MULTIPLICITY OF NONTRIVIAL SOLUTIONS TO A PROBLEM INVOLVING THE WEIGHTED \(p \)-BIHARMONIC OPERATOR

M. J. Alves \(^{*} \) R. B. Assunção \(^{†} \) P. C. Carrião
O. H. Miyagaki \(^{‡} \)

Dedicated to Professor J. V. Gonçalves on the occasion of his 60th birthday

Abstract

In this paper we prove the existence of three solutions to a problem involving the weighted \(p \)-biharmonic operator. The first and second solutions are obtained as local minima using the Ekeland's Variational Principle and the third one is obtained by a variant of the Mountain Pass Theorem.

1 Introduction

In this paper we study the following class of quasilinear elliptic problems involving the \(p \)-biharmonic operator

\[
\begin{aligned}
\Delta (\rho(x)|\Delta u|^{p-2}\Delta u) + g(x, u) &= \lambda_1 h(x)|u|^{p-2}u & \text{in } \Omega, \\
u = 0 &= \Delta u & \text{on } \partial \Omega,
\end{aligned}
\]

where \(1 < p < \infty \), \(\Omega \subset \mathbb{R}^n \) (\(n \geq 1 \)) is a bounded domain with smooth boundary, \(\rho \in \mathcal{C} (\overline{\Omega}, \mathbb{R}) \) with \(\inf_{\overline{\Omega}} \rho(x) > 0 \). We also use the assumptions

\((G_1)\) \quad \(g : \Omega \times \mathbb{R} \to \mathbb{R} \) is bounded continuous function satisfying \(g(x, 0) = 0 \),

and its primitive denoted by

\[(G_2)\] \quad \(G(x, s) = \int_0^s g(x, t)dt \) is assumed to be bounded.
Let $X \equiv W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)$ be a Sobolev space endowed with the norm given by

$$\|u\| \equiv \left\{ \int_{\Omega} \rho |\Delta u|^p \, dx \right\}^{\frac{1}{p}}.$$

We define

$$\lambda_1 = \inf_{N} \left\{ \int_{\Omega} \rho |\Delta u|^p \, dx \right\},$$

where

$$N = \left\{ u \in X : \int_{\Omega} h |u|^p \, dx = 1 \right\},$$

the first eigenvalue of the following weighted eigenvalue problem

$$\begin{cases}
\Delta(\rho(x)|\Delta u|^{p-2}\Delta u) = \lambda_1 h(x)|u|^{p-2}u & \text{in } \Omega, \\
u = 0 = \Delta u & \text{on } \partial\Omega,
\end{cases}$$

(1.2)

where

$$(h) \quad h \in C(\bar{\Omega}, \mathbb{R}), \ h \geq 0 \text{ and } h > 0 \text{ on a subset of } \Omega \text{ with positive measure.}$$

We recall that by using a result by Talbi and Tsouli [18] (see also Drábek and Čotani [8]), we know that the first eigenvalue λ_1 is simple, isolated and positive. Moreover every eigenfunction ϕ_1 associated with λ_1 can be chosen positive.

Here $\Delta(\rho(x)|\Delta u|^{p-2}\Delta)$ denotes the operator of fourth order called the p-biharmonic operator with weight. For $p = 2$ and $\rho = 1$, the operator becomes the iterated Laplacian which have been studied by many authors. For example, Lazer and McKenna [13] have pointed out that this type of nonlinearity furnishes a model for studying travelling waves in suspension bridges. Since then, more nonlinear biharmonic equations, including the p-biharmonic equations, have been studied. (See [14, 19].)

More exactly, this type of problem appears, for instance, in the study of Hooke’s law of nonlinear elasticity. (See [4, 6] and references therein.) While the p-biharmonic operator can be used to study a semilinear hamiltonian system of the form

$$\begin{cases}
-\Delta u = v^p & \text{in } \Omega, \\
u = 0 & \text{in } \partial\Omega,
\end{cases}$$

$$\begin{cases}
-\Delta v = u^q & \text{in } \Omega, \\
u = 0 & \text{in } \partial\Omega,
\end{cases}$$

$$u, v > 0 \text{ in } \Omega, \quad u, v = 0 \text{ on } \partial\Omega,$$
where Ω is smooth bounded domain and p, q ≥ 1.

Formally, from the first equation we have
\[\nu = (-\Delta u)^{1/p} \]
and substituting on the second equation, we get
\[-\Delta (|\Delta u|^{1/p-1}(-\Delta u)) = -\Delta (-\Delta u)^{1/p} = u^q, \quad x \in \Omega \]
\[u = \Delta u = 0, \quad x \in \partial \Omega. \]

In this case, we are looking for solution in the Sobolev space \(W^{2,(p+1)}(\Omega) \). (See [7, 11]).

We define the energy functional \(I : X \rightarrow \mathbb{R} \) associated to problem (1.1) by
\[
I(u) \equiv \frac{1}{p} \int_{\Omega} \rho |\Delta u|^p dx + \int_{\Omega} G(x, u) dx - \frac{\lambda_1}{p} \int_{\Omega} h|u|^p dx. \quad (1.3)
\]

Under assumptions \(G_1 \) and \(G_2 \), the functional \(I \in C^1(\Omega, \mathbb{R}) \) and its Fréchet derivative is given by
\[
I'(u) \cdot v = \int_{\Omega} \rho |\Delta u|^{p-2} \Delta u \Delta v dx + \int_{\Omega} g(x, u)v dx - \lambda_1 \int_{\Omega} h|u|^{p-2} uv dx. \quad (1.4)
\]

The main goal of this paper is to show the existence of multiple solutions for problem (1.1). We were inspired by Gonçalves and Miyagaki [10] and also by Alves, Carrião and Miyagaki [3], in which problems involving the laplacian and \(p \)-laplacian operators are studied, respectively. See also Ma and Sanches [15].

We define
\[
V = \langle \phi_1 \rangle \quad \text{and} \quad Z = \left\{ u \in X : \int_{\mathbb{R}} h u |\phi_1|^{p-2} \phi_1 = 0 \right\}.
\]

Note that \(Z \) is a closed complementary subspace of \(V \) and therefore we have the direct sum
\[X = V \oplus Z. \]
We define
\[\lambda_2 = \inf_Z \left\{ \int_{\Omega} \rho|\Delta u|^p dx : \int_{\Omega} h|u|^p dx = 1 \right\}, \tag{1.5} \]
which satisfies \(0 < \lambda_1 < \lambda_2\), and it follows that
\[\int_{\Omega} h|w|^p dx \leq \frac{1}{\lambda_2} \int_{\Omega} \rho|\Delta w|^p dx, \quad \text{for all } w \in Z. \tag{1.6} \]

We impose the following

\((G_3)\) \quad \(g(x, t) \to 0\) as \(|t| \to \infty\), for all \(x \in \Omega\).

\((G_4)\) \quad \(G(x, t) \geq \frac{\lambda_1 - \lambda_2}{p} h(x)|t|^p\), for all \(x \in \Omega\) and for all \(t \in \mathbb{R}\).

\((G_5)\) \quad There exist \(\delta > 0\) and \(0 < m < \lambda_1\) such that
\[G(x, t) \geq \frac{m}{p} h(x)|t|^p, \quad \text{for all } x \in \Omega \text{ and for all } |t| < \delta. \]

We define
\[T(x) = \liminf_{|t| \to \infty} G(x, t) \text{ and } S(x) = \limsup_{|t| \to \infty} G(x, t) \text{ for all } x \in \Omega. \]

\((G_6)\) \quad There exist \(t^-, t^+ \in \mathbb{R}\) with \(t^- < 0 < t^+\) such that
\[\int_{\Omega} G(x, t^+) \phi_1 dx \leq \int_{\Omega} T(x) dx < 0 \]
and
\[\int_{\Omega} S(x) dx \leq 0. \tag{G_7} \]

Define the following subsets
\[C^+ = \{t \phi_1 + z : t \geq 0 \text{ and } z \in Z\} \text{ and } C^- = \{t \phi_1 + z : t \leq 0 \text{ and } z \in Z\}. \]

We remark that \(\partial C^+ = \partial C^- = Z\).

Now we state our main result.
Theorem 1

(i) Under assumptions \((h), (G_1), (G_2), (G_4)\) and \((G_6)\), there exist \(u \in C^+\) and \(v \in C^-\) solutions of problem (1.1) such that \(I(u) < 0\) and \(I(v) < 0\).

(ii) Under assumptions \((h), (G_1)-(G_3), (G_5)-(G_7)\), problem (1.1) has a solution \(w\) such that \(I(w) > 0\).

The first and second solutions are obtained as local minima of the energy functional \(I\). To do this, we use the Ekeland’s variational principle in each of the subsets \(C^+\) and \(C^-\). The third solution is obtained by using a variant of the Mountain Pass Theorem. In the last section we give an example for Theorem 1.

2 Preliminary results

We begin by recalling that \(I : X \to \mathbb{R}\) is said to satisfy the Palais-Smale condition at the level \(c \in \mathbb{R}\) \(((PS)_c\) in short), if any sequence \({u_n} \subset X\) such that

\[
I(u_n) \to c \quad \text{and} \quad I'(u_n) \to 0 \quad \text{as} \quad n \to \infty,
\]

has a convergent subsequence in \(X\).

Our first lemma is proved by adapting some arguments used by Anane and Gossez [1] and by Alves, Carrião and Miyagaki [3].

Lemma 2 Assume the conditions \((h), (G_1)\) and \((G_2)\). Then the functional \(I\) satisfies the \((PS)_c\) condition for all \(c < \int_\Omega T(x)dx\).

Proof. We will prove that the sequence \({u_n} \subset X\) is bounded. Suppose, on the contrary, that it is unbounded. Then, up to subsequence, we have

\[
\|u_n\| \to \infty \quad \text{as} \quad n \to \infty.
\]

Define

\[
v_n = \frac{u_n}{\|u_n\|}
\] (2.1)
Clearly $\|v_n\| = 1$ and the sequence $\{v_n\} \subset X$ is bounded. Taking a subsequence if necessary (still denoted in the same way) we obtain

$$v_n \rightharpoonup v \text{ weakly in } X \text{ as } n \to \infty$$

and

$$v_n \rightarrow v \text{ in } L^s(\mathbb{R}), \text{ as } n \to \infty, \text{ for } 1 \leq s < p^* = \frac{np}{n - 2p}, \text{ (2.2)}$$

and $p^* = +\infty$, if $n \leq 2p$.

We will show that $v \neq 0$ and that there exists $\mu \in \mathbb{R}$ such that

$$v(x) = \mu \phi_1(x) \text{ for all } x \in \Omega.$$

We are going to consider only the case $n > 2p$, the other case is easier. By definition of I and by the fact that $\Delta u_n = \Delta v_n \|u_n\|$ we have

$$I'(u_n) \cdot u_n = \int_{\Omega} \rho|\Delta u_n|^p dx + \int_{\Omega} g(x, u_n)u_n dx - \lambda_1 \int_{\Omega} h|u_n|^p dx$$

$$= \|u_n\|^p \int_{\Omega} \rho|\Delta v_n|^p dx + \int_{\Omega} g(x, u_n)u_n dx - \lambda_1 \|u_n\|^p \int_{\Omega} h|v_n|^p dx.$$

Choosing $t_n = \|u_n\|$, it follows that

$$\frac{I'(u_n) \cdot u_n}{t_n^{p_n}} = \int_{\Omega} \rho|\Delta v_n|^p dx + \frac{1}{t_n^{p_n}} \int_{\Omega} g(x, u_n)u_n dx - \lambda_1 \int_{\Omega} h|v_n|^p dx. \text{ (2.3)}$$

We will denote the terms of the equality (2.3) by I_j ($j = 1, 2, 3, 4$), respectively.

Claim 3

(a) $\lim_{n \to \infty} I_1 = 0$,

(b) $\lim_{n \to \infty} I_3 = 0$,

(c) $\lim_{n \to \infty} I_4 = \lambda_1 \int_{\Omega} h|v|^p dx$.

Proof. (a) From the fact that $\lim_{n \to \infty} I'(u_n) = 0$ and since $\{u_n\} \subset X$ is unbounded we have the inequality

$$\left| \frac{I'(u_n) \cdot u_n}{t_n^{p_n}} \right| \leq \epsilon \|u_n\|_p = \epsilon \|u_n\|^{1-p}.$$
This implies that $\lim_{n \to \infty} I_1 = 0$.

(b) By the condition (G_1), the Hölder’s inequality, and (2.2) we get
\[
\left| \frac{1}{t^n} \int_\Omega g(x, u_n) u_n \, dx \right| \leq \frac{C}{t^n} \int_\Omega |u_n| \, dx \leq \frac{C}{t^n} \left[\int_\Omega |u_n| \, dx \right]^\frac{1}{p} \left[\int_\Omega 1 \, dx \right]^\frac{p-1}{p},
\]
where C and M are positive constants. This implies that $\lim_{n \to \infty} I_3 = 0$.

(c) Follows immediately from (2.2).

Using Claim 3 and (2.1) we obtain that $v \neq 0$ because
\[
\lim_{n \to \infty} \left[\int_\Omega \rho |\Delta u_n|^p \, dx - \lambda_1 \int_\Omega h |u_n|^p \, dx \right] = 1 - \lambda_1 \int_\Omega h |v|^p \, dx = 0.
\]
Since $v_n \rightharpoonup v$ weakly in X, as $n \to \infty$, we have $\|v\| \leq \liminf_{n \to \infty} \|v_n\| = 1$. Therefore
\[
\|v\| \leq 1 \quad (2.4)
\]
and we conclude that v is an eigenfunction associated to the simple eigenvalue λ_1. Hence, there exists $\mu \in \mathbb{R}$, $\mu \neq 0$, such that
\[
v(x) = \mu \phi_1(x) \text{ for all } x \in \Omega. \quad (2.5)
\]
In particular, by (2.1) we conclude that
\[
\lim_{n \to \infty} u_n(x) = \lim_{n \to \infty} \frac{u_n}{\|u_n\|} = v(x) = \mu \phi_1(x), \text{ for all } x \in \Omega.
\]
But $\mu \phi_1(x) \neq 0$, then $v_n(x) \neq 0$ and this implies that
\[
\lim_{n \to \infty} |u_n(x)| = \lim_{n \to \infty} \|u_n(x)\|v_n(x) = \infty, \text{ for all } x \in \Omega. \quad (2.6)
\]
Using Fatou’s Lemma, we have that
\[
\liminf_{n \to \infty} \int_\Omega G(x, u_n(x)) \, dx \geq \int_\Omega \liminf_{n \to \infty} G(x, u_n(x)) \, dx \geq \int_\Omega T(x) \, dx. \quad (2.7)
\]
By definition of λ_1 we conclude that
\[
\int_\Omega \rho |\Delta u_n|^p \, dx - \lambda_1 \int_\Omega h |u_n|^p \, dx \geq 0 \quad (2.8)
\]
and hence
\[c + o_n(1) = I(u_n) \geq \int_{\Omega} G(x, u_n(x)) dx. \tag{2.9} \]

Since \(\lim_{n \to \infty} |u_n(x)| = \infty \), by \((G_2)\) it follows that
\[c \geq \int_{\Omega} T(x) dx, \]
which contradicts the hypothesis of the Lemma. Hence the sequence \(\{u_n\} \subset X \) is bounded.

We claim that \(\lim_{n \to \infty} u_n = u \in X \). In fact, consider
\[
I'(u_n) \cdot (u_n - u) = \int_{\Omega} \rho |\Delta u_n|^{p-2} \Delta u_n \Delta (u_n - u) dx + \int_{\Omega} g(x, u_n)(u_n - u) dx \\
- \lambda_1 \int_{\Omega} h|u_n|^{p-2} u_n (u_n - u) dx.
\]

Since the sequence \(\{u_n - u\} \subset X \) is bounded and \(\lim_{n \to \infty} I'(u_n) = 0 \), we have
\[
\lim_{n \to \infty} I'(u_n) \cdot (u_n - u) = 0. \tag{2.10}
\]

Using \((G_2)\), the facts that \(u_n \to u \) in \(L^s(\mathbb{R}) \) (for \(1 \leq s < p^* \)) and that \(u_n \to u \) a.e. on \(\Omega \) as \(n \to \infty \), as well as the Dominated Convergence Theorem we obtain
\[
\lim_{n \to \infty} \int_{\Omega} g(x, u_n)(u_n - u) dx = 0. \tag{2.11}
\]
and
\[
\lim_{n \to \infty} \lambda_1 \int_{\Omega} h|u_n|^{p-2} u_n (u_n - u) dx = 0. \tag{2.12}
\]

It follows from (2.10), (2.11) and (2.12) that
\[
0 = \lim_{n \to \infty} \left[\int_{\Omega} \rho |\Delta u_n|^{p-2} \Delta u_n \Delta (u_n - u) dx \right]. \tag{2.13}
\]

Since \(|\Delta u|^{p-2} \Delta u \in L^{p^*}(\mathbb{R}) \), \(\rho \Delta (u_n - u) \in L^p(\mathbb{R}) \), by a result in [12, Theorem 13.44] we conclude that
\[
\lim_{n \to \infty} \int_{\Omega} \rho |\Delta u|^{p-2} \Delta u \Delta (u_n - u) dx = 0, \tag{2.14}
\]
where we are assuming that
\[
\Delta u_n \longrightarrow \Delta u, \text{ a.e., as } n \to \infty.
\]
The above affirmative can be proved arguing as in [5] (see also Alves, Carrião and Miyagaki in [2] for the case in dimension 1), together with the inequalities

\[
[|x|^{p-2}x - |y|^{p-2}y](x-y) \geq \begin{cases}
C_p \frac{|x-y|^2}{(|x|+|y|)^{2-p}} & \text{if } 1 < p < 2 \\
C_p |x-y|^p & \text{if } p \geq 2, \forall x, y \in \mathbb{R}^N,
\end{cases}
\]

(for the proof, see [16, 17]).

Now, by using again the above inequality, we obtain by (2.13) and (2.14)

\[
0 = \lim_{n \to \infty} \int_{\Omega} \left[|\Delta u_n|^{p-2} \Delta u_n - |\Delta u|^{p-2} \Delta u \right] \rho (u_n - u) dx \\
\geq \begin{cases}
C_p \lim_{n \to \infty} \int_{\Omega} \rho \frac{|\Delta u_n - \Delta u|^2}{(|\Delta u_n| + |\Delta u|)^{2-p}} dx & \text{if } 1 < p < 2 \\
C_p \lim_{n \to \infty} \int_{\Omega} \rho |\Delta u_n - \Delta u|^p dx & \text{if } p \geq 2.
\end{cases} \tag{2.15}
\]

If \(p \geq 2 \), we have that

\[
\lim_{n \to \infty} \int_{\Omega} \rho |\Delta u_n - \Delta u|^p dx \leq 0.
\]

If \(1 < p < 2 \), by Hölder’s inequality it follows that

\[
\int_{\Omega} \rho |\Delta u_n - \Delta u|^p dx \\
\leq \left[\int_{\Omega} \rho \frac{|\Delta u_n - \Delta u|^2}{(|\Delta u_n| + |\Delta u|)^{2-p}} dx \right]^{\frac{p}{2}} \left[\int_{\Omega} \rho (|\Delta u_n| + |\Delta u|)^p dx \right]^{\frac{2-p}{2}} \\
\leq C \left[\int_{\Omega} \rho \frac{|\Delta u_n - \Delta u|^2}{(|\Delta u_n| + |\Delta u|)^{2-p}} dx \right]^{\frac{p}{2}}.
\]

By (2.15) and the previous inequality it follows that

\[
0 \geq C_p \lim_{n \to \infty} \int_{\Omega} \rho \frac{|\Delta u_n - \Delta u|^2}{(|\Delta u_n| + |\Delta u|)^{2-p}} dx \geq C_p C^{-1} \left[\lim_{n \to \infty} \int_{\Omega} \rho |\Delta u_n - \Delta u|^p dx \right]^{\frac{2}{p}}.
\]

Therefore, in both cases we have

\[
\lim_{n \to \infty} \|u_n - u\| = 0 \text{ in } X
\]

and this concludes the proof of the Lemma.
Lemma 4 Assume the conditions (h), (G_2) and (G_6). Then the functional I is bounded from below on X and \(\inf_{C \pm} I \) is negative on \(C^+ \) and on \(C^- \).

Proof. Let \(u \in X \); by condition \(G_2 \), we have \(|\int_{\Omega} G(x, u)dx| \leq C \). Hence, by the definition of \(\lambda_1 \) we get
\[
|I(u)| \geq \int_{\Omega} G(x, u)dx \geq -C
\]
and I is bounded from below on X.

Using condition \((G_6) \) and the eigenfunction \(\phi_1 \) associated to the eigenvalue \(\lambda_1 \) we obtain
\[
I(t\pm\phi_1) = \int_{\Omega} G(x, t\pm\phi_1)dx \leq \int_{\Omega} T(x) < 0. \quad (2.16)
\]
If \(u \in C^+ \), we have that \(I(u) = I(t\phi_1 + z) \). In particular, consider \(t = t^+ \) and \(z = 0 \); by inequality (2.16), we obtain that \(I(t^+\phi_1) < 0 \). Similarly, we have \(I(t^-\phi_1) < 0 \). Hence \(\inf_{C^\pm} I(t^\pm\phi_1) < 0 \). This concludes the proof of the lemma.

Now we show that the energy functional I verifies the geometry of the Mountain Pass Theorem.

Lemma 5 The energy functional I verifies the following properties.

(a) \(I(0) = 0 \).

(b) There exist positive constants \(\rho \) and \(R \) such that \(I(u) \geq \rho > 0 \) if \(\|u\| = R \).

(c) There exists \(z \in X \) such that \(I(z) < 0 = I(0) \) if \(\|z\| > R \).

Proof. The proof of the item (a) is immediate.

Since \(G \) is bounded and continuous, there exist \(\theta \in \mathbb{R} \) (with \(p < \theta < p^* \)) and a constant \(C \) such that
\[
G(x, t) \geq \frac{m}{p}h(x)|t|^p - C|t|^\theta, \text{ for all } |t| > \delta,
\]
where \(\delta \) is given by \((G_5) \). Therefore, by \((G_5) \) we conclude that
\[
G(x, t) \geq \frac{m}{p}h(x)|t|^p - C|t|^\theta, \text{ for all } |t| \in R, p < \theta < p^* \text{ and for all } x \in \Omega.
\]
\[(2.17) \]
By the previous inequality we have
\[I(u) \geq \frac{1}{p} \int_{\Omega} \rho |\Delta u|^p dx + \int_{\Omega} \left[\frac{m}{p} h(x)|u|^p - C|u|^\theta \right] dx - \frac{\lambda_1}{p} \int_{\Omega} h|u|^p dx. \]

We recall that the embedding \(W^{1,p}(\mathbb{R}) \hookrightarrow L^s(\mathbb{R}) \) is continuous for \(1 < p < s \leq p^* \) and compact for \(s < p^* \) and
\[\lambda_1 \leq \frac{\int_{\Omega} \rho |\Delta u|^p dx}{\int_{\Omega} h|u|^p dx}. \]

Then, for \(p < \theta < p^* \) we have
\[I(u) \geq \frac{1}{p} \int_{\Omega} \rho |\Delta u|^p dx - \left[\frac{\lambda_1 - m}{p} \right] \frac{1}{\lambda_1} \int_{\Omega} \rho |\Delta u|^p dx - C \int_{\Omega} |u|^p dx \]
\[\geq \frac{m}{p \lambda_1} \|u\| - \mu \|u\|^\theta. \]

Since
\[I(u) \geq \frac{m}{p \lambda_1} \|u\| + o(\|u\|), \text{ as } \|u\| \to \infty, \]
we can find \(R > 0 \) small enough and \(\rho > 0 \) such that if \(\|u\| \leq R \), then \(I(u) \geq 0 \) and if \(\|u\| = R \), then \(I(u) \geq \rho > 0 \). As a result, item \((b) \) is proved.

To prove item \((c) \), it is sufficient to remark that by \((G_6)\) we conclude that \(I(t^\pm \phi_1) < 0 \). Then we define \(z \equiv t^\pm \phi_1 \) and we get \(\|z\| = \int_{\Omega} \rho |\Delta(t^\pm \phi_1)|^p dx = t^\pm \|\phi_1\| \equiv R_1 \). Note that \(R_1 > R \) and it follows that \(\|z\| > R \) and \(I(z) < 0 \). This concludes the proof of item \((c) \).

\(\square \)

3 Proof of Theorem 1

To prove item \((i) \) we use inequality \((2.16)\) to obtain
\[\inf_{C^\pm} I(u) \leq I(t^\pm \phi_1) = \int_{\Omega} G(x,t^\pm \phi_1) dx \leq \int_{\Omega} T(x) < 0. \]
If \(\inf_{C^\pm} I(u) = I(t^\pm \phi_1) \), then it is enough to take \(u = t^+ \phi_1 \) and \(v = t^- \phi_1 \) to get two solutions such that \(I(u) < 0 \) and \(I(v) < 0 \).
Otherwise, if \(\inf_{C^\pm} I(u) < I(t^\pm \phi_1) \) then we have

\[
\inf_{C^\pm} I(u) < \int_\Omega T(x). \tag{3.1}
\]

By Lemma 4, the functional \(I \) is bounded from below on \(X \) and it is easy to prove that \(I \) is lower semicontinuous in \(X \). Hence, the Ekeland’s Variational Principle guarantees the existence of two sequences \(u_n \subset C^+ \) and \(v_n \subset C^- \) satisfying

\[
I(u_n) \to \inf_{C^+} I(u) \quad \text{and} \quad I'(u_n) \to 0,
\]

and

\[
I(v_n) \to \inf_{C^+} I(v) \quad \text{and} \quad I'(v_n) \to 0.
\]

as \(n \to \infty \). By (3.1) and by Lemma 2, there exist \(u \) and \(v \) such that

\[
u_n \to u \quad \text{and} \quad v_n \to v \quad \text{in} \quad X
\]

as \(n \to \infty \). Therefore, \(u \) and \(v \) are solutions of problem 1.1 verifying

\[
I(u) = \inf_{C^+} I(z) < 0 \quad \text{and} \quad I(v) = \inf_{C^-} I(z) < 0.
\]

Moreover, it follows from assumption \((G_4)\) and from inequality (1.6) that

\[
I(z) \geq \frac{1}{p} \int_\Omega |\Delta u|^p dx - \frac{\lambda_2}{p} \int_\Omega |z|^p dx \geq 0, \quad \text{for all} \quad z \in Z.
\]

Then \(I(z) \geq 0 \) for all \(z \in Z \) and Lemma 2 implies that the infimum of \(I \) on \(C^\pm \) is achieved in \(C^\pm \setminus Z \). Therefore \(u \in C^+ \) and \(v \in C^- \).

To prove item \((ii)\) we use Lemma 5 and a variant of the Mountain Pass Theorem without the Palais-Smale condition. (See [9, Theorem 6].) Then there exists a sequence \(\{w_n\} \subset X \) such that

\[
I(w_n) \to c_1 > \rho > 0 \quad \text{and} \quad \|I'(w_n)\|_{X^*} (1 + \|w_n\|) \to 0 \quad \text{in} \quad X^* \quad \text{as} \quad n \to \infty. \tag{3.2}
\]

Arguing as in the proof of Lemma 2, we choose \(t_n = \|w_n\| \) to obtain

\[
\left| \frac{I'(u_n) \cdot w_n}{t_n^p} \right| \leq \frac{\|I'(w_n)\|_{X^*} (1 + \|w_n\|)}{t_n^p} \to 0, \quad \text{as} \quad n \to \infty.
\]
If the sequence \(\{w_n\} \subset X \) is unbounded, then
\[
|w_n(x)| \to 0, \text{ as } n \to \infty, \text{ for all } x \in \Omega.
\]
Since
\[
|I'(w_n) \cdot w_n| \leq \|I'(w_n)\|_X \cdot (1 + \|w_n\|),
\]
by (3.2) we obtain that
\[
|I'(w_n) \cdot w_n| \to 0 \text{ as } n \to \infty
\]
and hence
\[
o(1) = I'(w_n) \cdot w_n = \|w_n\|^p + \int_{\Omega} g(x, w_n) w_n dx - \lambda_1 \int_{\Omega} h|w_n|^p dx.
\]
By (2.8) we conclude that
\[
0 \leq \|w_n\|^p - \lambda_1 \int_{\Omega} h|w_n|^p dx = - \int_{\Omega} g(x, w_n) w_n dx + o(1) \leq \left| \int_{\Omega} g(x, w_n) w_n dx \right| + o(1)
\]
By \((G_1)\) and \((G_3)\), the function \(g(x, w_n(x))w_n(x)\) is bounded for all \(x \in \Omega\) and for all \(n\). By (2.6), \(g(x, w_n(x))w_n(x) \to 0\) as \(n \to \infty\) a.e. on \(\Omega\). Using the Dominated Convergence Theorem we obtain \(\int_{\Omega} g(x, w_n) w_n dx \to 0\), as \(n \to \infty\). Then
\[
\|w_n\|^p - \lambda_1 \int_{\Omega} h|w_n|^p dx \to 0, \text{ as } n \to \infty.
\]
Since
\[
c_1 + o(1) = I(w_n) = \frac{1}{p} \left[\|w_n\|^p - \frac{\lambda_1}{p} \int_{\Omega} h|w_n|^p dx \right] + \int_{\Omega} G(x, w_n) dx,
\]
using Fatou’s Lemma, together with (2.6) and \((G_7)\), we obtain
\[
c_1 \leq \limsup_{n \to \infty} \int_{\Omega} G(x, w_n) dx \leq \int_{\Omega} S(x) dx \leq 0,
\]
which contradicts (3.2). Hence the sequence \(\{w_n\} \subset X\) is bounded and, passing to a subsequence if necessary (still denoted in the same way), there exists \(w \in X\) such that
\[
w_n \rightharpoonup w \text{ in } X, \text{ as } n \to \infty.
\]
We also have \(\| I'(w_n) \|_{X^*}(1 + \|w_n\|) \to 0 \) as \(n \to \infty \), it follows that \(\| I'(w_n) \|_{X^*} \to 0 \) in \(X^* \) as \(n \to \infty \) and by a similar argument as that of Lemma 2 we conclude that
\[
w_n \to w, \quad \text{in } X \quad \text{as } n \to \infty
\]
and the Theorem is proved. \(\square \)

4 Example

In this section, inspired by [3], we will define a function \(g \) that satisfies the assumptions \((G_1) - (G_7)\).

Consider \(\Omega = (0, 1) \), \(p = 2 \) and \(h = 1 \). In this case, the function \(\phi_1(x) = \sin(\pi x) \) is an eigenfunction associated to the first eigenvalue \(\lambda_1 = \pi^4 \) of problem (1.1). We remark that \(\phi_1 \) is symmetric with respect to \(x = \frac{1}{2} \).

Let \(g : \Omega \times \mathbb{R} \to \mathbb{R} \) be defined by
\[
g(x, s) = R(x)g_1(x)
\]
where \(R(x) = 1 \) and \(g_1 : \mathbb{R} \to \mathbb{R} \) is given by
\[
g_1(s) = \begin{cases}
 s, & \text{for } 0 \leq s \leq 1, \\
 2 - s, & \text{for } 1 < s \leq 5, \\
 s - 8, & \text{for } 5 < s \leq 8 + \frac{\sqrt{30}}{2}, \\
 8 + \sqrt{30} - s, & \text{for } 8 + \frac{\sqrt{30}}{2} < s \leq 8 + \sqrt{30}, \\
 0, & \text{for } s \geq 8 + \sqrt{30}, \\
 -g(-s), & \text{for } s \leq 0,
\end{cases}
\]

Defining \(G_1(s) = \int_0^s g_1(t)dt \) we have
\[
G(x, s) = \int_0^s g(x, t)dt = R(x)G_1(s) \quad \text{and} \quad S(x) = T(x) = -\frac{R(x)}{2}.
\]
Choosing $\delta < 1$ it is easy to see that g verifies the assumptions $(G_1) - (G_5)$ and (G_7).

Now we have to prove that g also verifies (G_6), for $t^+ = 8$ and $t^- = -8$.

Since ϕ_1 is symmetric with respect to $x = \frac{1}{2}$, the same is true for G. Then we have $G(x, 8\phi_1(x)) = G(1 - x, 8\phi_1(1 - x))$ and

$$
\int_0^1 G(x, 8\phi_1(x))dx = 2 \int_0^{\frac{1}{2}} G(x, 8\phi_1(x))dx = \int_0^{\frac{1}{2}} G(8\phi_1(x))dx \\
= 2 \left[\int_0^{\frac{8}{7}} G_1(8\phi_1(x))dx + \int_{\frac{4}{7}}^{\frac{8}{7}} G_1(8\phi_1(x))dx + \int_{\frac{4}{7}}^{\frac{8}{7}} G_1(8\phi_1(x))dx \right].
$$

Note that for $0 \leq x \leq \frac{1}{6}$ we have that $0 \leq 8 \sin(\pi x) \leq 4$. Then we have

$$
\max_{x \in [0, \frac{1}{6}]} G_1(8\phi_1(x)) = \max_{y \in [0, 4]} G_1(y) = G_1(2).
$$

Similarly,

$$
\max_{x \in [\frac{1}{6}, \frac{1}{4}]} G_1(8\phi_1(x)) = \max_{y \in [\frac{1}{4}, 4\sqrt{3}]} G_1(y) = G_1(4)
$$

and

$$
\max_{x \in [\frac{1}{4}, \frac{1}{2}]} G_1(8\phi_1(x)) = \max_{y \in [4\sqrt{3}, 8]} G_1(y) = G_1(4\sqrt{3}) < G_1(6).
$$

Therefore,

$$
\int_0^1 G(x, 8\phi_1(x))dx \leq 2 \left[\int_0^{\frac{1}{8}} G_1(2)dx + \int_{\frac{1}{8}}^{\frac{1}{4}} G_1(4)dx + \int_{\frac{1}{4}}^{\frac{1}{2}} G_1(6)dx \right] < \int_0^1 T(x)dx < 0.
$$

Similarly, we can prove that G satisfies (G_6) for $t^- = -8$.

References

M. J. Alves
R. B. Assunção
P. C. Carrião
Departamento de Matemática
Universidade Federal de Viçosa
36571-000, Viçosa-MG, Brasil
E-mail: mariajose@mat.ufmg.br
carrion@mat.ufmg.br
ronaldo@mat.ufmg.br

O. H. Miyagaki
Departamento de Matemática
Universidade Federal de Viçosa
E-mail: olimpio@ufv.br