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A SURVEY ON THE GEOMETRY OF ISOMETRIC

ACTIONS
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Abstract

We survey on our results on the geometry of the orbits of isometric
actions of compact Lie groups on complete Riemannian manifolds.

1 Introduction

In this short survey article, we attempt to present our results about some of the

most important classes of isometric actions of compact Lie groups on complete

Riemannian manifolds. In doing so, we tried to put the material in a historical

perspective. As a matter of fact, most of the aspects of the subjects covered

here originated in the works of Chern-Lashof and Bott-Samelson in the late

fifties, but other topics are older, have evolved quite independently, and have

only later merged together into the same subject.

We start with the results of Bott-Samelson on variationally complete actions,

and we explain their relation to focal point theory. Then we move on to the

work of Conlon and Dadok on polar and hyperpolar actions, and we discuss

recent results on the subject. Then we go back to the Chern-Lashof theory and

Kuiper’s reformulation in terms of critical point theory. This serves as a prelude

for the next topic, which is taut submanifolds. Here we discuss equivalent

formulations of the notion of tautness following Banchoff and Carter-West, and

we present a list of examples and classification results. Finally, we introduce

the notion of copolarity of isometric actions. A detailed and updated, but by

no means complete, bibliography is appended at the end. For further details

and results, see [CR85, Cec97, Tho98, Tho00, Gor01, BCO03].
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2 Variational completeness

In 1958, Bott and Samelson ([BS58]; see also [Bot56]) introduced the concept

of variational completeness for isometric group actions and developed powerful

Morse theoretic arguments to compute the homology and cohomology of orbits

of variationally complete actions. We will review their concept in a moment.

As a motivation, we first mention that, roughly speaking, an isometric action

of a compact Lie group on a complete Riemannian manifold is variationally

complete means if it produces enough Jacobi fields along geodesics to determine

the multiplicities of focal points to the orbits.

More precisely, let N be a submanifold of a complete Riemannian man-

ifold M . Let η : ν(N) → M denote the endpoint map of N , that is, the

restriction of the exponential map of M to the normal bundle of N . A point

q = η(v) is a focal point of N in the direction of v ∈ ν(N)of multiplicity m > 0

if dηv : Tvν(N) → TqM is not injective and the dimension of its kernel is m. Let

v ∈ νp(N), and let γv denote the geodesic t 7→ expp(tv). A Jacobi field along

γv is called an N -Jacobi field if it is the variational vector field of a variation

through geodesics that are at time zero orthogonal to N . We will denote the

space of N -Jacobi fields along γv by J N(γv). It is not difficult to see that J is

an N -Jacobi field along γv if and only if J(0) ∈ TpN and J ′(0) + Avu ∈ νp(N),

where p is the footpoint of v, u = J(0) and Av is the Weingarten map in the

direction v. The point q is a focal point of N in the direction v if there is

an N -Jacobi field along γv that vanishes at q. We will denote the space of

N -Jacobi fields along γv that vanish at q by J N
q (γv). Now an isometric action

of a compact Lie group G on the complete Riemannian manifold M is called

variationally complete if every Jacobi field J ∈ J N
q (γv), where N is a G-orbit

and q is a focal point of N in the direction of v, is the restriction along γv of a

Killing field on M induced by the action of G.

Let G/K be a compact symmetric space. Bott and Samelson proved in [BS58]

that the action of K on G/K by left multiplication is variationally complete and

so is the action of K×K on G by left and right multiplication. This was gener-
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alized by Hermann in [Her60], who showed that if K1 and K2 are two symmetric

subgroups of the same compact Lie group G, then the action of K1 on G/K2 is

variationally complete and so is the action of K1 ×K2 on G. It was also proved

in [BS58] that the linear isotropy representation of the symmetric space G/K

is variationally complete. In the same paper, Bott and Samelson constructed

an explicit Z2-homology basis for the orbits of variationally complete actions.

3 Polar and hyperpolar actions

In 1971, Conlon [Con71] considered actions of a Lie group G on a complete

Riemannian manifold M with the property that there is a connected, complete

submanifold Σ of M that meets all orbits of G in such a way that the intersec-

tions between Σ and the orbits of G are all orthogonal. Such a submanifold is

called a section and an action admitting a section is called polar. It is easy to

see that a section Σ is totally geodesic in M . An action admitting a section that

is flat in the induced metric is called hyperpolar. The main theorem in [Con71]

states that a hyperpolar action of a compact Lie group on a complete Rieman-

nian manifold is variationally complete. Notice that Conlon does not assume

in [Con71] that Σ is properly embedded, although this has been required in

some of the later literature on the subject. On the other hand, he did assume

that Σ is closed, but this is not necessary for the proof of his main theorem.

We also remark that it is not even necessary to assume that Σ is complete, as

this has been shown to be a consequence of the definition by Boualem [Bou95]

and later, independently, by Heintze, Liu and Olmos [HLO00].

In the case of Euclidean spaces, there is clearly no difference between polar

and hyperpolar representations since totally geodesic submanifolds of an Eu-

clidean space are affine subspaces. Moreover, the question whether Σ should be

required to be properly embedded or not becomes redundant. It follows from

É. Cartan’s theory of symmetric spaces that the linear isotropy representations

of the symmetric spaces are polar representations. Conversely, it turns out that

a polar representation is orbit equivalent to the isotropy representation of a
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symmetric space. (We recall that two actions are said to be orbit equivalent if

there is an isometry between the action spaces under which the orbits of two

actions correspond.) This follows from the classification of polar representations

by Dadok [Dad85]. Lists of all polar representations can be found in [EH99]

(irreducible case) and in [Ber01] (reducible case); see also [GT00] (both cases).

Di Scala and Olmos gave in [DO01] a short proof that a variationally complete

representation of a compact Lie group is polar.

Next we discuss the case of compact symmetric spaces. There are two im-

portant classes of examples of hyperpolar actions on them. It is clear that

a cohomogeneity one action of a compact Lie group on a compact symmetric

space is hyperpolar. Besides that, the Hermann examples referred to above turn

out to be hyperpolar actions. Kollross [Kol02] classified hyperpolar actions on

compact irreducible symmetric spaces. It follows from his classification that, in

the irreducible case, all hyperpolar actions belong to either one of these classes.

Thorbergsson and I proved in [GT02b] that a variationally complete action on

a compact symmetric space is hyperpolar. The idea of this proof is to lift the

action to a variationally complete isometric action on an appropriate infinite di-

mensional Hilbert space which submerges onto the symmetric space, and to use

an argument similar to the argument used in [DO01] for the finite dimensional

linear case.

It is easy to construct examples of polar actions which are not hyperpolar

on compact symmetric spaces of rank one as can be seen from the classification

of polar actions on such spaces in [PT99]. So far no example of a polar action

which is not hyperpolar on an irreducible symmetric space of rank greater than

one has been found. It has been shown that the classes of polar and hyperpolar

actions coincide in the compact irreducible Hermitian symmetric spaces ([PT02,

BG05, Bil04]). The question whether the two classes of actions must coincide in

any irreducible symmetric space of rank greater than one remains a major open

problem in the area. 1 In [Gor04a], a simple criterium for a closed subgroup

1Added in Proof. On February 18th, 2005, A. Kollross announced in the Oberseminar
Differentialgeometrie in the University of Augsburg a complete classification of polar actions
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of isometries of a compact symmetric space to act polarly was devised. This

might be helpful when dealing with the above problem. In the same paper, as

an application, it was shown that a polar action on a compact symmetric space

admitting a totally geodesic principal orbit must be the standard action of an

orthogonal group (of any rank) on a sphere.

4 The Chern-Lashof theorem

For an isometric immersion f of a compact manifold M into an Euclidean space

Rm, Chern and Lashof [CL57] introduced the total absolute curvature τ(f) as

the normalized volume of the unit normal bundle with respect to the Gauss

map. Namely,

τ(f) =
1

vol(Sm−1)

∫
ν1(M)

|G| dvolν1(M),

where η∗ dvolSm−1 = G dvolν1(M), and η : ν1(M) → Sm−1 is the Gauss map.

They proved that τ(f) is bounded below by the Morse number γ(M), which

is the minimum number of critical points which any Morse function on M can

have. Recall that the Morse inequalities say that γ(M) ≥ β(M ;F), where

β(M ;F) is the sum of the Betti numbers of M with respect to the field F.

An immersion f which attains this lower bound is said to have minimum total

absolute curvature. Chern and Lashof also proved that if τ(f) = 2, then M is a

convex hypersurface in an affine subspace.

Kuiper reformulated these results in terms of critical point theory. In [Kui58],

he showed that the infimum of the total absolute curvature τ(f) over all im-

mersions of M into all Euclidean spaces is the Morse number γ(M). In [Kui62],

he introduced a concept of generalized convexity in terms of intersections with

half-spaces and injectivity of induced maps on homology. Note that the designa-

tion “tight” in this context was first used by Banchoff in [Ban65] in conjunction

with his introduction of the two-piece property. An immersion f of a compact

on compact symmetric spaces of rank greater than one with simple group of isometries, whose
main consequence, according to him, is the coincidence of the classes of polar and hyperpolar
actions on those spaces.
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manifold M into an Euclidean space is said to be tight with respect to the field

of coefficients F (or, for short, F-tight) if the induced homomorphism

H∗(f
−1H;F) → H∗(M ;F)

in singular homology is injective for almost every closed half-space H in the

ambient Euclidean space, whereas f is said to have the two-piece property (TPP)

if f−1H is connected for every closed half-space H in the ambient Euclidean

space. It can be easily shown that in both of these definitions we need only

to consider half-spaces H which are defined by height functions that restrict to

Morse functions on M . Plainly, then, we see that every tight immersion has the

TPP. It is also interesting to notice that these properties are invariant under

projective transformations, in the sense that one adds a hyperplane at infinity

and considers images of submanifolds under projective transformations that do

not meet the hyperplane at infinity.

An equivalent definition of F-tightness for an immersion f : M → Rm is

requiring that every height function hξ(x) = 〈f(x), ξ〉, x ∈ M , which is a Morse

function, has the property that its number of critical points is equal to the

sum of the Betti numbers of M relative to F, i. e. hξ is F-perfect. It follows

that a F-tight immersion of a compact manifold has minimum total absolute

curvature, since total absolute curvature is the mean number of critical points

of height functions on M . Note that in this case we also have that the Morse

number γ(M) equals the sum of the Betti numbers of M relative to F.

An important observation of Kuiper regarding the codimension of substan-

tial tight immersions into Euclidean spaces appeared already in his first pa-

pers [Kui58, Kui61] on the subject: a substantial immersion f of a compact

n-dimensional manifold that satisfies the TPP admits a point where the second

osculating space coincides with the ambient space. (We recall that an immer-

sion f : M → Rm is called substantial if its image does not lie in any affine

hyperplane of Rm.) Here the second osculating space of f at p is the affine

space spanned by the first and second partial derivatives of f at p. Counting

these derivatives shows that the dimension of the second osculating space can
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be at most 1
2
n(n + 3). Therefore the codimension of the immersion can be at

most 1
2
n(n + 1). The Veronese embedding of the real projective space P n(R) is

tight in R
1

2
n(n+3) showing that this estimate is optimal.

5 Taut submanifolds

The beginnings of the study of taut immersions can be traced back to Ban-

choff’s paper [Ban70] where he attempted to classify tight surfaces which lie

in a Euclidean sphere Sm−1 ⊂ Rm. In this case, we remark that the criti-

cal point theory of height functions is the same as that of distance functions

Lq(x) = ||f(x)−q||2, q ∈ Rm. Carter and West defined in [CW72] an immersion

f of a compact manifold to be taut with respect to the field F (or F-taut, for

short) if every Morse distance function Lq has the minimum number of critical

points allowed by the Morse inequalities with respect to F. It follows from the

preceeding remark that a tight spherical immersion is taut. Also, we observe

that a taut immersion f must be an embedding, for if q is was double point

in the image then the distance function Lq would have two minima and one

could then perturb q, if necessary, in order to obtain a Morse distance function

with two local minima. Moreover, as was done for tightness, one sees that a

submanifold M ⊂ Rm is F-taut if and only if the induced homomorphism

H∗(M ∩ B;F) → H∗(M ;F)

in singular homology is injective for almost every closed ball B in Rm. It is

then clear that tautness is conformally invariant. Furthermore, one sees that a

taut submanifold M is tight, because for any half-space H defined by a Morse

height function one can construct a closed ball B such that M ∩ H is a strong

deformation retract of M ∩ B.

We next give some examples of tautly embedded submanifolds. The Clifford

tori Sn1(r1) × · · · × Snk(rk) ⊂ Sn1+...+nk(1) where r2
1 + . . . + r2

k = 1, and the

standard embeddings of the projective spaces P n(F), F = R,C,H,O are taut,

since these are tight spherical embeddings. In the case of spheres, a substantial
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taut embedding of a sphere must be spherical and of codimension one. (In

fact, such an f : Sn → Rm is tight, whence m = n + 1 and f(Sn) is a convex

hypersurface by the Chern-Lashof theorem. Now stereographic projection maps

f(Sn) into a taut submanifold of Rn+2 which cannot be substantial, again by the

Chern-Lashof theorem. Therefore, we see that f(Sn) is spherical.) If M is an

n-dimensional taut hypersurface in Rn+1 which has the same integral homology

as Sk × Sn−k, then Cecil and Ryan proved in [CR78] that M has precisely two

principal curvatures at each point and that the principal curvatures are constant

along the corresponding curvature distributions.

Bott and Samelson’s construction of an explicit Z2-homology basis for orbits

of variationally complete representations can now be rephrased: the orbits of

variationally complete representations are taut submanifolds. Recall that, by

the results of [DO01, Dad85], these are precisely the orbits of the isotropy

representations of the symmetric spaces, the so called generalized flag manifolds.

The generalized flag manifolds are homogeneous examples of submanifolds

which belong to another very important, more general class of submanifolds,

called isoparametric submanifolds. An isoparametric hypersurface in a simply-

connected real space form is a hypersurface with constant principal curvatures

(see [Tho00] for an extensive survey on isoparametric hypersurfaces and their

generalizations). In the course of his work on the subject, Cartan noticed that

isoparametric hypersurfaces in spheres is a much more rich and difficult object

of study than its counterparts in Euclidean and hyperbolic spaces. In fact,

until today there is no complete classification of them. The subject seems

to have been forgotten for over thirty years after Cartan, when Münzner (see

also [Nom73]) wrote the two very influential papers [Mue80, Mue81]. Using his

results, Cecil and Ryan observed in [CR81] that isoparametric hypersurfaces

and their focal manifolds are taut.

In the eighties, some generalizations of the concept of isoparametric hyper-

surface to higher codimensions were proposed, but the today commonly ac-

cepted one seems to have been first given by Harle in [Har82] (see also Carter

and West [CW85a, CW85b] and Terng [Ter85]). An isoparametric submani-
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fold of a simply-connected space form is a submanifold whose normal bundle

is flat and such that, for every locally defined parallel normal vector field, the

eigenvalues of the corresponding Weingarten operator are constant. Palais and

Terng [PT87] showed that a compact homogeneous isoparametric submanifold

of Euclidean space is a principal orbit of a polar representations, and then

it follows from Dadok’s theorem that it must be a generalized flag manifold.

Examples of inhomogeneous isoparametric hypersurfaces in spheres were con-

structed in [OT75, OT76] and, more systematically, in [FKM81]. In contrast,

Thorbergsson proved in [Tho91] the striking result that a compact irreducible

isoparametric submanifold of substantial codimension greater than 2 in an Eu-

clidean space is homogeneous (see [Olm93, HL99, Esc00] for other proofs of this

fact), and then it follows as above that it must be a generalized flag manifold.

Hsiang, Palais and Terng studied in [HPT88] the topology of isoparametric

submanifolds and proved, among other things, that they and their focal sub-

manifolds are taut. This result also follows from the work of Thorbergsson

in [Tho83]. Both in [HPT88] and [Tho83], the method to prove tautness of

a submanifold is to construct explicit cycles representing the Z2-homology as

maps of iterated bundles of curvature surfaces (generically, spheres) associated

to the focal points along geodesics normal to that submanifold, which can be

viewed as a generalization of the method of Bott and Samelson to show that

the generalized flag manifolds are taut.

Most of the examples of taut embeddings known are homogeneous spaces.

In [Tho88] Thorbergsson posed some questions regarding the problem of which

homogeneous spaces admit taut embeddings and derived some necessary topo-

logical conditions for the existence of a taut embedding which allowed him

to conclude that certain homogeneous spaces cannot be tautly embedded (see

also [Heb88]), among others the lens spaces distinct from the real projective

space. Olmos showed in [Olm94] that a compact homogeneous submanifold

embedded in Euclidean space with a flat normal bundle is a generalized flag

manifold. Many proofs have been given of the tautness of special cases of gen-

eralized flag manifolds where the arguments are easier. No new examples of
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taut embeddings of homogeneous spaces besides the generalized flag manifolds

were known until Thorbergsson and I classified in [GT03] (see also [GT00]) the

irreducible representations of compact Lie groups all of whose orbits are tautly

embedded; we call these representations taut. It turns out that the classification

includes three new families of representations which are not isotropy represen-

tations of symmetric spaces, thereby supplying many new examples of (Z2-)

tautly embedded homogeneous spaces, namely (n ≥ 2):

SO(2) × Spin(9) (standard) ⊗R (spin)
U(2) × Sp(n) (standard) ⊗C (standard)

SU(2) × Sp(n) (standard)3 ⊗H (standard)

It is interesting to remark that these three families of representations precisely

coincide with the representations of cohomogeneity 3 of the compact Lie groups

which are not orbit equivalent to the isotropy representation of a symmetric

space.

The proof of this classification result is long and involved. It starts with

Kuiper’s observation that was mentioned in the last paragraph of section 4. It

implies that a taut irreducible representation has the property that the second

osculating spaces of any of its nontrivial orbits coincide with the ambient space;

we say that representations with this property are of class O2. The class O2 is

much more tractable than the class of taut representations since it involves an

infinitesimal condition. The technique of Dadok [Dad85], notably his invariant

k(λ), turns out to be an extremely powerful tool to reduce the class O2 in size

so that the remaining cases are amenable to the geometric methods that we

develop in the second part of the proof.

In [GT02a] Thorbergsson and I provided another proof of the Z2-tautness

of the orbits of the three families of exceptional taut irreducible representations

by adapting the construction of the cycles of Bott and Samelson to that case.

The main new technical difficulty that we encountered was that focal points in

the direction of normal vector fields parallel along some curvature circles do not

have constant multiplicity, which made a modification in the construction of
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the cycles necessary to prevent the bundles from having some degenerate fibers.
Recently, I completed the classification of taut reducible representations of

compact simple Lie groups [Gor04b]. The list is

SU(n), n ≥ 3 Cn ⊕ · · · ⊕Cn k copies, where 1 < k < n

SO(n), n ≥ 3, n 6= 4 Rn ⊕ · · · ⊕Rn k copies, where 1 < k

Sp(n), n ≥ 1 C2n ⊕ · · · ⊕C2n k copies, where 1 < k

G2 R7 ⊕R7 —

Spin(6) R6 ⊕C4 R6 = (vector), C4 = (spin)

R7 ⊕R8

Spin(7) R8 ⊕R8 R7 = (vector), R8 = (spin)
R8 ⊕R8 ⊕R8

R7 ⊕R7 ⊕R8

R8
0 ⊕R8

+

Spin(8) R8
0 ⊕R8

0 ⊕R8
+ R8

0 = (vector), R8
+ = (halfspin)

R8
0 ⊕R8

0 ⊕R8
0 ⊕R8

+

Spin(9) R16 ⊕R16 R16 = (spin)

Despite these results, the classification of taut homogeneous submanifolds of

Euclidean spaces is still far from complete. We still do not even know what the

reducible taut representations of the nonsimple compact Lie groups are.

6 The geometry of the exceptional taut irre-

ducible representations and copolarity of iso-

metric actions

The principal orbits of the exceptional taut irreducible representations fail to

be isoparametric because focal points in the direction of normal vector fields

parallel along some curvature circles do not have constant multiplicity. From

another viewpoint, the distribution of normal spaces to the principal orbits

along a normal geodesic fails to be constant just because of a one-dimensional

subspace. As a matter of fact, the construction of the cycles in [GT02a] relied

on a detailed knowledge of the geometry of the orbits of those representations.

This posed the question of whether it was possible to generalize the geometry

of those representations.

It turned out that Olmos, Tojeiro and I defined in [GOT04] a minimal k-
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section through a regular point of an isometric action of a compact Lie group

G on a complete Riemannian manifold M as being the smallest connected,

complete, totally geodesic submanifold of M through that point which intersects

all the orbits and such that, at any intersection point with a principal orbit,

its tangent space contains the normal space of that orbit with codimension k.

This is a good definition and uniquely specifies an integer k which we call the

copolarity of the isometric action. It is also obvious that the k = 0 case precisely

corresponds to the polar actions.

It is apparent that for most isometric actions the minimal k-section coincides

with the ambient space. Note that in this case k equals the dimension of a

principal orbit. We say that such isometric actions have trivial copolarity. The

obvious questions that emerge are:

What are the isometric actions with nontrivial copolarity? What is

the meaning of the integer k?

In [GOT04] we examined this problem in the case of orthogonal representations,

and we gave a complete answer to the above questions for the extremal values

of the invariant k. First consider the case k = 1. An irreducible representation

of nontrivial copolarity k = 1 is one of the following orthogonal representations

(n ≥ 2):

SO(2) × Spin(9) (standard) ⊗R (spin)
U(2) × Sp(n) (standard) ⊗C (standard)

SU(2) × Sp(n) (standard)3 ⊗H (standard)

In view of the above discussion of taut irreducible representations, we are lead

to the beautiful characterization of taut irreducible representations as those

irreducible representations admitting k = 0 or k = 1.

The proof of the preceeding classification result is based on a geometric

description of the principal orbits of (not necessarily irreducible) representa-

tions with copolarity k = 1 obtained in [GOT04]. Namely, it was shown that

such an orbit splits extrinsically as a product of a homogeneous isoparametric
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submanifold (which can happen to be just a point) and another homogeneous

submanifold which is either:

• a nonisoparametric curve;

• a focal manifold of a homogeneous irreducible isoparametric submanifold

which is obtained by focalizing a one-dimensional distribution; or

• a codimension 3 nonisoparametric submanifold.

The main tools to obtain this description are the results of Olmos on the normal

holonomy of submanifolds [Olm90, Olm93, Olm94, OS95], that is, the holonomy

of the connection induced on the normal bundle, and the main result of [GT03].

Finally, in regard to large values of k, we mention that it was shown in [GOT04]

that the codimension of a nontrivial minimal k-section of a nonpolar irreducible

representation is at least 3.

7 Concluding remarks

The geometry of the orbits of isometric actions on complete Riemannian man-

ifolds is a classical, yet still fascinating subject. At the cornerstone of this

theory are situated the generalized flag manifolds. They represent to sub-

manifold theory what the Riemannian symmetric spaces represent to intrisic

Riemannian geometry. At the same time, the former are the principal or-

bits of the linear isotropy representations of the latter. The generalized flag

manifolds constitute model spaces in several areas of geometry, topology and

representation theory. Their submanifold properties are abstracted in the con-

cept of an isoparametric submanifold, and their representation-theoretic ones

in the concept of a polar representation. Moreover, from the Morse-theoretic

point of view, they constitute the main body of examples of taut subman-

ifolds of Euclidean space. Their nice properties have been weakened in the

form of the consideration of other broader, classes of submanifolds (e.g. Dupin

submanifolds [Pin85, Pin86], weakly isoparametric submanifolds [Ter87]), or
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generalized to accomodate other ambient spaces (e.g. polar actions on Hilbert

spaces [Ter95], taut submanifolds of Hilbert spaces [TT95], equifocal and taut

submanifolds of symmetric spaces [TT95, TT97], isoparametric submanifolds of

general ambient spaces [HLO00]), or viewed from the point of view of singular

foliations (singular Riemannian foliations with sections [Ale04], submanifolds

with parallel focal structure [Toe04]), to name a few of the ramifications and

connections. The lines of investigation in the near future will probably focus

on pushing further the results about actions on symmetric spaces and infinite

dimensional Hilbert spaces. We also mention that the case of actions of non-

compact Lie groups is still rather poorly understood. Another link is provided

by the complexification of the compact Lie groups, the so called complex re-

ductive linear algebraic groups, acting on complex vector spaces and complex

manifolds, as has already been pointed out in [HW90, PT02, PT03].
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[PT99] Podestà, F., Thorbergsson, G., Polar actions on rank one symmetric

spaces, J. Differential Geom. 53 (1999), 131–175.

[PT02] , Polar and coisotropic actions on Kähler manifolds,

Trans. Amer. Math. Soc. 354 (2002), 1759–1781.

[PT03] , Coisotropic actions on compact homogeneous Kähler mani-

folds, Math. Z. 243, no. 3, (2003), 471–490.

[Ter85] Terng, C.-L., Isoparametric submanifolds and their Coxeter groups,

J. Differential Geom. 21 (1985), 79–107.

[Ter87] , Submanifolds with flat normal bundle, Math. Ann. 277, no. 1,

(1987), 95–111.

[Ter95] , Polar actions on Hilbert space, J. Geom. Anal. 5, no. 1,

(1995), 129–150.

[Tho83] Thorbergsson, G., Dupin hypersurfaces, Bull. London Math. Soc. 15

(1983), 493–498.

[Tho88] , Homogeneous spaces without taut embeddings, Duke Math.

J. 57 (1988), 347–355.

[Tho91] , Isoparametric foliations and their buildings, Ann. of Math.

(2) 133 (1991), 429–446.

[Tho98] , Smooth tight immersions, Jber. d. Dt. Math.-Verein. 100

(1998), 23–35.



182 C. GORODSKI

[Tho00] , A survey on isoparametric hypersurfaces and their general-

izations, Handbook of Differential Geometry, vol. I, ch. 10, Elsevier

Science, 2000.

[Toe04] Toeben, D., Parallel focal structure and singular Riemannian folia-

tions, E-print math. DG/0403050, 2004.

[TT95] Terng, C. L., Thorbergsson, G., Submanifold geometry in symmetric

spaces, J. Differential Geom 42, no. 3, (1995), 665–718.

[TT97] , Taut immersions into complete Riemannian manifolds, Tight

and Taut Submanifolds (T. E. Cecil and S.-S. Chern, eds.), Math. Sci.

Res. Inst. Publ. 32, Cambridge University Press, (1997), 181–228.

Instituto de Matemática e Estat́ıstica
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