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UPPER SEMICONTINUITY OF ATTRACTORS FOR

THE DISCRETIZATION OF STRONGLY DAMPED

WAVE EQUATIONS

S. M. Bruschi∗, A. N. Carvalho†

Abstract

In this paper we prove the upper semicontinuity of attractors for the
discretization of damped hyperbolic problems of the form

utt + 2ηΛ
1
2 ut + 2aut + Λu = f(u)

with D(Λ) = {u ∈ H2(0, 1) : ux(0) = ux(1) = 0}, Λ : D(Λ) ⊂ X → X,
Λu = −uxx + δu, δ > 0, a > 0, η ≥ 0 as the discretization step goes to
zero.

1 Introduction

For each η > 0, we consider the strongly damped wave equation

utt + 2η Λ1/2ut + 2a ut = −Λu + f(u), 0 < x < 1, t > 0
ux(0) = ux(1) = 0, t > 0,

(1.1)

and its discretization given by

Ü + 2η Λ1/2
n U̇ + 2a U̇ = −ΛnU + f(U) (1.2)

where a > 0, Λu = −uxx + δ
2u, Λn is a n×n matrix, Λn = ∆n + δ

2I, δ > 0 and

∆n is the discretization of the Laplacian with Neumann boundary conditions
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given by

∆n = n2























1 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
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...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 1























, (1.3)

f : IR → IR is a C2 function satisfying the dissipative condition

lim sup
|u|→+∞

f(u)

u
≤ −δ, (1.4)

f(U) = (f(u1), · · · , f(un))⊤ and U = (u1, · · · , un)⊤.

In this paper we study how the dynamics of the continuous equation (1.1)can

be approximated by the dynamics of the discretization (1.2). More precisely,

we prove that the family of global attractors of the discretization (1.2) is upper

semicontinuous to the global attractor of the continuous problem (1.1), as n

goes to ∞.

We study the problem (1.1) in an abstract form (in the sense of Henry [8]).

Let’s denote by Λ, the operator Λ : D(Λ) ⊂ X0 → X0 given by Λu = −uxx+ δ
2u,

X = L2 = X0 and D(Λ) = {u ∈ H2(0, 1);u′(0) = u′(1) = 0} = X1. So we can

write (1.1) as

d
dt

[

u
v

]

= Aη

[

u
v

]

+ h(

[

u
v

]

) (1.5)

where D(Aη) = X1 × X
1
2 = Y 1,

Aη =

[

0 I
−Λ −2(ηΛ1/2 + a)

]

and h(

[

u
v

]

) =

[

0
fe(u)

]

.

For η > 0, −Aη is a sectorial operator and generates an analytic semi-

group of contractions (see [6, 7]). For η ≥ 0, the equation (1.5) generates a
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C1-semigroup Tη on Y 0 = H1 × L2. Tη(t), t ≥ 0, is a gradient system asymp-

totically smooth. Furthermore, as proved in [5] to a more general case, Tη(t)

admits a global attractor Aη. By using regularity results we have Aη ⊂ Y 1.

In order to keep the similarity, we rewrite (1.2) in a matrix form

d

dt

[

U
V

]

= Aηn

[

U
V

]

+ H(

[

U
V

]

) (1.6)

where

Aηn =

[

0 In

−An −2(ηA
1/2
n + a)

]

and H(

[

U
V

]

) =

[

0
f(U)

]

For (1.6), we have a global attractor Aηn.

Considering

δY (A,B) = sup
x∈A

inf
y∈B

dY (x, y) (1.7)

we can define the continuity of a family of sets Bη ⊂ Y in the following form:

a family Bη is continuous in η0 if it is upper semicontinuous at η0, that is,

δY (Bη, Bη0
) → 0 as η → η0; and it is lower semicontinuous at η0, that is,

δY (Bη0
, Bη) → 0 as η → η0.

In most problems, the ideal situation is having the asymptotic dynamics

of one equation the same of the asymptotic dynamics of its discretization.

Nevertheless, studying the linear wave equation, we noted that the spectrum

of the discretization and the spectrum of its continuous counterpart are far away

from each other, no matter how fine the discretization is. That also happens

to some parabolic equations but in this set of problems the nonconvergent part

is controlled by the fact that the real part of the eigenvalues is negative and

very large in absolute values (the corresponding modes do not interfere in the

asymptotics). The spectrum of Aη with η = 0 do not have this property. That

is restrictive to the hyperbolic equation, i.e. η = 0.
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In order to overcome this problem we propose to approach the semilinear

damped wave equation with η = 0 (hyperbolic case) by a “parabolic equation”

strongly damped (η > 0) and then to make the approximation of this equation

by its discretization.

In [3], they proved that the family of global attractors Aη, η ≥ 0 is contin-

uous (lower and upper) in η = 0 . Note that η = 0 in (1.5) give us the damped

wave equation.

In order to compare the problems (1.5) and (1.2) it was necessary to consider

the space R
n × R

n embedded in the phase space of the continuous problem.

We also consider two norms in R
n × R

n which are the discretization of norms

in the continuous space (Y 0 and Y 1). Studying the problem, we realize it was

not possible to reduce the phase space dimension using a finite dimensional

invariant manifold. The reduction to a finite invariant manifold was used to

prove the topological equivalence between the dynamics of the discretization

and the continuous heat equation, see [4]. The spectrum of Aη do not satisfy

the existence of a large gap, since limk→∞ Re(λ±(k+1)) − Re(λ±k) = η, where

λk is the kth eigenvalue of Aη, therefore we could not use this technic.

We workout this problem for a fix η > 0 as follows. First, we analyze the

closeness of the linear semigroups in the norm Y 0. In order to do that, we

decompose the semigroups in two parts. One of them, is defined on an infinite

space dimension, such that Re(λ±k) → −∞, where k → ∞. It means that

the semigroup norm can be set arbitrarily small. So our problem becomes to

compare the semigroups in a finite dimension space. We did that using the

convergence of the eigenvalues and eigenvectors of the discrete problem to the

continuous problem. Then, we compare the nonlinear semigroups and, finally,

we prove the upper semicontinuity of the global attractors Aη n. This procedure
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was used in [1]

The main result of this paper is

Theorem 1.1. The family of global attractors Aη n is upper semicontinuous

at n = ∞, for any η > 0.

Theorem 1.1, and the fact that the family Aη is upper continuous (see [3]),

leads to the following important result

Theorem 1.2. Let A be the attractor of (1.1) for η = 0. Then, there exists a

sequence (η, nη) such that δ(Aη nη
,A) converges to zero when η → 0.

These results can be summarized in the following diagram

A
η→0

// Aηoo

Aη n

``A

A

A

A

A

A

A

A

A

n→∞, η fixed

OO

where the arrows denotes upper semicontinuity when it points to the limit

problem and lower semicontinuity when it points to the family problems.

This paper is organized as follows. Section 2 recalls some spectral properties

of Aη and Aηn. We also define the norms and some relations between R
n ×R

n

and Y 0 and Y 1. In Section 3 we make the comparison of the linear semigroups.

The comparison of the nonlinear semigroups is done in Section 4. Finally, the

last section proves the upper semicontinuity of attractors Aηn.
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2 Spectral properties of Aη and Aηn.

In this section, we recall from [6, 7] some important spectral properties of

Aη and Aηn. We also define the norms and some relations between R
n × R

n

and Y 0, Y 1.

Let νk = (kπ)2+ δ
2 be the eigenvalues of Λ for k = 0, 1, · · · . The eigenvalues,

λ±k, of Aη are the solutions of

λ2 + (2ην
1
2

k + 2aνk)λ + νk = 0

and they are given by:

λ±k = −(ην
1/2
k + a) ±

√

(ην
1/2
k + a)2 − νk

For each η > 0, there exist an k0 = k0(η) ≥ 0 such that λ±k is a real number

for k < k0 and λ±k is a complex number for k ≥ k0.

The correspondents eigenfunctions are given by:

φ±k =

[

ek

λ±kek

]

(2.1)

where ek = cos(kπx) is a eigenfunction of Λ with respect the eigenvalue νk.

If λ±k is a double eigenvalue then ψk =

[

0
ek

]

is a generalized eigenfunction

associated with λ±k. If λ±k is a complex eigenvalue then we consider the

following vectors ψ+k = Re(φ±k) and ψ−k = Im(φ±k), in the real eigenspace

associated with λ±k.

We have the following properties:

1) the family (φ+k)k0

k=0, (ψ+k)∞k=k0
is orthogonal in Y 0;

2) the family (φ−k)k0

k=0, (ψ−k)∞k=k0
is orthogonal in Y 0;

3) 〈φ−i, φ+j〉Y 0 = 0, 〈ψ−i, ψ+j〉Y 0 = 0, 〈φ−i, ψ+j〉Y 0 = 0, 〈ψ−i, φ+j〉Y 0 = 0 if

i 6= j.
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Using the same arguments of [3] in section 2, we have that there are

K ≥ 1 and γ > 0, independent of η, such that ‖eAηt‖ ≤ Ke−γ , for η > 0.

Similarly, the eigenvalues of Λn are given by νn
k = 4n2 sin2 kπ

2n + δ
2 and the

associated eigenvectors are en
k = (cos kπx1, · · · , cos kπxn) for k = 0, · · · , n − 1

and xi = 2i−1
2n . The eigenvalues, λn

±k, of Aηn are the solutions of the equation

λ2 + (2η(νn
k )

1
2 + 2aνn

k )λ + νn
k = 0 and are given by:

λn
±k = −(η(νn

k )1/2 + a) ±
√

(η(νn
k )1/2 + a)2 − νn

k

The correspondents eigenvectors are given by:

φn
±k =

[

en
k

λn
±ken

k

]

(2.2)

where en
k is the eigenvector of Λn associated with the eigenvalue νn

k . If λn
±k is a

double eigenvalue then ψn
k =

[

0
en
k

]

is a generalized eigenvector associated with

λn
±k

If λn
±k is a complex eigenvalue then we consider the following vectors ψn

+k =

Re(φn
±k) and ψn

−k = Im(φn
±k), in the real eigenspace associated with λ±k.

We also get that for each η > 0 and n > 0 exist a k0 = k0(η, n) ≥ 0

such that λn
±k is a real number for k < k0 and λn

±k is a complex number for

k0 ≤ k < n.

In order to compare the problems (1.5) and (1.6), it is necessary to consider

in R
n × R

n a compatible norm with the norm in Y 0. Therefore, we define in

R
n × R

n the following inner product:

〈
[

U
V

]

,

[

W
Z

]

〉0 = 〈ΛnU,W 〉Rn + 〈V,Z〉Rn (2.3)

where 〈U,W 〉Rn =
∑n

i=1
1
nui wi is the inner product L2 discretized. We denote

for Y 0
n the space R

n × R
n with the inner product given above.
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About the eigenvectors of Aηn in the space Y 0
n we have:

1) the family (φn
+k)k0

k=0, (ψ
n
+k)n

k=k0
is orthogonal in Y 0

n ;

2) the family (φn
−k)k0

k=0, (ψ
n
−k)n

k=k0
is orthogonal in Y 0

n ;

3) 〈φn
−i, φ

n
+j〉Y 0

n
= 0, 〈ψn

−i, ψ
n
+j〉Y 0

n
= 0, 〈φn

−i, ψ
n
+j〉Y 0

n
= 0, 〈ψn

−i, φ
n
+j〉Y 0

n
= 0 if

i 6= j.

We also need to consider another inner product in R
n×R

n compatible with

the inner product in Y 1, that means,

〈
[

U
V

]

,

[

W
Z

]

〉1 = 〈ΛnU,ΛnW 〉Rn + 〈ΛnV,Z〉Rn (2.4)

We denote by Y 1
n the space R

n × R
n with the inner product given above. We

make the distinction in the inner products by the index 0 or 1.

With a simple evaluation we get that

〈AnU,W 〉Rn =

n−1
∑

i=1

n(ui+1 − ui)(wi+1 − wi) +
δ

2

n
∑

i=1

1

n
uiwi.

We use the notation Y 0
n or Y 1

n to indicate the inner product and the norm

considered in R
n × R

n. Furthermore, we use in R
n, three differents norms

given by ‖U‖L2
d

= 〈U,U〉1/2
Rn which we call L2-discretized, ‖U‖H1

d
= 〈ΛnU,U〉1/2

Rn

which we call H1 discretized and ‖U‖H2
d

= 〈ΛnU,ΛnU〉1/2
Rn which we call H2

discretized. In order to avoid mistakes, we denote by ‖U ′‖L2
d

= 〈∆nU,U〉 1
2 the

L2 norm discretized of the discretized derivative.

We also decompose the spaces R
n × R

n and H1 × L2.

We write H1 × L2 = ⊕Ek where Ek is the generalized real eigenspace 2-

dimensional associated with the eigenvalues λ±k. If λ±k are real then Ek =

[φ+k, φ−k]. If λ±k are complex, we consider the vectors ψ+k = Reφ+k and

ψ−k = Imφ+k the base of Ek. We observe that the family Ek is orthogonal.
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We denote by ∢
−k
+k the angle between ψ+k and ψ−k. We observe that

cos(∢−k
+k) < 1−ξ, for some ξ > 0 and for any k. In fact, considering ‖ek‖L2 = 1

we get

cos(∢−k
+k)=

‖ek‖2
H1 + Re(λ+k)Im(λ+k)

√

‖ek‖4
H1+ (Re2(λ+k)+ Im2(λ+k))‖ek‖2

H1 + (Re(λ+k)Im(λ+k))2
,

remembering that Re(λ+k) = O(−η‖ek‖H1) and Im(λ+k) = O((1−η2)
1
2 ‖ek‖H1)

then,

lim
k→∞

cos2(∢−k
+k) ≤ (1 + η(1 − η2)

1
2 )2

2 + η(1 − η2)
1
2

≤ 1 − ξ

for some ξ > 0. With this fact, we obtain the equivalence between the sum

norm, the max norm and inner product norm in each Ek, with equivalence

constants independent of k.

Therefore, for (u, v) ∈ H1 × L2 we write

(u, v) =
∞
∑

k=1

(

(u, v)+k φ+k + (u, v)−k φ−k

)

=
∞
∑

k=1

(u, v)k.

Using the orthogonal properties of Ek, we have ‖(u, v)‖Y 0 = (
∑∞

k=1 ‖(u, v)k‖2)
1
2

where (u, v)k is a projection of (u, v) in the space Ek.

Similarly, we write R
n × R

n = ⊕En
k where En

k is a two dimensional space

associated with the eigenvalues λn
±k. If λn

±k are real eigenvalues then En
k =

[φn
+k, φn

−k], where φn
±k is the normalized eigenvector associated with λn

±k. If

λn
±k is complex we consider the vectors ψn

+k = Reφn
+k and ψn

−k = Imφn
+k a base

de En
k .

Thus, (U, V ) ∈ R
n × R

n is

(U, V ) =
n

∑

k=1

(

(U, V )+k φn
+k + (U, V )−k φn

−k

)

and ‖(U, V )‖Y 0
n

= (
∑n

k=1 ‖(U, V )k‖2)1/2, where (U, V )k is a projection of (U, V )

in the En
k which are orthogonal.
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In order to make the comparison proposed, we use a technique of Numerical

Analysis which is denominated Internal Approximation of a Normed Space, see

[9]. We define a family {Rn × R
n, P2n, i2n}, n ∈ N where P2n : Y 0 → R

n × R
n

and i2n : R
n×R

n → Y 0 are denominated projection and inclusion respectively.

Let (U, V ) = (u1, u2, · · · , un, v1, v2, · · · , vn) ∈ R
n × R

n, the inclusion ap-

plication, i2n, is defined by i2n(U, V ) = (u(x), v(x)) where u(x) and v(x) are

given by

u(x) = u1χ[0, 1
2n

)+

n1
∑

i=1

(ui+(ui+1−ui)n(x−xi))χ[ 2i−1

2n
, 2i+1

2n
)+unχ[ 2n−1

2n
,1] (2.5)

and

v(x) =

n
∑

i=1

viχIi
(2.6)

where Ii is the interval [ i−1
n , i

n ).

We also defined a projection of Y 0 in R
n × R

n in the following way. For

each ek we define Pn(ek) = U = (u1, u2, · · · , un) ∈ R
n where ui = ek(xi),

hence, Pn(ek) = en
k . We define P ′

n : L2 → R
n by P ′

n(
∑∞

k=1 akek) =
∑n

k=1 aken
k ,

P ′′
n : H1 → R

n by P ′′
n (

∑∞
k=1 akek) =

∑∞
k=1 aken

k , and P2n : H1×L2 → R
n×R

n

by P2n(u, v) = (P ′′
n (u), P ′

n(v)).

For the inclusion and projection applications we have

Theorem 2.1. The inclusion application, i2n : R
n ×R

n → H1 ×L2 is contin-

uous. Furthermore, the continuity is uniform in n.

Proof: In fact, let u(x) given by (2.5), then

‖u(x)‖2
L2 =

u2
1

2n
+

n−1
∑

j=1

∫ xj+1

xj

u2(x)dx +
u2

n

2n

≤ u2
1

2n
+

n−1
∑

j=1

(
u2

j+1

2n
+

u2
j

2n
) +

u2
n

2n
=

n
∑

j=1

u2
j

n
= ‖U‖2

L2
d
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and,

‖u(x)‖2
H1 =

n−1
∑

j=1

n(uj+1 − uj)
2 = ‖U‖2

H1
d

and let v(x) given by (2.6), then ‖v(x)‖2
L2 =

∑n
j=1

1
nv2

i = ‖V ‖2
L2

d

. Thus,

‖i(U, V )‖Y 0 = (‖u(x)‖2
H1 +

δ

2
‖u(x)‖2

L2 + ‖v(x)‖2
L2)

1
2 ≤ ‖(U, V )‖Y 0

n

Theorem 2.2. The projection application, P2n, is continuous. Furthermore,

the continuity is uniform in n.

Proof: In fact, let U = Pn(cos(kπx)) = (cos(kπx1), . . . , cos(kπx1)) then we

have

‖U‖2
L2

d
=

n
∑

1

1

n
u2

i =

n
∑

1

1

n
cos2(kπxi) ≤ 1 = 2‖ cos(kπx)‖2

L2 (2.7)

and

‖U‖2
H1

d
=

n−1
∑

1

n(ui+1 − ui)
2 =

n−1
∑

1

n(cos(kπxi+1) − cos(kπxi))
2

=

n−1
∑

1

n(kπ)2 sen2(kπx̄i)
1

n2
≤ (kπ)2 ≤ 2‖kπ sen(kπx)‖2

L2

Thus,

‖P2n(φ±k)‖Y 0
n

= ‖(Pn(ek), λ±kPn(ek))‖H1
d
×L2

d

= (‖Pn(ek)‖2
H1

d
+

δ

2
‖Pn(ek)‖2

L2
d

+ |λ±k|‖Pn(ek)‖2
L2

d
)

1
2

≤ (2‖ek‖H1 +
δ

2
2‖ek‖L2 + |λ±k|2‖ek‖2

L2)
1
2

=
√

2‖φ±k‖Y 0

By using Theorems 2.1 and 2.2 we have that these applications are stable (see

[9]).

Another result is
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Theorem 2.3. i) Let λ±k be the eigenvalues of Aη and λn
±k the eigenvalues of

Aηn, then for each k fixed we have that λn
±k → λ±k when n → ∞.

ii) Let φ±k be the eigenvectors of Aη and φn
±k the eigenvectors of Aηn, then for

each k fixed we have that i(φn
±k) → φ±k when n → ∞, and Pn(ek) = en

n.

For the inclusion application we use only i and the dimension of the space

is omitted.

3 Comparison of Linear Semigroups

Let be eAηt and eAηnt the semigroups generated by Aη and Aηn respectively.

We have the following result comparing the semigroups

Theorem 3.1. For each ǫ > 0, there is a no(ǫ) such that ∀n ≥ n0

‖eAηt(u0, v0)−i(eAηntP2n(u0, v0))‖Y 0 ≤ Mǫt−β‖(u0, v0)‖C1+α×Cα , t > 0 (3.1)

for all (u0, v0) ∈ C1+α × Cα and

‖eAηti(U0, V0) − i(eAηnt(U0, V0))‖Y 0 ≤ Mǫt−β‖(U0, V0)‖Y 0
n
, t > 0 (3.2)

for all (U0, V0) ∈
⋃

n Aη n.

Proof: We make the proof for the first inequality and when it is necessary we

note the changes for the second one.

Let ǫ > 0 be a real parameter. We consider two cases

i) for 0 < t ≤ ǫ. In this case, when t is small, we use that e−γt is bounded by

Kǫνt−β for β > ν > 0. Hence,

‖eAηt(u0, v0) − i(eAηntP2n(u0, v0))‖Y 0 ≤ K ′e−γt‖(u0, v0)‖Y 0

≤ Mǫνt−β‖(u0, v0)‖Y 0 .
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ii) for t > ǫ, we need estimate

‖eAηt(u0, v0) − i(eAηntP2n(u0, v0))‖Y 0 .

In this case, we decompose Y 0 in two subspaces. In the subspace of finite

dimension, we have the uniform convergence of eigenvalues and inclusion of

eigenvectors for the eigenvalues and eigenfunctions of the continuous problem.

In the subspace of infinite dimension, we have that the real part of eigenvalues

goes to −∞.

By using that λn
±k → λ±k when n → ∞ and Re(λ±k) → −∞, when k → ∞

and considering β ∈ (0, 1) a fixed number then there are K(ǫ) and N(ǫ) such

that

eRe(λn
±k)t ≤ ǫt−β , eRe(λ±k)t ≤ ǫt−β for all n ≥ N(ǫ) and k ≥ K(ǫ). (3.3)

Using K = K(ǫ) given in (3.3), we consider the following subspaces ⊕En
k ,

1 ≤ k ≤ K, ⊕En
k , K + 1 ≤ k ≤ n of R

n × R
n and ⊕Ek, 1 ≤ k ≤ K, ⊕Ek,

K + 1 ≤ k < ∞ of Y 0. Then,

‖eAηt(u0, v0) − i(eAηntP2n(u0, v0))‖Y 0

≤ ‖eAηt
K

∑

k=1

(u0, v0)k − i(eAηnt
K

∑

k=1

(P2n(u0, v0))k)‖Y 0

+ ‖eAηt
∞
∑

k=K+1

(u0, v0)k‖Y 0 + ‖i(eAηnt
n

∑

k=K+1

(P2n(u0, v0))k)‖Y 0

By the continuity, uniform in n, of the applications inclusion and projection,

we have:
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‖i(eAηnt
n

∑

k=K+1

(P2n(u0, v0))k)‖Y 0 ≤ M‖eAηnt
n

∑

k=K+1

(P2n(u0, v0))k‖Y 0
n

= M(

n
∑

k=K+1

‖eAηnt(P2n(u0, v0))k‖2
Y 0

n
)1/2 ≤ M(

n
∑

k=K+1

(eReλn
±t‖(P2n(u0, v0))k‖Y 0

n
)2)1/2

≤ Mǫt−β(

n
∑

k=K+1

‖(P2n(u0, v0))k‖2
Y 0

n
)1/2 ≤ Mǫt−β‖P2n(u0, v0)‖Y 0

n

≤ M ′ǫt−β‖(u0, v0)‖Y 0

In the similar way, we have

‖eAηt
∞
∑

k=K+1

(u0, v0)k‖Y 0 ≤ Mǫt−β‖(u0, v0)k‖Y 0

We consider another operator Bn, which possess the same eigenvalues of

Aηn but, associated with the eigenvectors of Aη. Thus, we have

‖eAηt
K

∑

k=1

(u0, v0)k − i(eAηnt
K

∑

k=1

(P2n(u0, v0))k)‖Y 0

≤ ‖eAηt
K

∑

k=1

(u0, v0)k − eBnt
K

∑

k=1

(u0, v0)k‖Y 0

+ ‖eBnt
K

∑

k=1

(u0, v0)k − i(eAηnt
K

∑

k=1

(P2n(u0, v0))k)‖Y 0

If each λn
±k, for 1 ≤ k ≤ K, is real then
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‖
K

∑

k=1

eAηt(u0, v0)k −
K

∑

k=1

eBnt(u0, v0)k‖Y 0

≤ (

K
∑

k=1

‖(eλ+kt − eλn
+kt)(u0, v0)+k + (eλ−kt − eλn

−kt)(u0, v0)−k‖2
Y 0)1/2

≤ 2M max
1≤k≤K

{|eλ+kt − eλn
+kt|, |eλ−kt − eλn

−kt|}.(
K

∑

k=1

‖(u0, v0)k‖2)1/2

≤ 2Mt max
1≤k≤K

{|eλ̃n
+kt||λ+k − λn

+k|, |eλ̄n
−kt||λ−k − λn

−k|}‖(u0, v0)‖Y 0

≤ ǫt−β‖(u0, v0)‖Y 0

for n ≥ n1 ≥ n0, where λ̄n
−k is between λ−k and λn

−k; and λ̃n
+k is between λ+k

and λn
+k.

In the case λ±k complex, we denote by (u0, v0)k the component of (u0, v0)

in Ek and (u0, v0)k = 2a(cosδ,−senδ) in the base ψ+k, ψ−k. In this case, we

have

eAηt(u0, v0)k = 2aeαkt(cos(βkt + δ)ψ+k − sen(βkt + δ)ψ−k),

eBnt(u0, v0)k = 2aeαn
k t(cos(βn

k t + δ)ψ+k − sen(βn
k t + δ)ψ−k),

where λ±k = αk ± βk and λn
±k = αn

k ± βn
k , then

‖eAηt(u0, v0)k − eBnt(u0, v0)k‖Y 0

≤ ‖2aeαkt[(cos(βkt + δ)− cos(βn
k t + δ))ψ+k− (sen(βkt + δ) − sen(βn

k t + δ))ψ−k]‖

+‖2a[cos(βn
k t + δ)ψ+k − sen(βn

k t + δ)ψ−k]‖|eα+kt − eαn
+kt|

≤ eα+ktt|βk − βn
k |‖ − 2a sen(β̄n

k + δ)ψ+k − 2a cos(β̄n
k t + δ)ψ−k‖

+eᾱ+ktt|αk − αn
k |‖2a cos(βn

k t + δ)ψ+k − 2a sen(βn
k t + δ)ψ−k‖

≤ L(eα+ktt|βk − βn
k | + eᾱ+ktt|αk − αn

k |)‖(u0, v0)k‖

If (P2n(u0, v0))k = an
+kψn

+k + an
−kψn

−k and (u0, v0)k = a+kψ+k + a−kψ−k
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then

‖eBnt
K

∑

k=1

(u0, v0)k − i(eAηnt
K

∑

k=1

(P2n(u0, v0))k)‖Y 0

≤ ‖
K

∑

k=1

eBnt(u0, v0)k −
K

∑

k=1

eBnt(an
+kψ+k + an

−kψ−k)‖Y 0

+‖
K

∑

k=1

eBnt(an
+kψ+k + an

−kψ−k) −
K

∑

k=1

i(eAηnt(P2n(u0, v0))k)‖Y 0

≤ eαn
1 t

K
∑

k=1

(|a+k − an
+k|‖ψ+k‖ + |a−k − an

−k|‖ψ−k‖)

+‖
K

∑

k=1

eBnt(an
+kψ+k + an

−kψ−k) −
K

∑

k=1

i(eAηntan
+kψn

+k + an
−kψn

−k)‖Y 0

Hence, we need to estimate |a+k−an
+k| and |a−k−an

−k|. In order to calculate

this, we write an
+k =

bn
+k

cn
+k

and a+k = b+k

c+k
where

bn
+k = 〈P2n(u0, v0), ψ

n
+k〉‖ψn

−k‖2 − 〈P2n(u0, v0), ψ
n
−k〉〈ψn

−k, ψn
+k〉,

cn
+k = ‖ψn

+k‖2‖ψn
−k‖2 − 〈ψn

+k, ψn
−k〉2

and

b+k = 〈(u0, v0), ψ+k〉‖ψ−k‖2 − 〈(u0, v0), ψ−k〉〈ψ−k, ψ+k〉,

c+k = ‖ψ+k‖2‖ψ−k‖2 − 〈ψ+k, ψ−k〉2

and

|a+k − an
+k| ≤

|cn
+k||b+k − bn

+k| + |c+k − cn
+k||bn

+k|
|c+k||cn

+k|
.

Thus, it is sufficient estimate |b+k − bn
+k| and |c+k − cn

+k|. We consider two

cases:

I)(u0, v0) = i(U0, V0) and P2n(u0, v0) = (U0, V0) for (U0, V0) ∈ Aη n;

II) (u0, v0) in C1+α × Cα.

Since that
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i) ‖ψ+k‖Y 0 = ‖ψn
+k‖Y 0

n
+ O( 1

n ),

ii) 〈ψ+k, ψ−k〉Y 0 = 〈ψn
+k, ψn

−k〉0 + O( 1
n )

iii)〈i(Pn(u0)), cos(kπx)〉H1 =
∑n−1

i=1

∫ xi+1

xi
n(ui+1 − ui)kπ sen(kπx)dx,

iv)〈Pn(u0), Pn(cos(kπx)〉H1
d

=
∑n−1

i=1

∫ xi+1

xi
n(ui+1 − ui)kπ sen(kπx̄i)dx.

then

|〈i(Pn(u0)), cos(kπx)〉H1 − 〈Pn(u0), Pn(cos(kπx)〉H1
d
| ≤ k2π2

n−1
∑

i=1

1

n
(ui+1 − ui).

If (u0, v0) = i(U0, V0) for some (U0, V0) ∈ Aη n then, by [2], we have
⋃

n Aη n

is bounded in H2
d × H1

d and n|ui+1 − ui| ≤ ‖U‖H1
d

+ ‖U‖H2
d
≤ 2K for 1 ≤ i ≤

n − 1, thus

|〈i(Pn(u0)), cos(kπx)〉H1−〈Pn(u0), Pn(cos(kπx)〉H1
d
| ≤ k2π2

n
(‖U0‖H1

d
+‖U0‖H2

d
).

We also have

v)〈i(Pn(v0)), cos(kπx)〉L2 =
∑n

i=1

∫
i
n

i−1

n

vi cos(kπx)dx,

iv)〈Pn(v0), Pn(cos(kπx)〉L2
d

=
∑n

i=1

∫
i
n

i−1

n

vi cos(kπxi)dx.

Hence,

|〈i(Pn(v0)), cos(kπx)〉L2 − 〈Pn(v0), Pn(cos(kπx)〉L2
d
| ≤ kπ

n
∑

i=1

1

n2
vi.

We are in the case of (u0, v0) = i(U0, V0) for some (U0, V0) ∈ Aη n then, using

that
⋃

n Aη n is bounded in H2
d × H1

d and |vi| ≤ ‖V ‖L2
d

+ ‖V ‖H1
d
≤ 2K for

1 ≤ i ≤ n then,

|〈i(Pn(v0)), cos(kπx)〉L2 −〈Pn(v0), Pn(cos(kπx)〉L2
d
| ≤ k2π2

n
(‖V0‖L2

d
+‖V0‖H1

d
).

Therefore,

|〈i(P2n(u0, v0)), ψ±k〉Y 0 − 〈P2n(u0, v0), ψ
n
±k〉Y 0

n
| ≤ K̃

n
‖(U0, V0)‖Y 1

n
.
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If (u0, v0) 6= i(U0, V0) and (u0, v0) ∈ C1+α ×Cα then we have |ui+1 − ui| ≤

n−1‖u0‖C1+α , |vi| ≤ ‖v‖Cα . Thus

|〈u0, cos(kπx)〉H1 − 〈Pn(u0), Pn(cos(kπx)〉H1
d
|

≤ |〈u0, cos(kπx)〉H1 − 〈i(Pn(u0)), cos(kπx)〉H1
d
|

+|〈i(Pn(u0)), cos(kπx)〉H1 − 〈Pn(u0), Pn(cos(kπx)〉H1
d
|.

However,

‖(u0, v0) − i(P2n(u0, v0))‖Y 0 ≤ 1

nα
‖(u0, v0)‖C1+α×Cα .

Hence,

|〈(u0, v0), ψ±k〉Y 0 − 〈P2n(u0, v0), ψ
n
±k〉Y 0

n
| ≤ K̃

nα
‖(u0, v0)‖C1+α×Cα .

Therefore, for case I)

|b+k − bn
+k| ≤ Mn−1‖(U0, V0)‖Y 1

n
,

for case II),

|b+k − bn
+k| ≤ Mn−α‖(u0, v0)‖C1+α×Cα

and in analogous form, for k, 1 ≤ k ≤ K we get

|c+k − cn
+k| ≤ Mn−1.

Analogously, we obtain |a−k − an
−k|.

We came back to estimate eαn
1 t

∑K
k=1(|a+k−an

+k|‖ψ+k‖+|a−k−an
−k|‖ψ−k‖).

In the case I)

eαn
1 t

K
∑

k=1

(|a+k − an
+k|‖ψ+k‖ + |a−k − an

−k|‖ψ−k‖)

≤ eαn
1 tM̃n−1‖(U0, V0)‖Y 1

n

K
∑

k=1

(‖ψ+k‖ + ‖ψ−k‖)

≤ ǫt−β‖(U0, V0)‖Y 1
n
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and in the case II)

eαn
1 t

K
∑

k=1

(|a+k − an
+k|‖ψ+k‖ + |a−k − an

−k|‖ψ−k‖)

≤ eαn
1 tM̃n−α‖(u0, v0)‖C1+α×Cα

K
∑

k=1

(‖ψ+k‖ + ‖ψ−k‖)

≤ ǫt−β‖(u0, v0)‖C1+α×Cα

Now we go to estimate

‖
K

∑

k=1

eBnt(an
+kψ+k + an

−kψ−k) −
K

∑

k=1

i(eAηntan
+kψn

+k + an
−kψn

−k)‖Y 0

In order to do this, we consider a complex inclusion, that means the inclusion

of real part and the inclusion of imaginary part. In this case, we are considering

complex solutions.

Since that an
+kψ+k +an

−kψ−k = dn
+kφ+k +dn

−kφ−k and an
+kψn

+k +an
−kψn

−k =

dn
+kφn

+k + dn
−kφn

−k where d+k = 1/2(an
+k − ian

−k) and d−k = 1/2(an
+k + ian

−k)

then

eBnt(an
+kψ+k + an

−kψ−k) = eλn
+ktdn

+kφ+k + eλn
−ktdn

−kφ−k

and

i(eAηnt(an
+kψn

+k + an
−kψn

−k)) = i(eλn
+ktdn

+kφn
+k + eλn

−ktdn
−kφn

−k)

= dn
+ki(eλn

+ktφn
+k) + dn

−ki(eλn
−ktφn

−k)

Therefore
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‖eBnt(an
+kψ+k + an

−kψ−k) − i(eAηnt(an
+kψn

+k + an
−kψn

−k))‖

≤ |dn
+k|‖eλn

+ktφ+k − i(eλn
+ktφn

+k)‖ + |dn
−k|‖eλn

−ktφ−k − i(eλn
−ktφn

−k)‖

= |dn
+k|‖eλn

+ktφ+k − eλn
+kti(φn

+k)‖ + |dn
−k|‖eλn

−ktφ−k − eλn
−kti(φn

−k)‖

≤ |dn
+k|eαn

+kt‖φ+k − i(φn
+k)‖ + |dn

−k|eαn
−kt‖φ−k − i(φn

−k)‖

≤ |dn
+k|eαn

+ktK/n‖φ+k‖ + |dn
−k|eαn

−ktK/n‖φ−k‖

≤ eαn
+ktK̃/n‖(u0, v0)k‖ ≤ ǫt−β‖(u0, v0)k‖

Hence,

‖
K

∑

k=1

eBnt(an
+kψ+k+an

−kψ−k)−
K

∑

k=1

i(eAηntan
+kψn

+k+an
−kψn

−k)‖Y 0 ≤ ǫt−β‖(u0, v0)‖Y 0

Finally, in the case I),

‖eBnt
K

∑

k=1

(u0, v0)k − i(eAηnt
K

∑

k=1

(P2n(u0, v0))k)‖Y 0 ≤ ǫt−β‖(u0, v0)‖Y 0 ,

and in the case II)

‖eBnt
K

∑

k=1

(u0, v0)k − i(eAηnt
K

∑

k=1

(P2n(u0, v0))k)‖Y 0 ≤ ǫt−β‖(u0, v0)‖C1+α×Cα .

4 Comparison of nonlinear semigroups

About the nonlinear semigroups we have

Theorem 4.1. Let Tη(t) and Tηn(t) be the nonlinear semigroups generated by

(1.5) and (1.6), respectively, then

‖Tη(t, i(U0, V0)) − i(Tηn(t, (U0, V0)))‖Y 0 ≤ MǫK0t
−β , (4.1)

for t ∈ (0, τ), (U0, V0) ∈ Aη n and for n ≤ n(ǫ)
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Proof: By the variation of constants formula and for (U0, V0) ∈ Aη n we have

Tηn(t, (U0, V0)) = eAηnt(U0, V0) +

∫ t

0

eAηn(t−s)H(Tηn(s, (U0, V0)))ds (4.2)

Tη(t, i(U0, V0)) = eAηti(U0, V0) +

∫ t

0

eAη(t−s)h(Tη(s, i(U0, V0)))ds (4.3)

Then, for t ∈ (0, τ)

‖Tη(t, i(U0, V0)) − i(Tηn(t, (U0, V0)))‖Y 0

≤ ‖eAηti(U0, V0) − i(eAηnt(U0, V0))‖Y 0

+‖
∫ t

0

eAη(t−s)h(Tη(s, i(U0, V0))) − i(eAηn(t−s)P2nh(Tη(s, i(U0, V0))))ds‖Y 0

+‖
∫ t

0

i(eAηn(t−s)P2nh(Tη(s, i(U0, V0)))) − i(eAηn(t−s)H(Tηn(s, (U0, V0))))ds‖Y 0

≤ ǫt−β‖(U0, V0)‖Y 0
n

+

∫ t

0

‖eAη(t−s)h(Tη(s, i(U0, V0))) − i(eAηn(t−s)P2nh(Tη(s, i(U0, V0))))‖Y 0ds

+

∫ t

0

‖i(eAηn(t−s)P2nh(Tη(s, i(U0, V0)))) − i(eAηn(t−s)H(Tηn(s, (U0, V0))))‖Y 0ds

Since that i(U0, V0) is bounded in H1 × L2 we have (Tη(s, i(U0, V0)))1 is

bounded in Cα, thus ‖h(Tη(s, i(U0, V0)))‖C1+α×Cα is bounded for all (U0, V0) ∈
⋃

n Aη n. We also have H(Tηn(s, (U0, V0))) = P2n(h(i(Tηn(s, (U0, V0))))) then

‖Tη(t, i(U0, V0)) − i(Tηn(t, (U0, V0)))‖Y 0

≤ ǫt−β‖(U0, V0)‖Y 0
n

+ ǫ

∫ t

0

(t − s)−β‖h(Tη(s, i(U0, V0)))‖C1+α×Cαds

+

∫ t

0

‖eAηn(t−s)‖‖P2n(h(Tη(s, i(U0, V0)))) − P2n(h(i(Tηn(s, (U0, V0)))))‖Y 0
n
ds

≤ ǫt−βK0 + ǫτ
t−βK0

1 − β
+ L

∫ t

0

‖(Tη(s, i(U0, V0))) − i(Tηn(s, (U0, V0)))‖Y 0ds

Hence, by Gronwall Inequality, we have that exists a constant M(β, τ, L) such
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that

‖Tη(t, i(U0, V0)) − i(Tηn(t, (U0, V0)))‖H1×L2 ≤ MǫK0t
−β , (4.4)

for t ∈ (0, τ), (U0, V0) ∈ Aη n and for n ≤ n(ǫ)

5 Upper Semicontinuity of global attractors Aη

and i(Aη n) in H
1 × L

2

Now we can prove the main result

Theorem 5.1. The family of global attractors Aη n is upper semicontinuous

at n = ∞, for any η > 0.

Proof: Since that
⋃

n Aη n is bounded in R
n × R

n and also ‖i(U, V )‖H1×L2 ≤

‖(U, V )‖Rn×Rn then ‖i(⋃n Aη n)‖H1×L2 ≤ ‖⋃

n An‖Rn×Rn ≤ K.

The global attractor Aη attracts bounded of H1 × L2 thus, ∀δ > 0, exists

τ = τ(δ) such that

δY0
(Tη(τ, i(φn)),Aη) ≤ δ/2

for all φn ∈ Aη n and for all n.

The attractors Aη n are invariant, thus if ψn ∈ Aη n then exists φn ∈ Aη n such

that Tηn(τ, φn) = ψn.

Hence, we choose n0(δ) = n(ǫ(δ)) > 0 such that

‖Tη(τ, i(φn)) − i(Tηn(τ, φn))‖ ≤ Mǫτ−β‖φn‖ ≤ δ/2

for n ≥ n0(δ).

Therefore,

δY0
(i(ψn),Aη) ≤ δY0

(i(ψn), Tη(τ, i(φn)) + δY0
(Tη(τ, i(φn)),Aη) ≤ δ

for all ψn ∈ Aηn and for all n ≥ n0(δ).
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nuity of Attractors for Parabolic Problems with Localized Large Diffusion

and Nonlinear Boundary Conditions, Journal of Differential Equations,

168 (2001), 33–59.

[2] Bruschi, S. M., Discretização de problemas semilineares dissipa-
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