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λ-calculus with nameless dummies
Intersection types

Motivation: programs & types

Nowadays it is well known the relation between programs and
types.

λ-calculus is the theoretical framework in the development of
programing and specification languages.

Develop more elaborated systems of types is necessary!
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Programs & types
λ-calculus with nameless dummies
Intersection types

λ-calculus in de Bruijn notation

Invented by Nicolaas Govert de Bruijn [dB72].

Own the same properties than the λ-calculus with names.

It avoids necessity of α-conversion.

Used by some explicit substitutions calculi.
(e.g. λσ, λse).

JumpdB
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Programs & types
λ-calculus with nameless dummies
Intersection types

Intersection type disciplines

Introduced by Coppo & Dezani-Ciancaglini [CDC80] and
Sallé [Sal78] in order to provide a characterization of the SN
terms of the λ-calculus.

Used for characterizing evaluation properties of λ-terms.

It incorporates type polymorphism in a finitary way (listed
instead quantified)

Some problems arise such as the necessity for a practical
treatment of principal typings.
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Syntax of λdB
β-reduction in λdB

Syntax of λdB

Definition (Set ΛdB)

The set of λdB-terms

Terms M ::= n | (M M) |λ.M where n ∈ N∗= Nr{0}

Examples

λ.(λ.(1 4 2 ) 1 )

λ.1 ' λx .x ' λy .y

Remark: β and η are defined updating indices accordingly.
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Syntax of λdB
β-reduction in λdB

Syntax of λdB

Definition (Free indices & closed terms)

1 FI (M) is the set of free indices of M, defined by

FI ( n) = { n}
FI (λ.M) = { n−1, ∀ n ∈ FI (M), n > 1}

FI (M1 M2) = FI (M1) ∪ FI (M2)

2 M is closed if FI (M) = ∅.

3 sup(M) is the greatest value of a free index in M.
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Definition (i-lift)

M+i is defined inductively as

1 . (M1 M2)+i = (M+i
1 M+i

2 ) 3 . n+i =

{
n + 1 , if n > i
n , if n ≤ i .

2 . (λ.M1)+i = λ.M
+(i+1)
1

The lift M+ of M is its 0-lift.
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Lemma

FI (M+i ) = { n | n∈FI (M), n ≤ i} ∪ { n+1 | n∈FI (M), n > i}

Lemma

1 sup(M+i ) = sup(M)+1, if sup(M)> i .

2 sup(M+i ) = sup(M), otherwise.
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Syntax of λdB
β-reduction in λdB

β-contraction in λdB

Definition (β-substitution)

The β-substitution {n /N}M is defined inductively by

1 . {n /N}(M1 M2) = ({n /N}M1 {n /N}M2)

2 . {n /N}λ.M1 = λ.{n + 1 /N+}M1

3 . {n /N}m =

 m − 1 , if m > n
N, if m = n
m , if m < n

Definition (β-contraction in λdB)

β-contraction in λdB is defined by

(λ.M N)�β{1 /N}M
10 / 26
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β-contraction in λdBfixme

Lemma

FI ({1 /N}M)=FI (λ.M N), if 1∈FI (M).
FI ({ 1 /N}M)=FI (λ.M), otherwise.

Corollary

sup({ 1 /N}M) ≤ sup(λ.M N).
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β-reduction in λdB

Definition (β-reduction in λdB)

β-reduction in λdB is defined by:

(λ.M N)�β{ 1 /N}M
(λ.M N)−→β { 1 /N}M

M−→β N

λ.M−→β λ.N

M1−→β N1

(M1 M2)−→β (N1 M2)

M2−→β N2

(M1 M2)−→β (M1 N2)
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β-reduction in λdB

Theorem (Free indices after β-reduction)

Let M −→β N:

FI (N) ⊆ FI (M).

Consequently,

sup(N) ≤ sup(M).
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Intersection types in λdB
u Typing System
Basic properties of the u typing system

Intersection types in λdB

Definition (Intersection types and contexts)

1 The intersection types are defined by:

T ::= A |U→T
U ::= ω |U u U |T

2 u is commutative, associative and idempotent, where ω is
neutral.
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Intersection types in λdB
u Typing System
Basic properties of the u typing system

Intersection types in λdB

Definition

1 The contexts are sequences of types in U, defined by:

Γ ::= nil |U.Γ, for U ∈ U

2 env M
ω := ω.ω. · · · .ω.nil such that |env M

ω | = sup(M).

3 The extension of u for contexts is done by

nil u Γ = Γ u nil = Γ

(U1.Γ) u (U2.∆) = (U1 u U2).(Γ u ∆)

Remark: M :〈Γ ` U〉 is used instead of Γ ` M : U

15 / 26
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Intersection types in λdB
u Typing System
Basic properties of the u typing system

Definition (u Typing Rules)

For T ∈ T and U ∈ U:

1 :〈T .nil ` T 〉
var

M :〈nil ` T 〉
λ.M :〈nil ` ω→T 〉

→′i

n :〈Γ ` U〉
n+1:〈ω.Γ ` U〉

varn
M1 :〈Γ ` U→T 〉 M2 :〈Γ′ ` U〉

M1 M2 :〈Γ u Γ′ ` T 〉
→e

M :〈env M
ω ` ω〉

ω
M :〈Γ ` U1〉 M :〈Γ ` U2〉

M :〈Γ ` U1 u U2〉
ui

M :〈U.Γ ` T 〉
λ.M :〈Γ ` U→T 〉

→i
M :〈Γ ` U〉 〈Γ ` U〉 v 〈Γ′ ` U ′〉

M :〈Γ′ ` U ′〉
v
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Intersection types in λdB
u Typing System
Basic properties of the u typing system

Definition (v)

The binary relation v is given by the following rules:

Φ v Φ
ref

Φ1 v Φ2 Φ2 v Φ3

Φ1 v Φ3
tr

U1 u U2 v U1
ue

U1 v V1 U2 v V2

U1 u U2 v V1 u V2
u

U2 v U1 T1 v T2

U1→T1 v U2→T2
→ U1 v U2

Γ≤i
.U1.Γ>i v Γ≤i

.U2.Γ>i

vc

U1 v U2 Γ′ v Γ

〈Γ ` U1〉 v 〈Γ′ ` U2〉
v〈〉
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Intersection types in λdB
u Typing System
Basic properties of the u typing system

Basic properties

Lemma

1 If U∈U, then U =ω or U =un
i=1Ti for n≥1 and Ti ∈T.

2 U v ω.

3 If ω v U, then U = ω.
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Intersection types in λdB
u Typing System
Basic properties of the u typing system

Basic properties

Lemma (Properties of u, v, typings and contexts)

1 If Γ v Γ′ and U v U ′, then U.Γ v U ′.Γ′.

2 Γ v Γ′ iff |Γ|= |Γ′|=m and, if m > 0 then ∀i , Γi v Γ′i .

3 If |Γ| = sup(M), then Γ v env M
ω .

4 If env M
ω v Γ, then Γ = env M

ω .

5 〈Γ ` U〉 v 〈Γ′ ` U ′〉 iff Γ′ v Γ and U v U ′.

6 If Γ v Γ′ and ∆ v ∆′, then Γ u ∆ v Γ′ u ∆′.
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Intersection types in λdB
u Typing System
Basic properties of the u typing system

More properties

Lemma

1 If M :〈Γ ` U〉, then |Γ|=sup(M).

2 For every Γ and M such that |Γ| = sup(M), one has
M :〈Γ ` ω〉.

Lemma (derivable rules)

1
M :〈Γ ` U1〉 M :〈∆ ` U2〉

M :〈Γ u ∆ ` U1 u U2〉
u′i

2

1:〈U.nil ` U〉
var′
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Subject reduction for λdB with u types

Lemma (Generation)

1 If n :〈Γ ` U〉, then Γn =V where V v U.

2 Let λ.M :〈Γ ` U〉:
U =ω or U =uk

i=1(Vi→Ti )
where k≥1 and ∀i , M :〈Vi .Γ ` Ti 〉, if sup(M)>0.

U =ω or U =uk
i=1(Vi→Ti )

where k≥1 and ∀i , M :〈nil ` Ti 〉, otherwise.
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Changes in typings for lifting and β-substitution

Lemma (Typings for lifted terms)

If M :〈Γ ` U〉 and 0 ≤ i < sup(M), then M+i :〈Γ≤i
. ω . Γ>i ` U〉

Lemma (Typings for β-substitution)

Let M :〈Γ ` U〉, for sup(M) > 0, and N :〈∆ ` Γi 〉:
1 { i /N}M :〈(Γ<i . Γ>i ) u ∆ ` U〉,

if i ∈FI (M) and sup(N)≥ i−1.

2 { i /N}M :〈Γ<i . Γ>i ` U〉,
if i /∈FI (M).
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Subject Reduction

Definition (Restriction of contexts)

Γ�M = Γ≤sup(M)
. nil

Theorem (SR for β-contraction)

If (λ.M N) :〈Γ ` U〉 then { 1 /N}M :〈Γ�{ 1 /N}M ` U〉
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Subject Reduction

Theorem (Subject Reduction in λdB)

If M :〈Γ ` U〉 and M −→β N, then N :〈Γ�N ` U〉.
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Conclusion, current and future works

λ-calculus in de Bruijn notation with a system of intersection
types has been proved to preserve subject reduction.

This is the first step towards the construction of adequate
explicit substitutions calculi in de Bruijn notation using
intersection type.

Principal typings property has to be guaranteed because this
property supports the possibility of true separate compilation
and compositional software analysis [Wel02].
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