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Abstract

In this work we extend a method devised by D. Henry ([1]) to ob-
tain explicit conditions for some pseudo-differential to be of finite rank.
These operators arise as solutions operators for boundary value problems
involving the Bilaplacian.

1 Introduction

In his monograph ([1]) dedicated to the study of perturbation of the domain
for boundary values problems, D. Henry developed many new tools, including
a generalized version of the Transversality Theorem. His version is specially
well-suited to the study of ‘generic properties’ for solutions of boundary value
problems, as it allows the consideration of semi-Fredholm operators with in-
dex —oo which often arise in these problems. However, a crucial hypothesis in
Henry’s version of the Transversality Theorem usually boils down to the veri-
fication that a certain (pseudo-differential) operator is not of finite rank. As it
is well-known, a pseudo-differential of finite rank must have null symbols of all
orders. It would be very convenient to obtain these symbols from the abstract
theory of pseudo-differential operators, but such detailed computations do not
seem to be available in the literature. To overcome this problem, Henry devel-
oped in [1] an alternative method for a class of operators, given by solutions

of second order elliptic equations. His method is based on the computation of
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approximate solutions for a special class of boundary data - the ‘rapidly oscil-
lating functions’. It is tempting to conjecture that the conditions obtained are
exactly the nullity of the symbols but his argument does not depend on this
(unproved) fact. The essential point is that the conditions obtained are often in
contradiction with other hypotheses present in the problem, thus establishing
the needed infinite rank property. Some applications of the method to the proof
of generic properties for second order elliptic boundary value problems can be
found in [1], [3] and [4].

Our aim here is to extend Henry’s method to some elliptic equations with
the Bilaplacian as its principal part. In a forthcoming paper, we shall use this

extension to prove the solutions of the semilinear problem

A%u+ f(-,u,Vu,Au) =0 in Q
{ U= % =0 on Jf) (1)
are generically simple, thus extending similar results obtained in [5] and [1] for
second order elliptic equations.

Since our results involve rather lenghty computations, we try to give here a
general idea of the contents of this paper.

Suppose a : R" — C, b : R” — C" and ¢ : R™ — C are smooth functions and
consider the differential operator L = A? + a(z)A + b(z) - V + ¢(x) = € R".
Let R(L) and N (L) denote the range and the kernel of L, considered as an
operator from W4 N WP (Q,C) to LP(Q, C).

Let now {wy, ..., w, } be a basis for a complement of R(L) and {¢1, ..., &}
a basis for N'(L) with associated dual basis {1, ..., 7, }. Define

Ap  IP(Q,C) — WP N W, ?(Q,C) and (2)
Cr: WP pP(9Q) — W A WhP(Q,C) (3)
by
v=Ar(f) +Crlg) € W N W, (Q,C) (4)
where

Lo — f € wy, ..., wpy], (5)
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ov
3—N = g on 39 (6)
and
/vﬁzoforalllgigm. (7)
Q

The operators of interest in our applications are given in terms of A; and
Cr. For instance, in the proof of simplicity for solutions of (1) we encounter the
operator

. . o .

T(h) = {h - No-(Budv) — Ao (cL(u)(h : NAu)) 8)
oL* . .
+AuA [AL*(U) << 9 (u) - U)CL(u)(h . NAu))) — Crequy(h - NAU>i| }’

o0

where L(u) is the linearisation around a solution w of (1), L*(u) its adjoint, v

is a solution of

L*(uw)v=0 inQ ()
v = g—;\’, =0 on Jf
and AuAv|sg = 0. We then compute the approximate value of T at special

points, the ‘rapidly oscillating functions’. More precisely, we show that

T(cos(w@)) = cos(w@)a%(AuAv) ot O(w™) as w — 400

where 6 is a smooth real function on 992 with |Vsaf| = 1. If T is assumed to
have finite rank, then using lemma (1) below ( see [1] for a proof), it follows that
2 (AuAv) -

in the Cauchy problem.

= 0 implying that w or v must be identically null by uniqueness

Lemma 1 Suppose S is a C' manifold; A, B € L*(S) with compact support;
0 is C' on S and real valued with Vg0 # 0 in suppAUsuppB; E is a finite
dimensional subspace of L*(S) and u(w) € E for all large w € R satisfying

u(w) = Acos(wh) + Bsin(wb) + o(1) in L*(9)

asw — 00. Then A=0, B=0.



228

A. L. PEREIRA M. C. PEREIRA

To compute approximate values of T we need to compute A and C;, and,

therefore, we look for approximate solutions of the boundary value problem

Lu = finQ
Qv = gondQ (10)
v = 0on 0df

for ‘rapidly oscillating’ functions f and g.

We now proceed as follows: in the next section we compute formal asymp-
totic solutions of (10) for ‘rapidly oscillating functions’ f and g. In section (3)
we show these solutions are close to real solutions and finally, in section (4), we

apply these results to the operator T.

2 Formal asymptotic solutions

Uk($
(

We seek a formal asymptotic solution u(z) = e~ > k0 Yelz) f

2w)k

Lu = (2w)?e“SF in Q
Qo = G on 90 (11)
u = 0ondN

when w — 400, where U, is a complex-valued smooth function, 2 C R" is an

open, bounded, connected regular region and N is its exterior normal;

= (2w)

k )

= (2w)
F}. and G}, smooth complex valued; S|sq = 6, Re(g—f[) >0 with6:00 — R
smooth and |Vsaf| = 1 in the region of interest. Note that there exists a
neighborhood V' of 9 such that Re(S) < 0 in V' N Q and, therefore, u and

(2w)2e“S F tend very fast to 0 in the interior of  as w — 400 (except possibly

at points in or close to J9). Since u|sq = 0, we have Ug|gq = 0 for all k£ > 0
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and, therefore

0 0
8—]1\? oo 8—N<€wskzzo (2%)]@)‘89

s Uk Fri
= <WZ(2w)k+Z(2w)k>’aQ
k>0 k>0

Uy,

o wib ON -
= ¢ Z w)F in 0f2.

k>0

We also have

A2y — ews{ [w4(VS L VS)? 4 20 ((vs VS)AS + VS - V(VS - VS))
1
4P (VS - VS)VS -V + 2w2<V(VS V) + VS VSA+ZA(VS VS))} u

+y [(zw)H [G(AS)Q + %vs - V(AS) +ASVS - v) Uy + VS -V(VS - VUk)]

1
+(2w)1‘k<§AQS + ASA + V(AS)-V + VS - VA) Uy

F2w)TFA(VS - VU + (2w>—kA2Uk} }

aAu = ae”S[ZQw)*kAUk+Z(2w)1*k<VS-VUk+ASUk)

k>0 k>0

% > w) VS - VS)U,C}

k>0

ws(0-VS Uk b- VU
b-Vu = 6S< 5 kzm@w)k_ljt )

Substitution in (11) then gives
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on 0f2 for all kK > 0 and
0 = Lu— (2w)%°F
- ews{ [w4(VS L VS)? +
+4w3<%(VS VS)AS + %vs - V(VS-VS8)+ (VS - VS)VS - v)
+2w2<V(VS .VS)-V +VS-VSA + %A(VS .VS) + %vs : vs)]

3 (2%% + D (2w)*F AU + DUy + LU — Fi |
k>0 k>0

in ), where U_; = U_, = 0,

Ap = E(AS)QQS + %vs -V(AS)p + ASVS -V + VS -V(VS-Ve)
and
Iy = %Nsd) + ASA¢ + V(AS) - V¢ + VS - V(Ag)
FA(VS - V) + a<vs Vo + %ASgb) v %(b V)6,
Choosing a (complex-valued) S satisfying
(VS)?=VS-VS=0 (12)

in a neighborhood of 9€2 in R™ we obtain, for all £k > 0

{ AU, +TU,_, + LU,y = F,

9| e = Gi (13)

Uklo = 0
with U_; =U_5 = 0.

The computations above are merely formal, but we may find approximate
solutions of (11) in a neighborhood of 92, where 2 is a C™, m > 2 region, using
the ‘normal coordinates’ given by x = y+tN(y), where y € 0Q and t € (—r, 1),
with 7 > 0 small.

Writing a(y,t) = u(y +tN(y)), we have for u sufficiently smooth in a neigh-
borhood of 0f2 that

Vu(y +tN(y)) = (1 +tK(y) iy (y, t) + @y, t)N(y)
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and

Au(y +tN(y)) = au(y,t)) + Mt y)u(y, t)
H(1+ K (y) 72 Ay (t, y) -ty (y, t)
+divae[(1 + tK (y)) 2y (y, t)]. (14)

where K = DN is the (degenerate) curvature matrix, and divgg is the divergent
operator in 0f2 (see [1] for details). We don’t always distinguish @ from u and
sometimes erte ~ for u; and Vaqu for .

Writing S(t,y) = S(z(y,t)) = S(y +tN(y)) = Zkzo%ﬁ)tk we have, in a
neighborhood of 02 S'(t, 0) = S(z(y,0)) = So(y) = i0(y) with Re(%—f(o,y)) =
Re( (x (y,()))) > 0.

Observe that some condition must be imposed on S in order to determine
the coefficients Si(y). The condition (12) chosen above has the advantage of
simplifying the computations.

We then have

VS(z(y,t)) = (VS)(y+tN(y))
Sy, )N (y) + (1+tK(y)) "5, (y, 1)

and

(1+tK(y) ' =1—tK(y) + ' K*(y) — K (y) +
from which we obtain
0 = ((V8)y+iNw))

= (VoaSo(y))* + (S1(y))?

(
+t<251( )Sa(y) +2VaaSo(y) - V6951(9)+2V6950(3/)'K(y)VBQSO(?/)> +

Choosing |Vaaf(y)| = 1, in the region of interest, we obtain recursively
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and we can compute as many terms as needed. In this way, we obtain

. t? t3 t
Sly+tN(@) = #(y) +1—Faly) + 5795(y) + {Sy) +...  (15)
VS(y +tN(y)) = N +iVaa— t<z’KV399 + qN)
t2
+5 <53N Vg + 2¢K2vme) (16)

3

t
+5 <S4N 4 VoaSs + 3K Vaaq — 6iK3VaQQ) Ot

| ) | )
VS(y+IN(y) -V = Vol Voo + 5 + t( %K Va0 - Voo — qa)

2 0
+ﬁ <6ZK2V399 -Vaa — Vsaq - Vaa + SgE) (17)
t3
+§ (VagSg -Vaa +6KVsaq - Vaq — 24iK3VaQQ
0
Voq + S4a)
+0(th)

2 3

AS(y+IN() = aly) +18(y) + 5 ply) + Zoly) +O)  (15)

A*S(y+tN(y)) = ply) + Hi(y)B(y) + Doaa(y)
+ (0(11) + Hi(y)p(y) — Ha(y)B(y) + Voo Hi(y) - Vana(y)

+AsaBy) - 2 diven(K(y)Vana(y)) + O(F)  (19)
where
* q(y) = Vaal(y) - K(y)Voal(y);
o 2= Voal(y)  Vou:
o S3(y) = 3Vaab(y) - K*(y)Vaab(y) — ¢*(y) + 5 (y);

o Su(y) = 3q(y)Ss(y) — 192 (y) — 12Vaab(y) - K3(y)Voab(y) — 6iVaaq(y) -
K(y)Vaaf(y);
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o Hy(y) = trace K™ (y);
e a(y) = Hi(y) — q(y) +iDsal(y);
o By) = Ss(y) — Hi(y)a(y) + %2 (y) — 2i divaa(K (y) Vel (y)) — Ha(y);

e p(y) = Sa(y) + Hi(y)Ss(y) + 2H2(y)q(y) — 4K (y) Vel (y) - Voo Hi(y) —
%28 () + 3i divaa(K2(y)Vaab(y)) — 20saq(y) + 2H;(y);

e \(t,y) = In[det(l + tK(y))] = > v, %tm}[m(y) for ¢ sufficiently

m

small;

o o(y) = S5(y)—6Ha(y)—6Hs(y)a(y)—3H2(y) Ss(y)+Hi(y)Sa(y) —3Vaa Hi(y)-
Voaq(y) + 18iK*(y) Voo Hi(y) - Vaab + AaaSs(y) + 6 divoa(K (y)Vaeq)
—24i divaq (K°(y)Vaal(y)) + 2iVaaHs(y) - Vaab(y) + 6iK (y)VaaHa(y) -
Vaal(y).

Writing now

o+ INW) = auly) + )t +aa)s

+ ...
My +INGW) = (o) + b+ bao)s +
U+ VW) = W) + S0 + L 0w) +
By +ING) = )+ tRL) + SR +

2
and using that

1+tK)? = 1+tK)'(1+tK)™!
= (1—-tK+#K*—.)(1—-tK +t?K* - ..)
= 1-2tK + 3t?K* — 4* K* + O(t)

we obtain
Utloa = Gy
0
AU, = <a - q+2z%)U§ + U2

y U,g<1a2+;gg+3g+m — 6iK Vo - Voo — 2iq o)
+S5 4+ ¢* — ag — 194 — 59;2) - <a+21%—3q)Uk+U,§
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aHy + 3 — Hy +20pq + 2iH1 2 > 1

I, =
Uk-1 < 4853 — 41K Vgl - Voaq + Z% — Hiqg+ ag Uit

)
—l—(a + 2H, + 25, — 2q> U2, +2U3

3p+ SH1B+ 3Asna — aHs + algg + Vaga - Vg

+H1S3 — 6 divoo (K Vaa(:)) — 21KVl - Voo Hi
+ilpo L — 5Vaaq - Vaa — Noag — 2q8s0
+18i K%V 500 - Voo — 6iH KV 900 - Voo
| —i—ao(%a — q—{—i%) + a1 + %bo - N + %bo -Vaab
+ (26 + aHy +2iH  + %5 — 38,
+2An0 — 3¢H, — 8iKVagl - Voo + 355 + ao) U,
| +(a— g+ 20 +2m) UL, + 20},
+0(t%)

+t

2H5 + Aang —4 diVaQ(KVaQ(')) — H{Hy ) U]%
—2

LU, =
" ( +2H1Apq + 4V oo Hy - Voo + agHi +bo - N
v (2A6Q —2H, + H? + ao) U2, +2H U, +US

+2HHs — 4H, divoa(KVaa(-)) + VeaH: - Voo Hi

—2 divoa(KVaaH1) + 3H1VaaHy - Vg
+t +b0'vag+b1'N—a0H2+(10AaQ+(11H1+C

4+a1 +by- N —3HoH| + 2H 1 Apq + ApgaHi
| (2000 — 4H + H? + a0 ) Uy + 20U}, + UL,

+0(t%).

+iZ Noq + 2Hoq — 192 — 2iHy 3 + 3V Hy - Voo + 2H; + S

H2 — 12KV 0 H; - Vaq + 18 divaa(K?Vaa(+)) — 2H2Asq

—5VaaHs - Vaq — NpoHs + A2 — 6Hy — 2 divaa (K Ve Hi(+))

n < 6VaoaH1 - Vaq + 6Hs — 8 divaa(K Vaq(+)) + agHy > 2
-2

1
Ukl

1
kaZ

The coefficients of Uy for £ > 0 can now be obtained by substituting the above

expressions in (13) and comparing coefficients. For k = 0, we have

AUy,  =F
U,
N |,, = Go
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and we obtain

Ul = G
0
U2 = Fg—(a—q+2i—)U5 (20)
00
0
Ui = F - (a-3¢+2i)U3
0 0 a—95q + 159 Y0
(A prag s Y
—6iK Vool - Voo — 2iqly —aq—igh— Lz | 7°
For k=1
AUL+TUy =F
vy _
N |50 1
o9
from which it follows that
Ui = Gi
0
Ui = F0—< — 2'—>U1
1 1 a—q+ t5g )1
([ aHi+ B — Hy+20pg + 2iH1 3 -
+S5 — 4iKVab - Voo + % — Hiqg ) ~°
- Pl la? + 198 + 38 +iad + S+ ¢ -
= - N . . 2
! ! ~6iK Vol - Vog — 2iqd — aq —i%% — o 1

—(a—3q+2z'%)Uf—2U§— (a—4q+2i%+2H1>U§’

_( 28+ aH, —3qH; — 8iKVqab - Vg 02
+2iH, 2 4% 3H, 42090 +3S5 ) 0
3p+ SH1B+ $Asna — aHs + algo + Vaga - Vg
+i9 Noq + 2Hoq — %2 — 2iH, 8 + 3V Hy - Voo + 2Hs + Sy

—| +H.S3—6divgq(KVaq()) — 20KVl - Voo Hi Ul
+iloo D — 5V aaq - Voo — Doad — 2¢Ms0
+18iK%V 500 - Voo — 6iH KV 900 - Vaoa

In this way, one can compute as many coefficients as wished of the formal solution
u of (11).

3 Exact solutions

We now show that the approximate solutions obtained in the previous sections are
close to real solutions.

Let L, Ap and Cy, be the operators defined in (2) (3) (4)(5) (6) and (7). We first
show that Ay, and Crp, are well defined. Using the same notations of the introduction,



236 A. L. PEREIRA M. C. PEREIRA

we observe that L, as a compact perturbation of the Bilaplacian, is a Fredholm
operator of index 0, when considered as an operator from W*P N VVO2 P(Q,C) into
LP(Q,C). Thus, we have LP(Q,C) = R(L)®[w1, ..., wp,]. Given f = fi+ fo € LP(Q2,C)
with f1 € R(L) and fy € [wy,...,wy,] there exists a unique v € W4P N Wol’p(Q,(C)
such that Lv = f1, g—;\’, = g on 02 and fQ v7; = 0 for all 1 <4 < m. ( The existence
of v follows from results in [2] and the uniqueness follows from the conditions [, v7; =
0 para todo 1 <i < m).

Suppose now that € is a C5TN =% regular region, N > 0 is an integer

F F
F(a:):(Fo+—1+...+ il

G1 GN )
2w (2w)N ’

), G(z) = <G0+%+...+W
with Fj, C*TN=F in Q and G}, C3tN=F on 9Q, for k =1,2,--- , N. Suppose also 6 is
C5*tN in 99 and the coefficients a, b and ¢ of L are CN12, CN*+1 and C¥ respectively
in Q.

We can choose S(y + tN(y)) of class C>+V such that

(VS)?2 = Oo@t*), (21)

and Uy, of class C*tV=F 0 < k < N in Q, with

AU, +TU,_1 + LU, — F, =0@t** V%) k=0,--- N
I'Uy + LUN_1 =0(t) (22)
Ukloa = 0, 9% 90 = Gy,

uniformly in —§ < ¢ = dist(z,9Q) < ¢, for some 6 > 0, (U_2 =U_; =0).
Finally we choose a compact supported C'* ‘cutoff function’ x of class C*°, y =1
for —§ <t = dist(z,00) < § but x supported near this set and let

u(a:) — ewS(I) (Uo(aj) + 2w (2w)N

with S and Uy, as in (21) and (22).

Theorem 2 Suppose u is given by (23), v=AL(f)+Cr(g), with

N
F _
I = x(@e)?e* > g liree = 0w™)
k=0
and
G,
lg — €™’ lles@ac) = 0W™).
(2w)
k=0
Then

lIxu — 'U||W4’pmwo2,p(97c) = O0(w™) as w — 0.
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Proof. From our hypotheses and the computations of the previous section, we have

YR
Lu — (2w)?e?d Z kk =

i ()
T (2uot) N GERE 5 (o) (3 e
|| TR R u
= (;w)N 1wty (UGHLY o (5308 o LA
Ao (2t)> V(R 1 et o+ e — B )
o (2wt) (B o+ E=) 4 LUy J
Therefore
oy~ Bl e NN,

Ehxtute)] ~x(@)(2)* 3 B < ao e 3 1t }

for some C' > 0, since ReS(z) < £ in Q near 9. Thus
Lyu— f = O(w_N) as w — +o0o, uniformly in Q and § <t <0. (24)
Since v = Ar(f) + Cr(g) there exist aq, ..., a, € C such that
Lv =f+>" aw; in Q
5v =g on 99 (25)
v =0 on 90N

with fQ vT; = 0 for any 1 < ¢ < m. We prove the a; are uniquely determined. In fact,
if {o1,...,0m} is a basis of N(L*), we have for each 1 < j <m

f}ai/gajwi = /Qaj(Lu—f)

= / A6jg—/5jf.
o0 Q

m
It is then enough to show the matrix [fﬂ 5jwi] ~is nonsingular. Suppose V1, ..., Ym

1,7=1
are scalars such that Y. 7 [ 6w; = 0 for] 1 < j < m. Then Y " vw; €
N(L)* = [01,...,0m]F = R(L), from which we obtain v; = ... = 7, = 0 prov-
ing the claim.
Let then

m
z=xu—v—>Y Bio;
=1

with S, ..., Bm € C chosen in such a way that [, 27; =0 for all 1 < j < m.
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We can show, proceeding as above, that [ fQ gbﬁj] is nonsingular. Further-

m
LJ=

more, we have

0 _ 9

N~ av\X
N

, G
_ twb ko

= O(w™), uniformly in 9Q as w — +oo0.

u—v)

By the Riemann-Lebesgue lemma

m
Zai/@'wi = / A6jg—/5jf
= Ja B! 0

N

N
_ o)k GONG - — o) k2 955
= e | eracicy > | esaoam)
+ Ow™)
= Ow™) (26)

and

iﬂi/ﬂ@f)ﬂj = /Q(XU)TJ'
_ /Q (Xews i (2Zk)k)%j (27)

= Ow™)

as w — 400 since Fj, Gy and Uy, are C?TN=F C3+N=k and C*N—F respectively
for 0 < k < N, that is , |a;| = O(w™) and [B;| = O(w™) for any 1 < i < m as
w — +00. Since Lz = L(xu) — Lo it follows from (24), (25) and (26) that

Lz =0wN)inQ
g—]f, = O(w™) on 09 (28)
z  =0on 0N

as w — +o00. Therefore, we obtain, from (27) and (28) that

m
Ixu = vlwar@e =z = > Bwillwarq,c) = Ow
=1

as w — +00. O
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4 An application

Let T be the operator defined in (8). Using the method of the previous sections we
prove the following

Theorem 3 If Y is of finite rank then

0
ON

Proof. In view of (1), it is enough to show that

—(AuAv) =0 on 090. (29)

T(cos(w&)) = cos(wh) — 0 (AuAw) 5

ON

o 4+ O(w™) as w — 4o0. (30)

To obtain (30), we show that

oL*
{AUA [AL* ) (( () v)cL(u) (cos(w&)Au))) — Cp(u (cos(wB) Av)
—AUA(CL(u) (cos(we)Au))}(m = O(w™) as w — +oo. (31)
Let e¥® Zk o (2 ) be the approximate value of Cr (e e Au) given by
AUL +TU,_1 + L(U)Uk,Q =0

ouy|  _ [ Aulpga k=0
6N69_{0 0<k<N (32)

Uklaa =0

and e“° Ek 0 2 )k the approximate value of

AL () ((%[;)* (u) 'U>CL(u)(em9Au))) — CL*(u)(e‘”wAv), given by

AV + TV + L (u)Vyp = <8L* (u) - U) Uk—2

ow
N {50 0 0<k<N
Vielon =0

following the notation of section (2). From theorem (2), we obtain

ACr () (e‘”wAu) ‘89 = (H@t + 8tt> ( wS Z Z>1 i Uk) ‘ +O0(w™)

et (Au(Qw) + [HAU + UOQ] ) ‘BQ +0w™)
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since
Ul_%‘ _ [ Aulpe k=0
7 9N laa ~ | 0 k> 0.

Similarly, we obtain

(e )= (- 02+ [ 180 4] 0

since

V1:%‘ _ | —Avee k=0
k7 AN laa 0 k> 0.

Therefore, we have

{AUA [.AL*(U) ((%(u) . U) CL(u)(e“’"eAu)) — CL*(U)(e“’wAv)]
—AvA (CL(U) (e‘“ieAu)) } ‘BQ

= v [AUVOQ - Ang] ‘89 +0(w™) (34)
since AuAv = 0 on 9f). From (20), it follows that

Ug = —(oz —q+ Zig>Au‘6Q and

00
= (Lwualy s (oara e,
= (o—gr2)ml

since U_o = 0 in a neighborhood of 9€). Therefore, we obtain
(AUVOQ - AUU3> ‘ = {(a — q)(AulAv) + QiAuEAv
Gig) 00

.0
+(a — q)(AvAu) + 2ZAU%AU}‘8Q

.0
= 22%(AUA’U)‘BQ
= 0on 092

since AuAv = 0 on 9€2. Therefore

{AUA |:AL*(u) ((%(u) : v) CL(u)(ewwAu)) — CL*(U)(ewwAv)]

—AvA (CL(U)(e“’wAu)>HBQ =O0(w™) as w — +oo. (35)
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Since

ININE ((‘W

v)
—AvA(Cry)(cos(wd) A ))}‘

Cr(u)(cos(wt Au))) — Cre(u) (cos(w@)Av)}

(
= Re{ {AUA (A ((% ) Cru (€7 A) ) = Crey (€ A0)|
—AUA( (e Au )}( }
we obtain (30) from (35) O
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