$\begin{array}{l} & \mbox{Motivation}\\ \lambda_{d\mathcal{B}} \colon \mbox{the λ-calculus in de Bruijn Notation}\\ & \mbox{The intersection type system for $\lambda_{d\mathcal{B}}$}\\ & \mbox{Subject reduction for $\lambda_{d\mathcal{B}}$ with \Box types}\\ & \mbox{Conclusion, current and future work} \end{array}$

Subject Reduction for the λ -Calculus with Intersection Types in de Bruijn Notation

Daniel L. Ventura^{1,2} & Mauricio Ayala Rincón¹ & Fairouz D. Kamareddine²

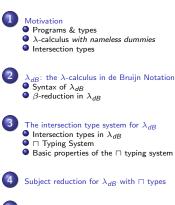
¹Grupo de Teoria da Computação - GTC/UnB Universidade de Brasília - UnB, Brasil ²ULTRA Group Heriot-Watt University, Edinburgh, Scotland

Pesquisa financiada pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq

XV EBL/XIV SLALM, 11-17/05/2008

 $\begin{array}{l} & \text{Motivation} \\ \lambda_{dB} \colon \text{the } \lambda \text{-calculus in de Bruijn Notation} \\ & \text{The intersection type system for } \lambda_{dB} \\ & \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ & \text{Conclusion, current and future work} \end{array}$

Talk's Plan



Conclusion, current and future work

 $\begin{array}{l} \lambda_{d\mathcal{B}} : \mbox{ the } \lambda\mbox{-calculus in de Bruijn Notation} \\ \mbox{The intersection type system for } \lambda_{d\mathcal{B}} \\ \mbox{Subject reduction for } \lambda_{d\mathcal{B}} \mbox{ with } \square \mbox{ types} \\ \mbox{Conclusion, current and future work} \end{array}$

Programs & types λ -calculus with nameless dummies Intersection types

Motivation: programs & types

- Nowadays it is well known the relation between programs and types.
- $\lambda\text{-calculus}$ is the theoretical framework in the development of programing and specification languages.
- Develop more elaborated systems of types is necessary!

 $\begin{array}{l} \lambda_{d\mathcal{B}} : \mbox{ the } \lambda\mbox{-calculus in de Bruijn Notation} \\ \mbox{The intersection type system for } \lambda_{d\mathcal{B}} \\ \mbox{Subject reduction for } \lambda_{d\mathcal{B}} \mbox{ with } \square \mbox{ types} \\ \mbox{Conclusion, current and future work} \end{array}$

Programs & types λ -calculus with nameless dummies Intersection types

Motivation: programs & types

- Nowadays it is well known the relation between programs and types.
- λ -calculus is the theoretical framework in the development of programing and specification languages.
- Develop more elaborated systems of types is necessary!

 $\begin{array}{l} \lambda_{d\mathcal{B}} : \mbox{ the } \lambda\mbox{-calculus in de Bruijn Notation} \\ \mbox{The intersection type system for } \lambda_{d\mathcal{B}} \\ \mbox{Subject reduction for } \lambda_{d\mathcal{B}} \mbox{ with } \square \mbox{ types} \\ \mbox{Conclusion, current and future work} \end{array}$

Programs & types λ -calculus with nameless dummies Intersection types

Motivation: programs & types

- Nowadays it is well known the relation between programs and types.
- λ -calculus is the theoretical framework in the development of programing and specification languages.
- Develop more elaborated systems of types is necessary!

 $\begin{array}{l} \lambda_{dB} \colon \text{the } \lambda \text{-calculus in de Bruijn Notation} \\ \text{The intersection type system for } \lambda_{dB} \\ \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ \text{Conclusion, current and future work} \end{array}$

Programs & types λ -calculus with nameless dummies Intersection types

4/26

λ -calculus in de Bruijn notation

- Invented by Nicolaas Govert de Bruijn [dB72].
- Own the same properties than the λ -calculus with names.
- It avoids necessity of α -conversion.
- Used by some explicit substitutions calculi. (e.g. $\lambda \sigma$, λs_e).

▶ JumpdB

 $\begin{array}{l} \lambda_{dB} \colon \text{the } \lambda \text{-calculus in de Bruijn Notation} \\ \text{The intersection type system for } \lambda_{dB} \\ \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ \text{Conclusion, current and future work} \end{array}$

Programs & types λ -calculus with nameless dummies Intersection types

λ -calculus in de Bruijn notation

- Invented by Nicolaas Govert de Bruijn [dB72].
- Own the same properties than the λ -calculus with names.
- It avoids necessity of α -conversion.
- Used by some explicit substitutions calculi. (e.g. $\lambda \sigma$, λs_e).

▶ JumpdB

 $\begin{array}{l} \lambda_{dB} \colon \text{the } \lambda \text{-calculus in de Bruijn Notation} \\ \text{The intersection type system for } \lambda_{dB} \\ \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ \text{Conclusion, current and future work} \end{array}$

Programs & types λ -calculus with nameless dummies Intersection types

λ -calculus in de Bruijn notation

- Invented by Nicolaas Govert de Bruijn [dB72].
- Own the same properties than the λ -calculus with names.
- It avoids necessity of α -conversion.
- Used by some explicit substitutions calculi. (e.g. $\lambda \sigma$, λs_e).

▶ JumpdB

 $\begin{array}{l} \lambda_{dB} \colon \text{the } \lambda \text{-calculus in de Bruijn Notation} \\ \text{The intersection type system for } \lambda_{dB} \\ \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ \text{Conclusion, current and future work} \end{array}$

Programs & types λ -calculus with nameless dummies Intersection types

λ -calculus in de Bruijn notation

- Invented by Nicolaas Govert de Bruijn [dB72].
- Own the same properties than the λ -calculus with names.
- It avoids necessity of α -conversion.
- Used by some explicit substitutions calculi.
 (e.g. λσ, λs_e).

🕨 JumpdB

 $\begin{array}{l} \lambda_{dB} \colon \text{the } \lambda\text{-calculus in de Bruijn Notation} \\ \text{The intersection type system for } \lambda_{dB} \\ \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ \text{Conclusion, current and future work} \end{array}$

Programs & types λ -calculus with nameless dummies Intersection types

- Introduced by Coppo & Dezani-Ciancaglini [CDC80] and Sallé [Sal78] in order to provide a characterization of the SN terms of the λ-calculus.
- Used for characterizing evaluation properties of λ -terms.
- It incorporates type polymorphism in a finitary way (listed instead quantified)
- Some problems arise such as the necessity for a practical treatment of *principal typings*.

 $\begin{array}{l} \lambda_{dB} \colon \text{the } \lambda\text{-calculus in de Bruijn Notation} \\ \text{The intersection type system for } \lambda_{dB} \\ \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ \text{Conclusion, current and future work} \end{array}$

Programs & types λ -calculus with nameless dummies Intersection types

- Introduced by Coppo & Dezani-Ciancaglini [CDC80] and Sallé [Sal78] in order to provide a characterization of the SN terms of the λ-calculus.
- Used for characterizing evaluation properties of λ -terms.
- It incorporates type polymorphism in a finitary way (listed instead quantified)
- Some problems arise such as the necessity for a practical treatment of *principal typings*.

 $\begin{array}{l} \lambda_{dB} \colon \text{the } \lambda\text{-calculus in de Bruijn Notation} \\ \text{The intersection type system for } \lambda_{dB} \\ \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ \text{Conclusion, current and future work} \end{array}$

Programs & types λ -calculus with nameless dummies Intersection types

- Introduced by Coppo & Dezani-Ciancaglini [CDC80] and Sallé [Sal78] in order to provide a characterization of the SN terms of the λ-calculus.
- Used for characterizing evaluation properties of λ -terms.
- It incorporates type polymorphism in a finitary way (listed instead quantified)
- Some problems arise such as the necessity for a practical treatment of *principal typings*.

 $\begin{array}{l} \lambda_{dB} \colon \text{the } \lambda\text{-calculus in de Bruijn Notation} \\ \text{The intersection type system for } \lambda_{dB} \\ \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ \text{Conclusion, current and future work} \end{array}$

Programs & types λ -calculus with nameless dummies Intersection types

- Introduced by Coppo & Dezani-Ciancaglini [CDC80] and Sallé [Sal78] in order to provide a characterization of the SN terms of the λ-calculus.
- Used for characterizing evaluation properties of λ -terms.
- It incorporates type polymorphism in a finitary way (listed instead quantified)
- Some problems arise such as the necessity for a practical treatment of *principal typings*.

 $\begin{array}{c} & \text{Motivation} \\ \lambda_{d\mathcal{B}} \text{: the } \lambda \text{-calculus in de Bruijn Notation} \\ & \text{The intersection type system for } \lambda_{dB} \\ & \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ & \text{Conclusion, current and future work} \end{array}$

Syntax of λ_{dB} β -reduction in λ_{dB}

Syntax of λ_{dB}

Definition (Set Λ_{dB})

The set of λ_{dB} -terms

Terms $M ::= \underline{n} | (M M) | \lambda M$ where $n \in \mathbb{N}_* = \mathbb{N} \setminus \{0\}$

Examples

 $\lambda \cdot (\lambda \cdot (\underline{1} \ \underline{4} \ \underline{2}) \ \underline{1})$ $\lambda \cdot \underline{1} \simeq \lambda x \cdot x \simeq \lambda y \cdot y$

Remark: β and η are defined updating indices accordingly.

 $\begin{array}{c} & \text{Motivation} \\ \lambda_{d\mathcal{B}} \text{: the } \lambda \text{-calculus in de Bruijn Notation} \\ & \text{The intersection type system for } \lambda_{dB} \\ & \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ & \text{Conclusion, current and future work} \end{array}$

Syntax of λ_{dB} β -reduction in λ_{dB}

Syntax of λ_{dB}

Definition (Set Λ_{dB})

The set of λ_{dB} -terms

Terms $M ::= \underline{n} | (M M) | \lambda M$ where $n \in \mathbb{N}_* = \mathbb{N} \setminus \{0\}$

Examples

 $\lambda . (\lambda . (\underline{1} \underline{4} \underline{2}) \underline{1})$ $\lambda . 1 \simeq \lambda x . x \simeq \lambda y . y$

Remark: β and η are defined updating indices accordingly.

Motivation λ_{dB} : the λ -calculus in de Bruijn Notation The intersection type system for λ_{dB} Subject reduction for λ_{dB} with \Box types Conclusion, current and future work

Syntax of λ_{dB}

Syntax of λ_{dB} β -reduction in λ_{dB}

Definition (Free indices & closed terms)

1 FI(M) is the set of **free indices** of *M*, defined by

$$FI(\underline{n}) = \{\underline{n}\}$$

$$FI(\lambda.M) = \{\underline{n-1}, \forall \underline{n} \in FI(M), n > 1\}$$

$$FI(M_1 M_2) = FI(M_1) \cup FI(M_2)$$

M is closed if *FI(M) = Ø*. *sup(M)* is the greatest value of a free index in *M*.

 $\begin{array}{c} & \text{Motivation} \\ \lambda_{d\mathcal{B}} \text{: the } \lambda \text{-calculus in de Bruijn Notation} \\ & \text{The intersection type system for } \lambda_{dB} \\ & \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ & \text{Conclusion, current and future work} \end{array}$

Syntax of λ_{dB}

Syntax of λ_{dB} β -reduction in λ_{dB}

イロト 不得 とくほと くほとう ほ

8/26

Definition (*i*-lift)

 $\begin{aligned} M^{+i} & \text{ is defined inductively as} \\ 1. & (M_1 M_2)^{+i} = (M_1^{+i} M_2^{+i}) \\ 2. & (\lambda . M_1)^{+i} = \lambda . M_1^{+(i+1)} \end{aligned} \qquad 3. \ \underline{n}^{+i} = \begin{cases} \frac{n+1}{n}, & \text{ if } n > i \\ \underline{n}, & \text{ if } n \leq i. \end{cases}$

The **lift** M^+ of M is its 0-lift.

 $\begin{array}{c} & \text{Motivation} \\ \lambda_{d\mathcal{B}} \colon \text{the λ-calculus in de Bruijn Notation} \\ & \text{The intersection type system for λ_{dB}} \\ & \text{Subject reduction for λ_{dB} with \square types} \\ & \text{Conclusion, current and future work} \end{array}$

Syntax of λ_{dB} β -reduction in λ_{dB}

Syntax of λ_{dB}

Lemma

$$FI(M^{+i}) = \{ \underline{n} \mid \underline{n} \in FI(M), n \le i \} \cup \{ \underline{n+1} \mid \underline{n} \in FI(M), n > i \}$$

Lemma

1
$$sup(M^{+i}) = sup(M) + 1$$
, if $sup(M) > i$.

2
$$sup(M^{+i}) = sup(M)$$
, otherwise.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\begin{array}{c} \text{Motivation}\\ \lambda_{dB}\text{: the λ-calculus in de Bruijn Notation}\\ \text{The intersection type system for λ_{dB}}\\ \text{Subject reduction for λ_{dB} with \square types}\\ \text{Conclusion, current and future work} \end{array}$

Syntax of λ_{dB} β -reduction in λ_{dB}

β -contraction in λ_{dB}

Definition (β -substitution)

The β -substitution $\{\underline{n}/N\}M$ is defined inductively by

1.
$$\{\underline{n}/N\}(M_1 \ M_2) = (\{\underline{n}/N\}M_1 \ \{\underline{n}/N\}M_2$$

2. $\{\underline{n}/N\}\lambda.M_1 = \lambda.\{\underline{n+1}/N^+\}M_1$
3. $\{\underline{n}/N\}\underline{m} = \begin{cases} \underline{m-1}, \text{ if } m > n\\ N, & \text{ if } m = n\\ \underline{m}, & \text{ if } m < n \end{cases}$

Definition (β -contraction in λ_{dB})

 β -contraction in λ_{dB} is defined by

 $(\lambda.MN) \triangleright_{\beta} \{\underline{1}/N\}M$

 $\begin{array}{l} & \text{Motivation} \\ \lambda_{d\mathcal{B}} \text{: the λ-calculus in de Bruijn Notation} \\ & \text{The intersection type system for λ_{dB}} \\ & \text{Subject reduction for λ_{dB} with \square types} \\ & \text{Conclusion, current and future work} \end{array}$

Syntax of λ_{dB} β -reduction in λ_{dB}

β -contraction in λ_{dB} fixme

Lemma

$$FI(\{\underline{1}/N\}M) = FI(\lambda.M N), \text{ if } \underline{1} \in FI(M).$$

$$FI(\{\underline{1}/N\}M) = FI(\lambda.M), \text{ otherwise.}$$

Corollary

 $sup(\{\underline{1}/N\}M) \leq sup(\lambda.M N).$

 $\begin{array}{l} & \text{Motivation} \\ \lambda_{d\mathcal{B}} \text{: the λ-calculus in de Bruijn Notation} \\ & \text{The intersection type system for λ_{dB}} \\ & \text{Subject reduction for λ_{dB} with \square types} \\ & \text{Conclusion, current and future work} \end{array}$

Syntax of λ_{dB} β -reduction in λ_{dB}

β -reduction in λ_{dB}

Definition (β -reduction in λ_{dB})

 β -reduction in λ_{dB} is defined by:

$$\frac{(\lambda.M N) \triangleright_{\beta} \{\underline{1}/N\}M}{(\lambda.M N) \longrightarrow_{\beta} \{\underline{1}/N\}M} \qquad \frac{M \longrightarrow_{\beta} N}{\lambda.M \longrightarrow_{\beta} \lambda.N}$$
$$\frac{M_{1} \longrightarrow_{\beta} N_{1}}{(M_{1} M_{2}) \longrightarrow_{\beta} (N_{1} M_{2})} \qquad \frac{M_{2} \longrightarrow_{\beta} N_{2}}{(M_{1} M_{2}) \longrightarrow_{\beta} (M_{1} N_{2})}$$

 $\begin{array}{l} & \text{Motivation} \\ \lambda_{d\mathcal{B}} \text{: the λ-calculus in de Bruijn Notation} \\ & \text{The intersection type system for λ_{dB}} \\ & \text{Subject reduction for λ_{dB} with \square types} \\ & \text{Conclusion, current and future work} \end{array}$

Syntax of λ_{dB} β -reduction in λ_{dB}

β -reduction in λ_{dB}

Theorem (Free indices after β -reduction)

Let $M \longrightarrow_{\beta} N$:

•
$$FI(N) \subseteq FI(M)$$
.

Consequently,

• $sup(N) \leq sup(M)$.

 $\begin{array}{c} & \text{Motivation} \\ \lambda_{dB} \colon \text{the } \lambda \text{-calculus in de Bruijn Notation} \\ & \textbf{The intersection type system for } \lambda_{dB} \\ & \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ & \text{Conclusion, current and future work} \end{array}$

Intersection types in λ_{dB} \Box Typing System Basic properties of the \Box typing system

Intersection types in λ_{dB}

Definition (Intersection types and contexts)

The intersection types are defined by:

$$\mathbb{T} ::= \mathcal{A} \, | \, \mathbb{U} \, \rightarrow \, \mathbb{T}$$
$$\mathbb{U} ::= \omega \, | \, \mathbb{U} \, \sqcap \, \mathbb{U} \, | \, \mathbb{T}$$

2 \sqcap is commutative, associative and idempotent, where ω is neutral.

 $\begin{array}{l} \mbox{Motivation}\\ \lambda_{dB}\colon \mbox{the }\lambda\mbox{-calculus in de Bruijn Notation}\\ \mbox{The intersection type system for }\lambda_{dB}\\ \mbox{Subject reduction for }\lambda_{dB}\mbox{ with \square types}\\ \mbox{Conclusion, current and future work} \end{array}$

Intersection types in λ_{dB} \Box Typing System Basic properties of the \Box typing system

Intersection types in λ_{dB}

Definition

① The **contexts** are sequences of types in \mathbb{U} , defined by:

 $\Gamma ::= nil \mid U.\Gamma, \quad \text{for } U \in \mathbb{U}$

2
$$env_{\omega}^{M} := \omega.\omega.\cdots.\omega.nil$$
 such that $|env_{\omega}^{M}| = sup(M)$.

() The extension of \sqcap for contexts is done by

•
$$nil \sqcap \Gamma = \Gamma \sqcap nil = \Gamma$$

• $(U_1.\Gamma) \sqcap (U_2.\Delta) = (U_1 \sqcap U_2).(\Gamma \sqcap \Delta)$

Remark: $M : \langle \Gamma \vdash U \rangle$ is used instead of $\Gamma \vdash M : U$

 $\begin{array}{l} \mbox{Motivation}\\ \lambda_{dB}\colon \mbox{the }\lambda\mbox{-calculus in de Bruijn Notation}\\ \mbox{The intersection type system for }\lambda_{dB}\\ \mbox{Subject reduction for }\lambda_{dB}\mbox{ with \square types}\\ \mbox{Conclusion, current and future work} \end{array}$

Intersection types in λ_{dB} \Box Typing System Basic properties of the \Box typing system

Intersection types in λ_{dB}

Definition

① The **contexts** are sequences of types in \mathbb{U} , defined by:

 $\Gamma ::= nil \mid U.\Gamma, \quad \text{for } U \in \mathbb{U}$

2
$$env_{\omega}^{M} := \omega.\omega.\cdots.\omega.nil$$
 such that $|env_{\omega}^{M}| = sup(M)$.

() The extension of \sqcap for contexts is done by

•
$$nil \sqcap \Gamma = \Gamma \sqcap nil = \Gamma$$

• $(U_1.\Gamma) \sqcap (U_2.\Delta) = (U_1 \sqcap U_2).(\Gamma \sqcap \Delta)$

Remark: $M : \langle \Gamma \vdash U \rangle$ is used instead of $\Gamma \vdash M : U$

 $\begin{array}{l} & \text{Motivation} \\ \lambda_{d\mathcal{B}} \colon \text{the } \lambda\text{-calculus in de Bruijn Notation} \\ & \text{The intersection type system for } \lambda_{dB} \\ & \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ & \text{Conclusion, current and future work} \end{array}$

Intersection types in λ_{dB} \Box Typing System Basic properties of the \Box typing system

Definition (\Box Typing Rules)

For $T \in \mathbb{T}$ and $U \in \mathbb{U}$:

$$\underline{1}:\langle T.\textit{nil} \vdash T \rangle$$
 var

$$\frac{\underline{n}: \langle \Gamma \vdash U \rangle}{\underline{n+1}: \langle \omega.\Gamma \vdash U \rangle} \text{ varm}$$

$$\frac{M: \langle nil \vdash T \rangle}{\lambda.M: \langle nil \vdash \omega \to T \rangle} \rightarrow_{i}^{\prime}$$

$$\frac{M: \langle \Gamma \vdash U \to T \rangle \quad M_{2}: \langle \Gamma' \vdash U \rangle}{M_{1} \quad M_{2}: \langle \Gamma \sqcap \Gamma' \vdash T \rangle} \rightarrow_{e}^{e}$$

$$M: \langle \Gamma \vdash U \rangle \quad M: \langle \Gamma \vdash U \rangle$$

$$\frac{\overline{M:\langle env_{\omega}^{M}\vdash\omega\rangle}}{\overline{M:\langle I\vdash U\rangle}} \stackrel{\omega}{\longrightarrow} \frac{\frac{\overline{M:\langle I\vdash U_{1}^{\prime}} \cdot \overline{M:\langle I\vdash U_{2}^{\prime}\rangle}}{\overline{M:\langle I\vdash U_{1}} \mid U_{2}^{\prime}\rangle}}{\frac{\overline{M:\langle I\vdash U\rangle}}{\overline{\Lambda:\langle I\vdash U\rangle}} \stackrel{\omega}{\longrightarrow} \frac{\overline{M:\langle I\vdash U\rangle}}{\overline{M:\langle I\vdash U\downarrow}} \stackrel{\omega}{\longrightarrow} \frac{\overline{M:\langle I\vdash U\vert}}{\overline{M:\langle I\vdash U\downarrow}} \stackrel{\omega}{\longrightarrow} \frac{\overline{M:\langle I\vdash U\downarrow}}{\overline{M:\langle I\vdash U\downarrow}} \stackrel{\omega}{\longrightarrow} \frac{\overline{M:\langle I\vdash U\downarrow}}{\overline{$$

 $\begin{array}{l} & \text{Motivation} \\ \lambda_{d\mathcal{B}} \colon \text{the } \lambda\text{-calculus in de Bruijn Notation} \\ & \text{The intersection type system for } \lambda_{dB} \\ & \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ & \text{Conclusion, current and future work} \end{array}$

Intersection types in λ_{dB} \Box Typing System Basic properties of the \Box typing system

Definition (\sqsubseteq)

The binary relation \sqsubseteq is given by the following rules:

$$\frac{\overline{\Phi} \sqsubseteq \overline{\Phi}}{\overline{\Phi} \sqsubseteq \overline{\Phi}} \operatorname{ref} \qquad \qquad \frac{\Phi_1 \sqsubseteq \Phi_2 \sqsubseteq \Phi_2 \sqsubseteq \Phi_3}{\Phi_1 \sqsubseteq \Phi_3} \operatorname{tr} \\
\frac{\overline{U_1} \sqsubseteq \overline{U_2} \sqsubseteq U_1}{\overline{U_1} \sqcap U_2 \sqsubseteq U_1} \sqcap_e \qquad \qquad \frac{U_1 \sqsubseteq V_1 \qquad U_2 \sqsubseteq V_2}{\overline{U_1} \sqcap U_2 \sqsubseteq V_1 \sqcap V_2} \sqcap \\
\frac{U_2 \sqsubseteq U_1 \qquad T_1 \sqsubseteq T_2}{\overline{U_1} \to T_1 \sqsubseteq U_2 \to T_2} \rightarrow \qquad \frac{U_1 \sqsubseteq U_2}{\Gamma_{\leq i} \cdot U_1 \cdot \Gamma_{>i} \sqsubseteq \Gamma_{\leq i} \cdot U_2 \cdot \Gamma_{>i}} \sqsubseteq_c \\
\frac{U_1 \sqsubseteq U_2 \qquad \Gamma' \sqsubseteq \Gamma}{\Gamma \vdash U_1 \rangle \sqsubseteq \langle \Gamma' \vdash U_2 \rangle} \sqsubseteq_{\langle \rangle}$$

 $\begin{array}{l} & \mbox{Motivation} \\ \lambda_{dB} : \mbox{the } \lambda \mbox{-calculus in de Bruijn Notation} \\ & \mbox{The intersection type system for } \lambda_{dB} \\ & \mbox{Subject reduction for } \lambda_{dB} \mbox{ with \square types} \\ & \mbox{Conclusion, current and future work} \end{array}$

Intersection types in λ_{dB} \Box Typing System Basic properties of the \Box typing system

18/26

Basic properties

Lemma

- **1** If $U \in \mathbb{U}$, then $U = \omega$ or $U = \bigcap_{i=1}^{n} T_i$ for $n \ge 1$ and $T_i \in \mathbb{T}$.
- $U \sqsubseteq \omega.$
- **3** If $\omega \sqsubseteq U$, then $U = \omega$.

 $\begin{array}{l} & \text{Motivation} \\ \lambda_{dB} \colon \text{the } \lambda \text{-calculus in de Bruijn Notation} \\ & \text{The intersection type system for } \lambda_{dB} \\ & \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ & \text{Conclusion, current and future work} \end{array}$

Intersection types in λ_{dB} \Box Typing System Basic properties of the \Box typing system

Basic properties

Lemma (Properties of \Box , \sqsubseteq , typings and contexts)

1 If
$$\Gamma \sqsubseteq \Gamma'$$
 and $U \sqsubseteq U'$, then $U.\Gamma \sqsubseteq U'.\Gamma'$.

2
$$\Gamma \sqsubseteq \Gamma'$$
 iff $|\Gamma| = |\Gamma'| = m$ and, if $m > 0$ then $\forall i, \Gamma_i \sqsubseteq \Gamma'_i$.

3 If
$$|\Gamma| = sup(M)$$
, then $\Gamma \sqsubseteq env_{\omega}^{M}$.

$$If env_{\omega}^{M} \sqsubseteq \Gamma, then \Gamma = env_{\omega}^{M}.$$

$$\textbf{if } \Gamma \sqsubseteq \Gamma' \text{ and } \Delta \sqsubseteq \Delta', \text{ then } \Gamma \sqcap \Delta \sqsubseteq \Gamma' \sqcap \Delta'.$$

 $\begin{array}{l} \mbox{Motivation}\\ \lambda_{dB} : \mbox{the } \lambda\mbox{-calculus in de Bruijn Notation}\\ \mbox{The intersection type system for } \lambda_{dB}\\ \mbox{Subject reduction for } \lambda_{dB} \mbox{ with \square types}\\ \mbox{Conclusion, current and future work} \end{array}$

Intersection types in λ_{dB} \Box Typing System Basic properties of the \Box typing system

More properties

Lemma

• If
$$M: \langle \Gamma \vdash U \rangle$$
, then $|\Gamma| = sup(M)$.

Lemma (derivable rules)

$$\begin{array}{c} \bullet \quad \frac{M: \langle \Gamma \vdash U_1 \rangle \quad M: \langle \Delta \vdash U_2 \rangle}{M: \langle \Gamma \sqcap \Delta \vdash U_1 \sqcap U_2 \rangle} \sqcap'_{I} \\ \bullet \quad \frac{1: \langle U.nil \vdash U \rangle}{1: \langle U.nil \vdash U \rangle} \text{ var'} \end{array}$$

 $\begin{array}{l} & \text{Motivation} \\ \lambda_{dB} \colon \text{the } \lambda\text{-calculus in de Bruijn Notation} \\ & \text{The intersection type system for } \lambda_{dB} \\ & \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ & \text{Conclusion, current and future work} \end{array}$

Subject reduction for λ_{dB} with \Box types

Lemma (Generation)

1 If
$$\underline{n}: \langle \Gamma \vdash U \rangle$$
, then $\Gamma_n = V$ where $V \sqsubseteq U$.

2 Let
$$\lambda.M: \langle \Gamma \vdash U \rangle$$
:

•
$$U = \omega$$
 or $U = \sqcap_{i=1}^{k} (V_i \rightarrow T_i)$
where $k \ge 1$ and $\forall i, M : \langle V_i, \Gamma \vdash T_i \rangle$, if $sup(M) > 0$.

•
$$U = \omega$$
 or $U = \prod_{i=1}^{k} (V_i \rightarrow T_i)$
where $k \ge 1$ and $\forall i, M : \langle nil \vdash T_i \rangle$, otherwise.

・ロ ・ ・ 日 ・ ・ 目 ・ 1 目 ・ 1 目 ・ つ へ (* 21 / 26

 $\begin{array}{l} \mbox{Motivation}\\ \lambda_{dB} : \mbox{the } \lambda\mbox{-calculus in de Bruijn Notation}\\ \mbox{The intersection type system for } \lambda_{dB}\\ \mbox{Subject reduction for } \lambda_{dB} \mbox{ with } \mbox{types}\\ \mbox{Conclusion, current and future work} \end{array}$

Changes in typings for lifting and β -substitution

Lemma (Typings for lifted terms)

If $M : \langle \Gamma \vdash U \rangle$ and $0 \le i < sup(M)$, then $M^{+i} : \langle \Gamma_{< i} \cdot \omega \cdot \Gamma_{> i} \vdash U \rangle$

Lemma (Typings for β -substitution)

Let $M: \langle \Gamma \vdash U \rangle$, for sup(M) > 0, and $N: \langle \Delta \vdash \Gamma_i \rangle$:

• $\{\underline{i}/N\}M: \langle (\Gamma_{< i}, \Gamma_{> i}) \sqcap \Delta \vdash U \rangle,$ if $\underline{i} \in FI(M)$ and $sup(N) \ge i-1$.

$$\{ \underline{i}/N \} M : \langle \Gamma_{\langle i} \cdot \Gamma_{\rangle i} \vdash U \rangle,$$

if $\underline{i} \notin FI(M).$

 $\begin{array}{l} & \text{Motivation} \\ \lambda_{dB} \colon \text{the } \lambda \text{-calculus in de Bruijn Notation} \\ & \text{The intersection type system for } \lambda_{dB} \\ & \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ & \text{Conclusion, current and future work} \end{array}$

Subject Reduction

Definition (Restriction of contexts)

$$\Gamma \mid_{M} = \Gamma_{\leq sup(M)}$$
 . nil

Theorem (SR for β -contraction)

If $(\lambda.M \ N): \langle \Gamma \vdash U \rangle$ then $\{\underline{1}/N\}M: \langle \Gamma |_{\{\underline{1}/N\}M} \vdash U \rangle$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ の へ ()
23 / 26

 $\begin{array}{l} \mbox{Motivation}\\ \lambda_{dB} \colon \mbox{the λ-calculus in de Bruijn Notation}\\ \mbox{The intersection type system for λ_{dB}}\\ \mbox{Subject reduction for λ_{dB} with \square types}\\ \mbox{Conclusion, current and future work} \end{array}$

Subject Reduction

Theorem (Subject Reduction in λ_{dB})

If $M: \langle \Gamma \vdash U \rangle$ and $M \longrightarrow_{\beta} N$, then $N: \langle \Gamma \downarrow_{N} \vdash U \rangle$.

 $\begin{array}{l} \mbox{Motivation}\\ \lambda_{dB} : \mbox{the } \lambda \mbox{-calculus in de Bruijn Notation}\\ \mbox{The intersection type system for } \lambda_{dB}\\ \mbox{Subject reduction for } \lambda_{dB} \mbox{ with Π types}\\ \mbox{Conclusion, current and future work} \end{array}$

Conclusion, current and future works

- λ -calculus in de Bruijn notation with a system of intersection types has been proved to preserve subject reduction.
- This is the first step towards the construction of adequate explicit substitutions calculi in de Bruijn notation using intersection type.
- Principal typings property has to be guaranteed because this property supports the possibility of true separate compilation and compositional software analysis [Wel02].

 $\begin{array}{l} \mbox{Motivation}\\ \lambda_{dB} : \mbox{the } \lambda \mbox{-calculus in de Bruijn Notation}\\ \mbox{The intersection type system for } \lambda_{dB}\\ \mbox{Subject reduction for } \lambda_{dB} \mbox{ with Π types}\\ \mbox{Conclusion, current and future work} \end{array}$

Conclusion, current and future works

- λ -calculus in de Bruijn notation with a system of intersection types has been proved to preserve subject reduction.
- This is the first step towards the construction of adequate explicit substitutions calculi in de Bruijn notation using intersection type.
- Principal typings property has to be guaranteed because this property supports the possibility of true separate compilation and compositional software analysis [Wel02].

 $\begin{array}{l} & \text{Motivation} \\ \lambda_{d\mathcal{B}} \text{: the } \lambda \text{-calculus in de Bruijn Notation} \\ & \text{The intersection type system for } \lambda_{d\mathcal{B}} \\ & \text{Subject reduction for } \lambda_{d\mathcal{B}} \text{ with } \square \text{ types} \\ & \text{Conclusion, current and future work} \end{array}$

Conclusion, current and future works

- λ -calculus in de Bruijn notation with a system of intersection types has been proved to preserve subject reduction.
- This is the first step towards the construction of adequate explicit substitutions calculi in de Bruijn notation using intersection type.
- Principal typings property has to be guaranteed because this property supports the possibility of true separate compilation and compositional software analysis [Wel02].

 $\begin{array}{l} & \text{Motivation} \\ \lambda_{dB} \text{: the } \lambda \text{-calculus in de Bruijn Notation} \\ & \text{The intersection type system for } \lambda_{dB} \\ & \text{Subject reduction for } \lambda_{dB} \text{ with } \square \text{ types} \\ & \text{Conclusion, current and future work} \end{array}$

References

M. Coppo and M. Dezani-Ciancaglini.

An Extension of the Basic Functionality Theory for the λ -Calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.

N.G. de Bruijn.

Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem. Indag. Mat., 34(5):381–392, 1972.

F. Kamareddine and K. Nour.

A completeness result for a realisability semantics for an intersection type system Annals of Pure and Applied Logic, 146:180–198. 2007.

P. Sallé.

Une extension de la théorie des types en lambda-calcul.

In 5th Int. Conf. on Automata, Languages and Programing, v. 62 of LNCS, pages 398-410. 1978.

J.B. Wells.

The essence of principal typings.

In 29th Int.Coll. on Automata, Languages and Programming, v. 2380 of LNCS, pages 913-925. 2002.