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MINIMAL SUBMANIFOLDS IN HIGHER

CODIMENSION

Richard Schoen ∗

1 Introduction

In this series of lectures we will introduce methods for handling problems in Rie-

mannian geometry involving curvature. These methods are especially effective

in handling positive curvature, but they also motivate questions for minimal

submanifolds in euclidean space. The theory of minimal hypersurfaces is par-

ticularly important for positive scalar curvature including questions in General

Relativity (see [25] for a survey of this topic). Much of this paper concerns the

second variation and variational existence questions in arbitrary codimension.

In Section 2 we introduce the basic ideas and consider questions involving

sectional curvature and geodesics. We illustrate how lower estimates on the

Morse index may be combined with existence theory to derive geometric con-

clusions. In addition to the case of closed geodesics and the fixed endpoint

problem we also consider the free boundary problem for geodesics and some of

its consequences.

In Section 3 we consider mainly the case of surfaces in arbitrary manifolds

and show how the conditions of positive complex sectional curvature and PIC

arise naturally from the second variation in complex form. We note that after

these lectures were given, S. Brendle and the author ([4], [5]) were able to show

that PIC is preserved by the Ricci flow and as a consequence to show that pos-

itive pointwise quarter-pinched manifolds are diffeomorphic to spherical space

∗The author was partially supported by NSF grant DMS-0604960.
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forms. The topological sphere theorem was proven under the PIC condition

using minimal surface theory by Micallef and Moore [19]. We describe their

work here.

In Section 4 we consider the variational theory for the volume among la-

grangian surfaces in Kähler and symplectic manifolds. We pose the existence

question for special lagrangian submanifolds of Calabi-Yau manifolds and for

minimal lagrangian submanifolds in Kähler-Einstein manifolds. We describe

some of the known results mainly for two dimensional lagrangian surfaces in

two complex dimensional manifolds.

The author gratefully acknowledges the work of Fernando Marques who

typed an excellent first version of this manuscript from rather sketchy hand-

written transparencies.

2 The variational problems and the 1-dimen-

sional case

Let (Mn, g) be a Riemannian manifold and let Σk ⊂ Mn be a submanifold. We

will denote by D the Levi-Civita connection of M which is characterized by the

conditions

1. DXg = 0;

2. DXY − DY X = [X, Y ];

for any vector fields X, Y . Let 〈R(X, Y )Z, W 〉 be the Riemann curvature tensor,

and

Ric(X, Y ) =

n
∑

i=1

〈R(X, ei)Y, ei〉

be the Ricci tensor, where {e1, . . . , en} is an arbitrary orthonormal frame. The

scalar curvature is then defined by R =
∑n

i=1 Ric(ei, ei).

Let ∇ denote the induced connection on Σ so that

∇XY = (DXY )T
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with (·)T denoting the projection of a vector to the tangent space of Σ. Note

that ∇ is then the Levi-Civita connection of (Σ, g) with respect to the induced

metric. The second fundamental form h of Σ is then given by

h(X, Y ) = (DXY )N .

The mean curvature vector of Σ ⊂ M is defined by

~H = Tr(h) =

k
∑

i=1

h(ei, ei).

Let us now introduce the variational theory for the volume functional. This

is defined through deformations of the submanifold. Let X be a vector field on

the ambient space M , and let Ft be the flow generated by X. Define

δΣ(X) =
d

dt
V ol(Ft(Σ))

∣

∣

∣

t=0
,

δ2Σ(X, X) =
d2

dt2
V ol(Ft(Σ))

∣

∣

∣

t=0
.

The first and second variation formulas express these in terms of the geometry

of Σ and M . Precisely we have

First Variation Formula:

δΣ(X) =

∫

Σ

divΣ(X)dµ,

where

divΣ(X) =
k

∑

i=1

〈Dei
X, ei〉.

Note that if Σ is smooth, we have

divΣ(X) = div(XT ) + 〈Dei
XN , ei〉

= div(XT ) − 〈 ~H, X〉.
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Second Variation Formula:

δ2Σ(X, X)

=

∫

Σ

(

k
∑

i=1

|D⊥
ei
X|2 + divΣ(DXX) −

k
∑

i=1

RM(ei, X, ei, X)

+
(

k
∑

i=1

〈Dei
X, ei〉

)2

−
k

∑

i,j=1

〈Dei
X, ej〉〈Dej

X, ei〉
)

dµ

where (·)⊥ denotes projection to the normal space of Σ. For simplicity, we can

assume that Σ is smooth, XT = 0, and ~H = 0; that is, we are assuming that

Σ is a smooth critical point of the volume and that X is a normal vector field.

The condition that Σ is smooth can be a very serious condition, but under the

assumption that Σ is smooth, there is no loss of generality in taking X to be

normal if it is normal on ∂Σ (or of compact support). In this case we have

δ2Σ(X, X)

=

∫

Σ

(

|D⊥X|2 −
k

∑

i=1

RM(ei, X, ei, X) − |〈h, X〉|2
)

dµ

+

∫

∂Σ

〈DXX, ν〉dσ,

where ν is the outer conormal vector; that is, ν is the outer unit normal vector

to ∂Σ tangent to Σ.

The nature of the Plateau problem depends very much on the class of com-

petitors one allows in the problem. An important aspect of this choice is the

boundary condition that one considers. We discuss here three boundary condi-

tions which commonly arise.

1) Plateau boundary condition:

This is the most classical boundary condition, physically representng the

soap film problem. Let Γk−1 ⊂ Mn be an oriented boundary, and choose Σk to

be a minimum (or critical point) for the volume functional among all Σ0 with

∂Σ0 = Γ. If we assume that Σ is smooth, by the first variation formula we have
∫

Σ

〈X, ~H〉dµ = 0
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for every vector field X satisfying X = 0 on ∂Σ = Γ. Therefore we find that

~H = 0, and Σ is a minimal submanifold. The details of this problem depend

on the class of competing submanifolds; for example, one might require Σ to be

orientable or of a fixed topological type.

2) Homology condition:

Given α ∈ Hk(M, Z), choose Σk to be a minimum (or critical point) for the

volume functional among all integral cycles representing α. The first variation

formula again implies ~H = 0. It is actually possible to solve the homotopy

problem in certain cases, particularly when k = 1, 2.

3) Free boundary condition:

Let N l ⊂ M be a given submanifold. Choose Σk to be a minimum (or

critical point) for the volume functional among all Σ0 with ∂Σ0 ⊂ N . The first

variation formula implies δΣ(X) = 0 for all X with Ft(N) ⊂ N . It follows that

~H = 0 and
∫

∂Σ

〈X, ν〉ds = 0

for all X tangent to N along ∂Σ. Therefore Σ satisfies the free boundary con-

dition ν ⊥ TN .

Morse index and eigenvalues of δ2:

Assume Σ is smooth and compact. If X has compact support and is normal

to Σ, integration by parts yields

δ2Σ(X, X) = −
∫

Σ

〈LX, X〉dµ,

where

LX = ∆⊥X +
k

∑

i=1

RM(ei, X)ei +
∑

i,j

〈hij, X〉hij

is the Jacobi operator (here ∆⊥ denotes the Laplace operator on normal vec-

tor fields with respect to the induced normal connection). This is an elliptic

operator on normal sections which represents the linearization of the nonlinear

operator ~H at Σ.
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The boundary conditions which correspond to the problems above are:

1. Plateau ⇒ Dirichlet;

2. Homology condition ⇒ No boundary condition;

3. Free boundary ⇒ { X tangent to N and (DνX − DXν)TN = 0}

where (·)TN denotes the projection of a vector to the tangent space of N . Each

of these is an elliptic boundary condition and so the spectrum of L is discrete

with the following behavior in all three cases:

λ1 ≤ λ2 ≤ . . . λm → ∞.

Furthermore, there is an L2 orthonormal basis of eigenfunctions. We define the

(Morse) index to be the number of negative eigenvalues counted with multi-

plicity. We say that Σ is stable if the index is zero.

A key result in the application of the variational theory to Riemannian

geometry is a lower bound on the index under suitable geometric conditions.

Geometric Index Estimates :

In this subsection we will assume k = 1.

E1) Bonnet-Myers:

If K(M) ≥ κ > 0 (sectional curvature) and γ is a geodesic with length

L(γ) > π√
κ
, then

Ind(γ) ≥ n − 1.

We should note that this corresponds to a Dirichlet boundary condition. It is

saying that any geodesic which is sufficiently long has to have relatively high

index. If Ric ≥ (n − 1)κ, then one can prove Ind(γ) ≥ 1.

E2) Synge:

Suppose K(M) > 0, n is even, and M is orientable. Then Ind(γ) ≥ 1 for

any closed geodesic γ.
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E3) Frankel:

Let M be compact with nonempty boundary. Suppose K(M) ≥ 0 and the

boundary ∂M is p-convex, for some 1 ≤ p ≤ n− 1. Then any geodesic segment

γ, orthogonal to ∂M at the ends, satisfies

Ind(γ) ≥ n − p

where the index is taken for the free boundary condition relative to N = ∂M .

Recall that ∂M is p-convex if the sum of its lowest p principal curvatures (with

respect to the inner normal) is positive. If p = 1 we say ∂M is convex, while

if p = n − 1 we say that ∂M is mean convex. The proofs of the first two of

these are well known and appear in standard differential geometry texts (see

M. doCarmo [7]). We give the proof of the third.

Proof of E3: Let γ(s), 0 ≤ s ≤ l, be a geodesic segment with γ(0), γ(l) ∈ ∂M ,

and γ′(0), γ′(l) ⊥ ∂M . Given v ∈ Tγ(0)M with 〈v, γ′(0)〉 = 0, we may parallel

transport it along γ to get V (s). Note that V (0), V (l) are tangent to ∂M , since

they are orthogonal to γ. Let V be the (n−1)-dimensional space of such normal

parallel vector fields. Any such vector field is a valid variation, and we have

δ2γ(V, V ) =

∫ l

0

−RM (γ′, V, γ′, V )ds − hγ(l)(V, V ) − hγ(0)(V, V ),

where V ∈ V and h is the second fundamental form of ∂M with respect to

the inner normal. Let {V1, . . . , Vn−1} be an orthonormal basis of V formed by

eigenvectors of the quadratic form δ2γ restricted to V. Assume its eigenvalues

are λ1 ≤ λ2 ≤ · · · ≤ λn−1. Using the curvature condition and the p-convexity

assumption we have

n−1
∑

i=n−p

δ2γ(Vi, Vi) =
n−1
∑

i=n−p

λi < 0.

It follows that λn−p < 0. Therefore δ2γ is negative definite on the span of

V1, . . . , Vn−p, and hence Ind(γ) ≥ n − p.

�
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Remark: The condition K(M) ≥ 0 may be replaced by the requirement
∑p

i=1 R(ei, u, ei, u) ≥ 0 for any unit vector u and any orthonormal set {e1, . . . , ep}
orthogonal to u. If p = n − 1, this is equivalent to requiring Ric(M) ≥ 0.

Role of existence theory: In order to give applications of these index es-

timates we need to combine them with the existence theory. This theory is

relatively standard for k = 1.

Application 1:

i) Suppose M is complete and Ric(M) ≥ (n− 1)κ > 0. Then M is compact

and diam(M) ≤ π√
κ
.

Proof: Let p, q ∈ M . Then there exists a minimizing geodesic γ from p to q.

This geodesic solves the Plateau problem for one-dimensional curves, and its

existence follows from the Hopf-Rinow theorem. Since Ind(γ) = 0, it follows

from (E1) that L(γ) ≤ π√
κ
. Since the points were arbitrary this gives the

estimate on the diameter.

ii) Assume M is simply connected, and 1 < K(M). If inj(M) > π
2
, then M

is a homotopy sphere.

Proof: Let C0(S1, M) denote the space of all continuous maps from the circle

S1 to M . There is a topological result which says that

πp−1(C
0(S1, M)) = πp(M),

for all p ≥ 2. To understand this result one can consider a map from Sp to

M which does not extend to a continuous map of Bp+1. The sphere Sp may

be thought of as being swept out by a family of circles parametrized on Sp−1

(think of the case p = 2). Mapping this into M then gives a map from πp(M)

to πp−1(C
0(S1, M)) which turns out to be an isomorphism.

Since inj(M) > π
2
, any closed geodesic γ satisfies L(γ) > π. It follows from

(E1) that Ind(γ) ≥ n− 1. We also have that, if πp(M) 6= 0, then there exists a

closed geodesic γ with Ind(γ) ≤ p − 1. Therefore we must have p ≥ n. Hence



MINIMAL SUBMANIFOLDS IN HIGHER CODIMENSION 177

π1(M) = · · · = πn−1(M) = 0, and M is a homotopy sphere.

Remark: The bound assumed on the injectivity radius was proven under the

assumption of 1/4-pinched curvature by W. Klingenberg (see [7] for discussion).

That is, under the assumption that 1 < K(M) ≤ 4 it was shown that inj(M) >

π
2
. This was the main step in the proof of the topological sphere theorem.

Application 2:

Suppose Mn is compact, orientable, with K(M) > 0. If n is even, then M

is simply connected.

Proof: This is an application of the variational theory. We will argue by

contradiction. Suppose π1(M) 6= 0, then there exists a closed geodesic γc min-

imizing length in every nontrivial free homotopy class c ∈ π1(M). Therefore

Ind(γc) = 0, which is in contradiction with (E2).

Application 3:

Let (M, ∂M) be compact, K(M) ≥ 0, so that ∂M is p-convex. Then

πi(M, ∂M) = 0 for all 1 ≤ i ≤ n − p. (see Lawson [13] for an application

of the case p=n-1 , Mercuri-Noronha [17], and J.Sha [27], H.Wu [30]).

Proof: We will use the following existence theorem which is analogous to the

one above: if πi(M, ∂M) 6= 0, then there exists a geodesic arc γ with end points

on ∂M of index (for the free boundary problem) at most i − 1. It follows from

(E3) that n − p ≤ i − 1. Hence πi(M, ∂M) = 0 for all 1 ≤ i ≤ n − p.

The third application used an existence theorem which is not completely

standard. We now state that result.

Theorem 2.1. If i ≥ 2, and α ∈ πi−1

(

C0([0, 1], (M, ∂M))
)

, then

L = inf
f∈α

max{L(f(t) ∩ int(M)) : t ∈ Si−1}

is a critical value which is realized by a union γ1∪· · ·∪γs of geodesic arcs in M

with free boundary condition at ∂M and with total (free) index at most i − 1.
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Remark: In the previous theorem, easy examples show that we must allow

competing curves to have segments lying inside ∂M , but we only count length

interior to M (thus we think of the metric being zero on ∂M). If we instead

count the total length, we have an “obstacle” problem and critical curves would

not satisfy a free boundary condition, but instead would meet ∂M tangentially

and would contain segments in ∂M .

Problem: Generalize the previous theorem to submanifolds of higher dimen-

sion. For example the critical points for the area functional in π2(M, ∂M) should

be represented by genus 0 minimal surfaces with free boundary condition. The

work of F. Almgren [1] gives a very general setting for this problem.

Index estimates in special manifolds:

We now digress to discuss index estimates which have been obtained for

special ambient manifolds using the geometry of the ambient space. In a fa-

mous paper of the late 60’s, J. Simons [28] considered minimal submanifolds in

manifolds with some special structure. He proved that if Σk ⊂ Sn is a minimal

submanifold, then Ind(Σ) ≥ 1. If Σk ⊂ CP n is stable (Ind(Σ) = 0), then Σ is

holomorphic (or anti-holomorphic). There is a generalization by Lawson-Simons

[14] which allows singular Σ.

The idea of the proofs of these theorems is to make use of special ambient

vector fields. For instance, if Σk ⊂ Sn ⊂ Rn+1, one considers the tangential

projections E1, . . . , En+1 to Sn of an orthonormal basis e1, . . . , en+1 for Rn+1.

Then, after some computation one proves that

n+1
∑

i=1

δ2Σ(Ei, Ei) < 0,

which implies Ind(Σ) ≥ 1.

Extensions to free boundary problem:

There is an extension of this idea to the free boundary problem by A. Fraser

[8] in case the manifold is the standard ball and k ≥ 1. Moore and Schulte [22]
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used a similar idea in the case k = 2 for much more general M . It was observed

by Fraser [10] that their result can easily be generalized to arbitrary k. We

describe that result here.

Theorem 2.2. Let Ω be a smooth bounded domain in Rn and let Σk ⊂ Ω ⊂ Rn

be a minimal submanifold satisfying the free boundary condition. If ∂Ω is p-

convex, and k ≤ n − p, then Ind(Σ) ≥ 1.

Proof: Let e1, . . . , en be an orthonormal basis for Rn and let Vi = e⊥i be the

projection normal to Σ. Since the Vi are perpendicular to Σ they are tangential

to ∂Ω and hence are valid variations for the free boundary problem. We then

have

δ2Σ(Vi, Vi) =

∫

Σ

(|D⊥Vi|2 − |DT Vi|2) dµ −
∫

∂Σ

h∂Ω(Vi, Vi) dσ

where h∂Ω denotes the second fundamental form of ∂Ω with respect to the

inner unit normal. Since
∑n

i=1 |D⊥Vi|2 and
∑n

i=1 |DT Vi|2 are independent of

the orthonormal basis e1, . . . , en, we may assume that e1, . . . , ek are tangent to

Σ at a point. If v1, . . . , vk form a local tangent orthonormal basis near this point

with vi = ei at the point, we have Vi = ei −
∑k

α=1(ei · vα)vα and

DVi = −
k

∑

α=1

[(ei · D⊥vα)vα + (ei · vα)D⊥vα]

at the point. It follows that at the point

∑

i

|D⊥Vi|2 = |hΣ|2,
∑

i

|DT Vi|2 = |hΣ|2.

The trace then reduces to a boundary term:

n
∑

i=1

δ2Σ(Vi, Vi) = −
∫

∂Σ

n
∑

i=1

h∂Ω(Vi, Vi)dσ.

Since
∑n

i=1 h∂Ω(Vi, Vi) does not depend on the basis, we may assume e1, . . . , en−k

are orthogonal to Σ at a point. Thus Vi = 0 for i = n− k + 1, . . . , n at a point.
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If n − k ≥ p, it follows from p-convexity that
∑n−k

i=1 h∂Ω(ei, ei) > 0. Thus we

have
∑n

i=1 δ2Σ(Vi, Vi) < 0 and Ind(Σ) ≥ 1 if k ≤ n − p.

�

Remarks: 1) This result should extend to singular Σ (integral currents), and

as a consequence of the work of Almgren [1] it implies Hk(Ω, ∂Ω, Z) = 0 for all

1 ≤ k ≤ n − p. This was done in the case of Bn in [8].

2) We remark that Mercuri-Noronha [17] obtained these topological conclu-

sions by other methods (Morse theory for height functions).

3 Two dimensional surfaces in arbitrary codi-

mension

We now discuss methods which are special to the case k = 2. Recall that if

Σ is oriented then the induced metric on Σ determines a complex structure

on Σ making it into a Riemann surface. It is natural to exploit this special

structure by complexifying the second variation quadratic form. We will denote

by T CM the complexification of TM . We can extend the notions of inner

product 〈X, Y 〉 and curvature R(X, Y, Z, W ) so that they are complex linear in

each slot. Given X, Y satisfying 〈X, Y 〉 = 0, 〈X, X〉 = 〈Y, Y 〉 = 1, the complex

sectional curvature of the plane spanned by X, Y is defined by

K(X, Y ) = R(X, Y, X, Y ) ∈ R.

We say that X ∈ T C

p M is isotropic if 〈X, X〉 = 0. Equivalently, X is isotropic

if and only if 〈ReX, ImX〉 = 0 and |ReX|2 = |ImX|2. A 2-plane π is isotropic

if all vectors in it are isotropic. An isotropic plane Π is determined by an

orthonormal set {e1, e2, e3, e4} of real vectors, where

Π = span{e1 + ie2, e3 + ie4}.

The complexification leads to two distinct positivity conditions. We say that

M has positive complex sectional curvatures if the curvature of each complex
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plane is positive at all points of M . A more important and weaker condition

is the PIC condition. We say that M has positive isotropic curvature (PIC) if

K(Π) > 0 for every isotropic 2-plane Π. An important special case is when

K(Π) ≥ κ > 0.

The complex sectional curvature comes out naturally in the stability analysis

for surfaces as we describe below. The relation between complex or isotropic

curvature and surfaces is analogous to the relation between sectional curvature

and geodesics. In real terms the PIC condition says that for any orthonormal

four-frame {e1, e2, e3, e4} we have the inequality

R1313 + R1414 + R2323 + R2424 − 2 R1234 > 0.

The PIC condition was defined by M. Micallef and J.D. Moore [19] and used

to prove a strong generalization of the topological sphere theorem. Here are a

few facts to illustrate the importance of the PIC condition. The first two of

these are done in [19].

1. Positive pointwise 1
4
-pinched curvature (0 < κ(p) < Kp(M) ≤ 4κ(p) for

some positive and continuous function κ on M) ⇒ PIC;

2. Positive curvature operator (acting on 2-forms) ⇒ PIC;

3. PIC manifolds can have large fundamental group: M1,M2 have PIC met-

rics ⇒ M1#M2 has a PIC metric (see [20]).

Example (M. Micallef, M. Wang [20]): The manifolds (Sn−1×S1)# · · ·#(Sn−1×
S1) all have (PIC) metrics.

It is a natural question to classify the manifolds which admit PIC metrics.

There are no obstructions in dimensions 2 and 3 since in these dimensions every

Riemannian metric is PIC. In dimension 4, there is a partial classification due

to R. Hamilton [12] which uses the Ricci flow. One might conjecture that any

compact PIC manifold is finitely covered by a manifold which is diffeomorphic

to a connected sum of copies of Sn−1 × S1.
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Let us now return to minimal surfaces and index estimates. The idea here

is to prove results which are analogous to the ones for geodesics. It turns out

the diameter is not the right thing to estimate. The following conjecture is an

analogue to the theorem of Bonnet-Myers.

Conjecture E1’: Suppose Σ2 is a stable minimal disk in M with K(π) ≥ κ > 0

for all isotropic planes π. Then there is a constant c depending only on n such

that

d(x, ∂Σ) ≤ c√
κ
,

for every x ∈ Σ.

The following theorem is an analogue of E2 for geodesics.

Theorem 3.1. (Micallef-Moore) Let Mn be a (PIC) manifold, and suppose

Σ2 ⊂ M is a minimal surface diffeomorphic to S2. Then

Ind(Σ) ≥ [
n − 2

2
]

where [x] denotes the greatest integer less than or equal to x.

Proof: (Outline) In the case of geodesics we used parallel vector fields in an

essential way. For k ≥ 2 there will not exist any such normal vector fields

in general. The idea for k = 2 is to use “holomorphic” variations in place of

parallel ones.

First we complexify the quadratic form δ2Σ. If X is a complex normal vector

field, then

δ2Σ(X, X) = δ2Σ(ReX, ReX) + δ2Σ(ImX, ImX)

which is simply the sum of the second variation for two real variations.

Assume Σ2 is orientable and choose a complex structure on Σ such that

u : Σ → M is conformal. Then write the normal covariant derivative D⊥X =

∂⊥X + ∂
⊥
X in terms of its (1, 0) and (0, 1) parts. Integrate by parts to get rid
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of the |∂⊥X|2 term and we obtain (see [19] for details)

δ2Σ(X, X) = −
∫

Σ

(

R(X,
∂u

∂z
, X,

∂u

∂z
) + |DT

∂
∂z

X|2 − |D⊥
∂
∂z

X|2
)

dxdy,

where X is a complex normal vector field.

Now we want to solve the Cauchy-Riemann equations D⊥
∂
∂z

X = 0. Since the

almost complex structure defined by the normal connection is integrable over

a surface, we may think of the complexified normal bundle as a holomorphic

(n − 2)-plane bundle E over the Riemann surface Σ. In the case that Σ ≈ S2,

it follows that E =
⊕n−2

j=1 Ej, where E1, . . . , En−2 are line bundles. The first

Chern class c1(Ej) is nonnegative if and only if Ej admits a holomorphic section.

Since E∗ ≈ E (using the pairing 〈, 〉), it follows that at least half of Ej satisfy

c1(Ej) ≥ 0.

Note that if X1, X2 are holomorphic, then 〈X1, X2〉 = const since it is a

holomorphic function on Σ.

By linear algebra there exists an isotropic space of dimension at least p =

[n−2
2

] consisting of holomorphic sections. For each vector X in this space, either

the real or the imaginary part of X has δ2Σ < 0. It follows that there exists

a p-dimensional space of real deformations on which δ2Σ < 0. We have thus

proved Ind(Σ) ≥ [n−2
2

].

�

It is now natural to ask what happens for genus(Σ) ≥ 1. The following

example shows that the same result is no longer true.

Example: The product metric on RP 3 × S1 is PIC, and since RP 3 has a

minimizing closed geodesic, it follows that this geodesic crossed with the S1

factor is a stable minimal torus. Thus PIC manifolds may contain minimal tori

T 2 with Ind(T 2) = 0.

We have the following theorem, due to A. Fraser [9] in the genus 1 case, and

to Fraser-Wolfson [11] if genus(Σ) > 1.

Theorem 3.2. If Σ is a minimal surface in a PIC manifold Mn with genus(Σ) ≥
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1, then a finite cover of Σ is unstable; that is, there is a finite cover Σ̂ with

Ind(Σ̂) ≥ 1.

Proof: (Outline) Construct a finite cover Σ̂ and a map F : Σ̂ → S2 with

|dF | < ε, ε small. Consider the holomorphic vector bundle E → Σ̂ arising from

the complexified normal bundle, and let ξ = F ∗(ξ0), where ξ0 is a sufficiently

positive line bundle over S2.

Consider E ⊗ ξ and apply Riemann-Roch to find a holomorphic section X1.

Apply a controlled element l ∈ ξ∗ to get a section X = l(X1) which is “almost

holomorphic” in the sense that

∫

Σ̂

|D⊥
∂
∂z

X|2dxdy < ε1

∫

Σ̂

|X|2dµ.

Since M is PIC, it then follows from the second variation formula that Ind(Σ̂) ≥
1 since either the real or imaginary part of X1 yields negative second variation

for ε1 sufficiently small.

�

E3’. Free boundary problem. The following result of [10] gives the same

estimate as in the Micallef-Moore theorem.

Theorem 3.3. Let Σ2 ⊂ Ω be a minimal surface topologically equivalent to the

unit disk such that ∂Σ ⊂ ∂Ω. If ∂Ω is 2-convex and Ω has nonnegative isotropic

curvature , then

Ind(Σ) ≥ [
n − 2

2
].

The following result of [10] gives a better estimate (sharp in Rn), although

under a less interesting geometric condition.

Theorem 3.4. Let Σ ⊂ Ω be as in the previous theorem. If ∂Ω is p-convex and

Ω has nonnegative complex sectional curvature, then

Ind(Σ) ≥ n − p − 1.
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There is a key new ingredient which is used in the proofs of these theorems

to handle the boundary condition. The classical Riemann-Hilbert boundary

value problem concerns holomorphic functions in the disk which are real on the

boundary. As a vector-valued generalization of this it is shown in [8] that there

is an (n − 2)-dimensional space of holomorphic sections which are real on ∂Σ.

We may choose a basis V1, . . . , Vn−2 such that Vj

∣

∣

∣

∂Σ
, 1 ≤ j ≤ n − 2, form an

orthonormal basis for (TΣ)⊥ at each point of ∂Σ. The reason this is possible is

that (Vi, Vj) is constant, since it is a holomorphic function real on the boundary.

The existence result then follows from taking linear combinations.

Remark. It is not known whether the Micallef-Moore index estimate or The-

orem 3.3 is sharp in the PIC case.

Existence Theory and Applications

We will now discuss how index estimates imply geometric and topological

conclusions. The next result is the main application of the Micallef-Moore

theorem.

Theorem 3.5 (Micallef-Moore). Let Mn be a compact PIC manifold. Then

πi(M) = 0

for all i = 2, . . . , [n
2
].

Corollary 3.6. Let Mn be a simply connected compact PIC manifold. Then

Mn is a homotopy sphere.

Note that this implies M is homeomorphic to Sn if n ≥ 4.

Proof: First

πi(M) ≈ πi−2

(

C0(S2, M)
)

for i ≥ 2 by similar reasoning as in the S1 case.

It follows from an important paper on existence theory due to Sacks and

Uhlenbeck [24] that if πi(M) 6= 0, then there exists a minimal sphere Σ2 with
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Ind(Σ) ≤ i−2. Hence [n
2
]−1 ≤ i−2 or i ≥ [n

2
]+1. This shows that πi(M) = 0

for i ≤ [n
2
] as claimed.

�

Results on the topology of PIC manifolds.

The next two conjectures are based on the known examples and results in the

n = 4 case as well as results on the fundamental group which we will describe.

Conjecture 1: If Mn is a compact PIC manifold, then a finite covering M̂ of

M is diffeomeorphic either to Sn or to a connected sum of copies of Sn−1 × S1.

Conjecture 2: If Mn is a compact PIC manifold with infinite fundamental

group, then π1(M) is “virtually free” in the sense that there exists a free sub-

group of finite index in π1(M).

The following result supports Conjecture 2.

Theorem 3.7. ([9], [11]) π1(M) does not contain any surface group; that is a

subgroup isomorphic to the fundamental group of a surface of genus at least 1.

Proof: If Σ → M induces an injective homomorphism on π1, then we can make

Σ minimal. Arrange a covering

Σ̂ → M̂ → M

which is stable and with F : Σ̂ → S2, |dF | < ε. The argument given above

then implies that Σ̂ is unstable, a contradiction.

�

The next application of [10] is parallel to the Micallef-Moore theorem.

Theorem 3.8. Suppose (M, ∂M) is compact, PIC, with ∂M 2-convex. Then

πi(M, ∂M) = 0 for i = 2, . . . , [n
2
].

Corollary 3.9. If π1(M) = π1(M, ∂M) = {1}, then M is contractible.
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Proof: Fraser [8] extended Sacks and Uhlenbeck’s existence result to 2-convex

domains (∂M is a barrier for two-dimensional minimal surfaces) for relative

homotopy

πi(M, ∂M) = πi−2

(

C((D, ∂D), (M, ∂M))
)

.

If πi 6= 0 then there exists Σ either a compact minimal sphere or a minimal disk

with free boundary condition and such that Ind(Σ) ≤ i− 2. The result follows

then from respectively the Micallef-Moore or the Fraser index estimate.

�

Stability of coverings.

The ideas developed above suggest a more general question about stability

which we now briefly discuss.

Question: If Σk ⊂ Mn is stable and Σ̂ → Σ is a covering (either in M or in a

covering M̂), is Σ̂ stable?

The answer is no, not always. A counterexample is given by a geodesic

S1 ⊂ RP 2 of least length, which lifts to an equator of S2. There are two

general classes for which the result does hold:

1) If Σn−1 ⊂ Mn is a 2-sided hypersurface, the Jacobi operator L is a scalar

operator and stability is equivalent to the existence of u > 0 with L(u) ≤ 0.

These functions can be lifted to coverings, and therefore stability is preserved

under coverings.

2) If Σ is calibrated, then Σ̂ is calibrated. Recall that a k-form θ is a

calibration if dθ = 0 and |θp(ξp)| ≤ 1 for every simple k-vector ξp with |ξp| = 1.

The submanifold Σk is calibrated by θ if θ
∣

∣

∣

Σ
is the volume form. The basic

theorem of calibrations is the following.

Theorem 3.10. If Σ is calibrated, then Σ minimizes volume for its boundary

and relative homology class.

Proof: If ∂Σ = ∂Σ1 and Σ − Σ1 = ∂T k+1, then Stokes theorem implies
∫

Σ

θ =

∫

Σ1

θ,
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since dθ = 0.

The inequality V ol(Σ) ≤ V ol(Σ1) follows from the definition of calibrations.

�

Generally we will say that a minimal submanifold Σ is covering stable if Σ as

well as any covering Σ̂ is stable. The results described above for PIC manifolds

may be reformulated to say that there is no compact covering stable minimal

surface in a PIC manifold.

Conjectures:

1) If Σ2 ⊂ Rn is complete, of finite total curvature, and covering stable, then

Σ is holomorphic with respect to a constant complex structure J on R2p such

that Σ ⊂ R2p ⊂ Rn.

Remark. Under the assumption of stability, this is true if genus(Σ) = 0. It is

also true in dimension 4 ( see Micallef [18]), but there is a counterexample of

genus(Σ) = 1 in dimension 21 due to Arezzo, Micallef, and Pirola [3].

2) Let Σ2 ⊂ T n, flat. If Σ is compact, oriented, covering stable, then Σ is

holomorphic for a constant complex structure on T 2p, where Σ ⊂ T 2p ⊂ T n.

Remark. This is true if n = 4 (Micallef [18]) and false with only the assumption

of stability in high dimensions [2].

Theorems such as the above play a role analogous to the Bernstein Theorem

in codimension 1. Note the parallel between these conjectures and results with

those described for PIC manifolds. Micallef’s result for genus(Σ) = 0 uses a

very similar argument as that in [19].

4 Lagrangian submanifolds

Let g be a Riemannian metric on M 2n, and let J : TM → TM be a linear

endomorphism satisfying J2 = −id and g(JX, JY ) = g(X, Y ). In this case we
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say that (M 2n, g, J) is an almost Hermitian manifold. We can define a 2-form

ω by ω(X, Y ) = g(X, JY ), and we say the manifold is almost Kähler if dω = 0.

The manifold is Kähler if DJ = 0, where D denotes the Levi-Civita connection.

Flat case: An example of a Kähler manifold is given by the Euclidean space

(R2n, g, J) with

g = dx2
1 + · · ·+ dx2

n + dy2
1 + · · ·+ dy2

n,

J(
∂

∂xi

) =
∂

∂yi

,

J(
∂

∂yi

) = − ∂

∂xi

,

where (x1, . . . , xn, y1, . . . , yn) denote standard coordinates on R2n. In this ex-

ample ω =
∑n

j=1 dxj ∧ dyj is the standard symplectic form.

Definition: A submanifold Σn ⊂ M2n is Lagrangian if ω
∣

∣

∣

Σ
≡ 0.

This is equivalent to the condition J(TxΣ) = (TxΣ)⊥ for all x ∈ Σ, so that

the tangent space is canonically isometric to the normal space.

Local Description: Assume that Σ is given as a graph yj = Fj(x). It then

follows that Σ is Lagrangian if and only if
∑

j Fjdxj is a closed 1-form. This

is equivalent to saying that locally there exists a potential function u(x) such

that Σ is described by yj = ∂u
∂xj

.

Variational Problem: Seek lagrangian submanifolds which minimize volume

among “all” lagrangian competitors which have the same boundary, or which

agree outside a compact set. The Euler-Lagrange equation for this problem can

be described as follows. If Σ is a graph y = ∂u
∂x

over Ω ⊂ Rn, and we look at

the variational problem with respect to a Dirichlet boundary condition, then

we have

|Σu| ≤ |Σv| if ∇u = ∇v on ∂Ω,

where Σv = graph(∇v). Since |Σu| =
∫

Ω

√

det(gij)dx, and gij = δij +
∑

k uikukj,
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the relation
d

dt
|Σu+th|

∣

∣

∣

t=0
= 0 ∀h ∈ C∞

c (Ω)

is equivalent to the fourth order equation of bi-harmonic type

n
∑

j=1

(

∆g(
∂u

∂xj
)
)

xj
= 0. (1)

The boundary condition corresponds to specifying ∇u on ∂Ω.

Hamiltonian stationary equation: Let h(x, y) be of compact support, and

Xh = J(∇h) be its Hamiltonian gradient. Note that in the Euclidean space

Xh =
∑

i hxi
∂

∂yi
− hyi

∂
∂xi

. The vector field Xh generates a flow Ft through

symplectic maps (F ∗
t ω = ω), so that Ft(Σ) is Lagrangian if Σ is Lagrangian. In

particular, this implies the Lagrangian condition has a huge amount of flexibility

(infinite dimensional space of deformations). The equation (1) holds if and only

if Σ is stationary for all hamiltonian deformations. We may use this formulation

to remove the graphical restriction in the Euler-Lagrange equation.

Important fact: If M 2n is Kähler-Einstein, the Euler-Lagrange equation as-

sumes a nice global form. In this case the mean curvature vector ~H is itself

Hamiltonian. More precisely, ~H = J(∇β) for a multi-valued hamiltonian func-

tion β. If Xh = J∇h, then

d

dt
|Σt|

∣

∣

∣

t=0
= −

∫

Σ

〈 ~H, Xh〉 dv

= −
∫

Σ

〈dβ, dh〉 dv.

Therefore the equation (1) reduces to ∆β = 0, which is equivalent to the

3rd order system

dσH = 0,

δσH = 0,

where σH = ~Hbω is the 1-form on Σ associated with the mean curvature vector

field.



MINIMAL SUBMANIFOLDS IN HIGHER CODIMENSION 191

A Lagrangian submanifold Σn ⊂ R2n is Hamiltonian stationary if and only

if ∆β = 0, where dz
∣

∣

∣

Σ
= e−iβdvolΣ and dz = dz1 ∧ · · · ∧ dzn. In the particular

case n = 1, we see that the angle function β satisfies d2β

ds2 = 0, where s denotes

the arclength. Therefore the only Hamiltonian stationary curves are the lines

and circles. This example shows that Hamiltonian stationary submanifolds are

not necessarily minimal. In the two dimensional case the hamiltonian stationary

equations have been shown to be an integrable system and there has been lots of

interesting work done from that point of view. We will not treat that direction

in this paper.

In special ambient manifolds there are special classes of hamiltonian station-

ary submanifolds which are of particular interest. The first of these is the class

of minimal lagrangian submanifolds. These satisfy the equations ~H = 0 and Σ

is lagrangian. These submanifolds exist generally in Kähler-Einstein manifolds.

In a Calabi-Yau manifold this problem is particularly natural. Recall that

a Calabi-Yau manifold has trivial canonical bundle and hence carries a parallel

(n, 0)-form α0. The minimal lagrangian condition is then equivalent to the equa-

tion α0

∣

∣

∣

Σ
= eiθdv, where θ is a constant called the phase. This is also equivalent

to the fact that Re(e−iθα0) “calibrates” Σ or that Σ is special Lagrangian for a

suitable choice of the canonical form α.

Main Goal: Develop existence theory for minimal and special lagrangian sub-

manifolds.

There are several reasons why this would be an important thing to do in-

cluding the following:

1) To better understand the SYZ proposal (mirror symmetry, construction

of a geometric mirror manifold to a Calabi-Yau).

2) To construct very rigid canonical class of representatives for a “hopefully”

large part of the homology of Kähler-Einstein manifolds.

3) The methods should be important; for example, we hope that variational

methods can be used to construct other classes of calibrated submanifolds (e.g.

holomorphic).
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We have the following result which asserts that a sufficiently smooth mini-

mizer among lagrangian competitors will in fact be minimal.

Proposition 4.1. If Σ is a smooth lagrangian submanifold of Kähler-Einstein

M which is stationary for lagrangian variations, then Σ is minimal.

Proof: The mean curvature vector H = J∇β is locally hamiltonian so mean

curvature deformation preserves the lagrangian condition and reduces volume

unless ~H = 0.

�

There is a nice global picture behind the above result. Let L denote the

subspace of lagrangian submanifolds in the space S of submanifolds in a given

homology class and of volume bounded above by V0. The mean curvature flow

provides a vector field H tangent to L. The idea is to take completions (e.g.

integral currents) L ⊂ S, and observe that the elements Σ ∈ L are weakly

lagrangian. We can carry out this completion process and prove the following.

Proposition 4.2. There exists a volume minimizer in L. This minimizer is

an integral current which is lagrangian in the sense that its tangent planes are

almost surely lagrangian planes.

A key question which appears to be very difficult is the following. Can H
be defined on L such that L is preserved under the flow? Making such an

extension would show that a minimizing lagrangian current would necessarily

be stationary for volume among all deformations.

There are some specific results for n = 2 ([26]); that is, the ambient manifold

is a Kähler 4-manifold (M 4, g, J). Even in this case we do not have a complete

understanding of when our lagrangian minimizers are actually minimal. We do

have an existence and regularity theory for the problem of least area lagrangian

surfaces. We describe the results of [26] beginning with two general results.

Proposition 4.3. A homology class σ ∈ H2(M, Z) has a piecewise smooth

Lagrangian representative Σ if and only if ω(σ) =
∫

σ
ω = 0.
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Proposition 4.4. A homology class σ ∈ H2(M, Z) has a smoothly immersed

Lagrangian representative if and only if ω(σ) = 0 and c1(σ) = 0, where c1

denotes the first Chern class.

Geometrically, c1(σ) =
∫

σ
ρ, where ρ is the Ricci 2-form (ρ

∣

∣

∣

Σ
= dσH). If

M is Kähler-Einstein, then ρ = cω, so ω(σ) = 0 and c1(σ) = 0 are the same

condition.

Corollary 4.5. If ω(σ) = 0 and c1(σ) 6= 0, then a least area Lagrangian Σ ∈ σ

must be singular (worse than branch points).

Before presenting the general existence theory we describe the singularities

which arise in this problem. Let γ ⊂ S3 be a curve and C(γ) ⊂ R4 be the cone

over γ. When is C(γ) hamiltonian stationary?

To answer this question, let π : S3 → S2 be the Hopf map, π(z1, z2) = z1

z2

∈
P1 ≈ S2. Then π−1(x) is a great circle (eiθz1, e

iθz2), 0 ≤ θ ≤ 2π.

1) The cone C(γ) is lagrangian if and only if γ ⊂ S3 is legendrian, i.e.,

γ′ ⊥ Hopf circle eiθγ;

2) For a closed curve γ, the cone C(γ) is hamiltonian stationary if π(γ) is a

round circle in S2 dividing S2 into rationally related areas A1

A2

∈ Q. Conversely,

any such circle is π(γ) for some closed curve γ. The interesting case is when

π(γ) is not a great circle.

Formula: Given p, q ∈ Z+ relatively prime ((p, q) = 1), define

γ(θ) =
1√

p + q

(√
qeipθ, i

√
pe−iqθ

)

,

0 ≤ θ ≤ 2π.

Then C(γ) is hamiltonian stationary, thus dz1 ∧ dz2

∣

∣

∣

C
= eiβdv, where ∆β =

0.

Remark: The 1-form dβ represents the Maslov class and it is a hamiltonian

isotopy invariant.

In our case we have

β = (p − q)θ.
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Thus any curve on C(γ) which winds once around the origin in the positive

direction has Maslov index given by p − q. Since we are only interested in

volume minimizing cones, we should ask whether C(γ) is minimizing. This

question can be posed as follows. Is it true that

|C(γ) ∩ B1(0)| ≤ |Σ|

for any Lagrangian disk Σ with ∂Σ = γ?

A partial answer to this question is given by the following result from [26].

Proposition 4.6. If |p − q| > 1, then there exists h ∈ C∞
c (R4 \ {0}) which

generates a hamiltonian deformation Ft such that |Ft(Σ)| < |Σ| − ct2 for small

t, c > 0.

This is an instability result whose proof relies on a careful analysis of the

Jacobi operator. The idea is to look for hamiltonians of the form h(r, θ) =

f(r) sin(mθ) and study the second variation of area (fourth order Jacobi oper-

ator). Unfortunately that same analysis also shows the following.

Corollary 4.7. If |p− q| = 1 (primitive case), then C(γ) is stable for hamilto-

nian deformations with compact support in R4 \ {0}.

This result shows that the mean curvature deformation does not work to

reduce area for C(γ). We now state the general existence and regularity result

of [26].

Theorem 4.8. Let Σ ∈ σ ∈ H2(M, Z) be a lagrangian area minimizing surface

(image of a map). Then Σ is a smooth immersion away from a finite set of

points {P1, . . . , Pk, Q1, . . . , Ql} (the map is globally Lipschitz) such that:

1. Pj are branch points (mean curvature goes to zero at Pj);

2. Qj are nonflat singular points with tangent cone (unitarily equivalent to

one of those described above) of nonzero Maslov index Ind(Qj) ∈ Z.
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In fact Ind(Qj) = ±1. Moreover,

l
∑

j=1

Ind(Qj) =
1

2
c1(σ).

Corollary 4.9. At least one of the cones is minimizing.

Proof: If we choose a homology class σ so that ω(σ) = 0 and c1(σ) 6= 0, then

any lagrangian minimizer in the class would have to have at least one singular

point with a nonflat tangent cone. The tangent cone at such a point Qj would

then have to be minimizing.

�

Open Question: There are infinitely many cones with |p − q| = 1. Which of

them are minimizing?

A general unresolved question in this subject is the question of when a

lagrangian minimizer is actually minimal. Some observations on this follow:

1) If M is Kähler-Einstein, then
∑l

j=1 Ind(Qj) = 0.

2) The condition ~H = 0 is equivalent to l = 0, i.e, there are no Qj’s.

3) In general for M 4 Kähler and Ricci flat there exists a Lagrangian class σ

for which any Lagrangian minimizer is not minimal (see Micallef-Wolfson [21]).

The following theorem holds in the case n = 2 and is a deformation result

for singular special lagrangian surfaces.

Theorem 4.10. Consider a family ωt of Calabi-Yau Kähler forms on M 4.

Assume ωt(σ) = 0 and for t = 0 there is a connected minimal lagrangian

representative of σ. Then a least area lagrangian representative of σ is minimal

for small t.

The following conjecture would be a breakthrough on the problem in case

n ≥ 3.

Conjecture: The theorem above holds for M 2n with n ≥ 3.
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Finally we mention other methods which have been successful in construct-

ing special lagrangian submanifolds, or which have potential to attack the ex-

istence question.

Gluing Theorems:

1) A. Butscher [6]: Given Σ1, Σ2 intersecting transversally, find Σε special

Lagrangian Σε → Σ1 + Σ2. The idea is to introduce a small neck (local model

constructed by Lawlor) of size ε, and to construct a special lagrangian subman-

ifold Σε which is topologically Σ1#Σ2 and geometrically resembles Σ1 and Σ2

joined by a neck of size ε.

2) Y. Lee [16]: For n = 2, 3, given a connected smooth immersed special

lagrangian Σn ⊂ M2n with transverse self-intersections, there is an embedded

Σε ⊂ M special lagrangian which approximates Σ away from the self intersection

points and in which each self intersection is replaced by a neck of approximate

size ε.

3) D. Lee [15]: Given Σ1, Σ2 ⊂ (M, ω) such that Σ1 ∩ Σ2 consists of a finite

set of points at which the intersection is transverse, there exist ωε, Σε such that

ωε ≈ ω and Σε ≈ Σ1 ∪ Σ2 in the sense described above, where Σε is special

lagrangian with respect ωε.

Corollary 4.11. ([15]) Any flat complex torus can be perturbed by an arbitrarily

small amount to a new flat complex flat torus which contains nonflat special

lagrangian submanifolds.

Mean Curvature Flow:

We close with a very brief mention of the mean curvature flow which also

provides a plausible approach to construction of special lagrangian submani-

folds. The flow is given by:

∂X

∂t
= ~H

X(0) = Σ0

where Xt is an embedding whose image is Σt. The fact that the mean curvature
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vector is hamiltonian implies that if Σ0 is a smooth lagrangian submanifold,

then Σt is smooth and lagrangian for small t

Various conjectures on the long time existence and convergence of mean

curvature flow are given in the paper of Thomas-Yau [29]. Several types of

counterexamples to natural conjectures are given by A. Neves [23]. For mean

curvature flow the basic problems are to understand what type of singularities

can occur and what happens for large values of t and as t → ∞?
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