynomial time algorithm for recognizing (p, q)-clique-Helly graphs.

But when p (or q) is not fixed, the problem of deciding whether a given graph G is (p,q)-clique-Helly is NP-hard.

Theorem 24 The problem of recognizing (p, q)-clique-Helly graphs when p (orq) is part of the input of the problem is NP-hard.

5 Some Questions

It remains open the question of deciding whether there exists a recognition algorithm for (p, q, r)-families of sets which is polynomial on the size of the input family, for fixed integers p, q and r.

Define a graph to be (p, q, r)-clique-Helly if its family of cliques is (p, q, r)-Helly. Another interesting question is to obtain a characterization for (p, q, r)-clique-Helly graphs that might possibly lead to a polynomial time recognition algorithm on the size of the input graph, for fixed p, q and r.

References

- [1] Berge, C., *Hypergraphs*. Elsevier Science Publishers B. V., Amsterdam, (1989).
- [2] Berge, C.; Duchet, P., A generalization of Gilmore's theorem, Recent Advances in Graph Theory (M. Fiedler, ed.), Acad. Praha, Prague (1975), 49–55.
- [3] Chartrand, G.; Kapoor, S. F.; McKee, T. A.; Saba, F., 'Edge-clique graphs, Graphs and Combinatorics 7 (1991), 253–264.
- [4] Dourado, M. C.; Protti, F.; Szwarcfiter, J. L., A generalization of the Helly Property Applied to the Cliques of a Graph, Technical Report NCE 01/02, Federal University of Rio de Janeiro, Brazil, april 2002.
- [5] Dragan, F. F., Centers of Graphs and the Helly Property (in Russian), Doctoral Thesis, Moldava State University, Chisinău, 1989.

- [6] Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, (1980).
- [7] Prisner, E., *Graph Dynamics*, Pitman Research Notes in Mathematics 338, Longman, London (1995).
- [8] Szwarcfiter, J. L., Recognizing clique-Helly graphs, Ars Combinatoria 45 (1997), 29–32.

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro

COPPE

NCE

Caixa Postal 68511

Caixa Postal 2324

21945-970, Rio de Janeiro, RJ, Brasil

20001-970, Rio de Janeiro, RJ, Brasil

E-mail: mitre@cos.ufrj.br

E-mail: fabiop@nce.ufrj.br

Universidade Federal do Rio de Janeiro Instituto de Matemática, NCE e COPPE Caixa Postal 2324 20001-970, Rio de Janeiro, RJ, Brasil *E-mail*: jayme@nce.ufrj.br