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Let Γ ` b : A be a type judgement in some type system S

τ = (Γ,A) is a typing of b in S (S I b : τ).

τ is a principal typing (PT) of b if S I b : τ and τ
represents any other possible typing of b.
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Principal Typing vs. Principal Type [Jim96]

Given term b and context Γ, A is a principal type of b if it
represents any other possible type of b in Γ.

Principal Type: Γ ` b :?

Example

Question: y :A→A ` λx .(y x) :?
Answer: A→A

Question: y :A→B ` λx .(y x) :?
Answer: A→B
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Principal Typing vs. Principal Type

Principal Type Principal Typing

STLC X [Hi97] X [Wells02]
Hindley/Milner X [DM82] X [Wells02]

System F ? X [Wells02]
System I X [KW04] X [KW04]
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Definition
For some typing τ in S let TermsS(τ)={a|S I a:τ}.

Definition (Typing’s Partial Order)

Let τ ≤S τ ′ iff TermsS(τ) ⊆ TermsS(τ ′)
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Principal Typing

Definition (Wells’ PT[Wells02])

A typing τ in system S is principal for some term a iff S I a:τ and
S I a:τ ′ implies τ ≤S τ ′.

Example
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Principal Typing for STLC

Definition (Hindley’s PT [Wells02])

Let τ = (Γ,B), where TAλ I a : τ . τ is principal typing of a iff for
any typing τ ′ = (Γ′,B ′) where TAλ I a : τ ′, then exists some type
substitution s such that s(Γ) ⊆ Γ′ and s(B) = B ′.

Theorem ([Wells02])

A typing τ is principal according to Wells’ PT iff τ is principal
according to Hindley’s PT.
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Simple Type System

Definition (Simple Types and Contexts)

Types A ::= K |A → A Contexts Γ ::= nil |A.Γ

- |Γ|: Γ length.

- For Γ = A1.A2. · · · .Am:
Γ≤n = A1. · · · .An

Γ≥n = An. · · · .Am

- Γ<n and Γ>n defined similar
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The System TAλdB

Syntax

Terms a ::= n | (a a) |λ.a

Typing Rules

A.Γ ` 1 : A (Var)
Γ ` n : B

A.Γ ` n + 1 : B
(Varn)

A.Γ ` b : B

Γ ` λ.b : A → B
(Lambda)

Γ ` a : A → B Γ ` b : A

Γ ` (a b) : B
(App)

11 / 24



Background
Principal Typing for λdB

Principal Typing for ES
Conclusion and Further Work

PT in TAλdB

Lemma (Weakening)

If Γ ` a : B, then Γ.A ` a : B for any type A.

Definition (PT in TAλdB)

Let τ = (Γ,B), where TAλdB I a : τ . τ is principal typing of a iff
for any typing τ ′ = (Γ′,B ′) where TAλdB I a : τ ′, then exists
some type substitution s such that s(Γ) = Γ′≤|Γ| and s(B) = B ′.
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Theorem (Correspondence for TAλdB)

A typing τ is PT of b in TAλdB iff τ is principal of b according to
Wells’ PT

Theorem (PT for TAλdB)

TAλdB satisfies PT property
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Type Inference for TAλdB [AyMu2000]

1st Given term a, let a′ be its annoted version.
Ex: for a = λ.( 2 1 ), a′ = (λ.( 2 Γ1

A1
1 Γ2

A2
)Γ3
A3

)Γ4
A4

2nd Let R0 be the set of subterms of a′. Start using the type
inference algorithm on 〈R0, ∅〉

3rd When 〈∅,E 〉 is reached, E is the set of equations on type and
context variables

4th Use a first order unification algorithm to give you the m.g.u.
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Type Inference for TAλdB

(Var) 〈R ∪ {1Γ
A }, E〉 →
〈R, E ∪ {Γ = A.Γ′}〉

(Varn) 〈R ∪ {nΓ
A }, E〉 →
〈R, E ∪ {Γ = A′

1. · · · .A′
n−1.A.Γ′}〉

(Lambda) 〈R ∪ {(λ.aΓ1
A1

)Γ2
A2
}, E〉 →

〈R, E ∪ {A2 = A∗ → A1, Γ1 = A∗.Γ2}〉

(App) 〈R ∪ {(aΓ1
A1

bΓ2
A2

)Γ3
A3
}, E〉 →

〈R, E ∪ {Γ1 = Γ2, Γ2 = Γ3, A1 = A2 → A3}〉

Obs: A′, A∗ and Γ′ are fresh variables
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Principal Typing for TAλse
Principal Typing for TAλσ

The System TAλse [KR97]

Syntax
Terms a ::= n | (a a) |λ.a | a σia |ϕj

k a

Typing Rules

Γ≤k .Γ≥k+i ` a : A

Γ ` ϕi
k a : A

(Phi)
Γ≥i ` b : B Γ<i .B.Γ≥i ` a : A

Γ ` a σib : A
(Sigma)

16 / 24
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Principal Typing for TAλse
Principal Typing for TAλσ

PT in TAλse

Definition (PT in TAλse )

Let τ = (Γ,B), where TAλse I a : τ . τ is principal typing of a iff
for any typing τ ′ = (Γ′,B ′) where TAλse I a : τ ′, then exists some
type substitution s such that s(Γ) = Γ′≤|Γ| and s(B) = B ′.

Theorem (Correspondence for TAλse )

A typing τ is PT of b in TAλse iff τ is principal of b according to
Wells’ PT definition
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PT for TAλse

Theorem (PT for TAλse )

TAλse satisfies PT property

(Sigma) 〈R ∪ {(aΓ1
A1

σibΓ2
A2

)Γ3
A3
}, E〉 →

〈R, E ∪ {A1=A3, Γ1=A′
1. · · · .A′

i−1.A2.Γ2, Γ3=A′
1. · · · .A′

i−1.Γ2}〉,

(Phi) 〈R ∪ {(ϕi
k aΓ1

A1
)Γ2
A2
}, E〉 →

〈R, E ∪ {A1 = A2, Γ2 = A′
1. · · · .A′

k+i−1.Γ
′, Γ1 = A′

1. · · · .A′
k .Γ

′}〉,
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Principal Typing for TAλse
Principal Typing for TAλσ

The System TAλσ[ACCL91]

Syntax
Terms a ::= 1 | (a a) |λ.a | a[s] Substitution s ::= id | ↑ | a.s | s ◦ s

Typing rules
Terms

A.Γ ` 1 : A (var)
A.Γ ` b : B

Γ ` λ.b : A → B
(lambda)

Γ ` a : A → B Γ ` b : A

Γ ` (a b) : B
(app)

Γ ` s B Γ′ Γ′ ` a : A

Γ ` a[s] : A
(clos)

Substitutions

Γ ` id B Γ (id) A.Γ `↑ BΓ (shift)

Γ ` a : A Γ ` s B Γ′

Γ ` a.s B A.Γ′
(cons)

Γ ` s ′′ B Γ′′ Γ′′ ` s ′ B Γ′

Γ ` s ′ ◦ s ′′ B Γ′
(comp)
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Principal Typing for TAλse
Principal Typing for TAλσ

PT in TAλσ

Lemma (Weakening)

If Γ ` a : B, then Γ.A ` a : B for any type A. Particularly, if
Γ ` s B Γ′ then Γ.A ` s B Γ′.A.

Definition (PT in TAλσ)

Let τ = (Γ, T), where TAλσ I a : τ .τ is principal typing of a iff for
any typing τ ′ = (Γ′, T′) where TAλσ I a : τ ′, then exists some
type substitution s such that s(Γ) = Γ′≤|Γ| and: if T is a type then

s(T) = T′ otherwise s(T) = T′
≤|T|.
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Type Inference for TAλσ [Bo95]

(Var) 〈R ∪ {1Γ
A }, E〉 →〈R, E ∪ {Γ = A.Γ′}〉

(Lambda) 〈R ∪ {(λ.aΓ1
A1

)Γ2
A2
}, E〉 →〈R, E ∪ {A2 = A∗ → A1, Γ1 = A∗.Γ2}〉

(App) 〈R ∪ {(aΓ1
A1

bΓ2
A2

)Γ3
A3
}, E〉 →〈R, E ∪ {Γ1 = Γ2, Γ2 = Γ3, A1 = A2 → A3}〉

(Clos) 〈R ∪ {(aΓ1
A1

[sΓ2
Γ3

])Γ4
A2
}, E〉 →〈R, E ∪ {Γ1 = Γ3, Γ2 = Γ4, A1 = A2}〉

(Id) 〈R ∪ {idΓ1
Γ2
}, E〉 →〈R, E ∪ {Γ1 = Γ2}〉

(Shift) 〈R ∪ {↑Γ1
Γ2
}, E〉 →〈R, E ∪ {Γ1 = A′.Γ2}〉

(Cons) 〈R ∪ {(aΓ1
A1

.sΓ2
Γ3

)Γ4
Γ5
}, E〉 →〈R, E ∪ {Γ1 = Γ2, Γ2 = Γ4, Γ5 = A1.Γ3}〉

(Comp) 〈R ∪ {(sΓ1
Γ2

◦ tΓ3
Γ4

)Γ5
Γ6
}, E〉→〈R, E ∪ {Γ1 = Γ4, Γ2 = Γ6, Γ3 = Γ5}〉

22 / 24
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Conclusion

PT is not a trivial property

A definition of PT for λ-calculus in de Bruijn notation was
proposed and proved correct

The PT property for TAλdB was proved

A definition of PT for λse and λσ were proposed and proved
correct

The PT property were proved using a type inference algorithm
for λse [AyMu2000] and λσ [Bo95].
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Extending a λ-calculus with explicit substitution which preserves strong normalisation into a confluent
calculus on open terms,
Journal of Functional Programming, 7:395–420, 1997. Cambridge University Press.

J.B. Wells

The essence of principal typings,
LNCS: Proceedings of the 29th International Colloquium on Automata, Languages and Programming,
2380:913–925, 2002. Springer-Verlag.

24 / 24


	Background
	Principal Typing for dB
	Principal Typing for ES
	Principal Typing for TAse
	Principal Typing for TA

	Conclusion and Further Work

