Principal Typings in a Restricted Intersection Type System for Beta Normal Forms with de Bruijn Indices

Daniel L. Ventura^{1,2} & Mauricio Ayala-Rincón¹ & Fairouz D. Kamareddine²

¹Grupo de Teoria da Computação - GTC/UnB Universidade de Brasília - UnB, Brasil ²ULTRA Group Heriot-Watt University, Edinburgh, Scotland

Research supported by the Brazilian Research Council - CNPq

9th International Workshop on Reduction Strategies in Rewriting and Programming June 28, Brasília, 2009

Motivation

Intersection types Principal typings λ -calculus with nameless dummies

$\begin{array}{l} \lambda_{dB}: \mbox{ the } \lambda\mbox{-calculus with de Bruijn indices} \\ Syntax \mbox{ of } \lambda_{dB} \\ \beta\mbox{-reduction in } \lambda_{dB} \end{array}$

The restricted intersection type system for λ_{dB}

Restricted intersection types in λ_{dB} Typing systems and properties Type inference algorithm

Characterisation of principal typings

Characterising principal typings Reconstruction algorithm

Conclusion, current and future work

(ロ)、(部)、(主)、(主)、(三)、(2/26)

Intersection type discipline

Introduced by M. Coppo and M. Dezani-Ciancaglini. [CDC78, CDC80]

It incorporates type polymorphism in a finitary way:

 $\lambda_{X}.x:(int \rightarrow int) \land (bool \rightarrow bool)$

- IT called after realisability semantics interpretation of types
- Characterisation of the SN terms of the λ-calculus. [Pot80]
- Some problems arise such as the necessity for a practical treatment of *principal typings*.

Intersection type discipline

- Introduced by M. Coppo and M. Dezani-Ciancaglini. [CDC78, CDC80]
- It incorporates type polymorphism in a finitary way:

 $\lambda_x.x:(\mathit{int} \rightarrow \mathit{int}) \land (\mathit{bool} \rightarrow \mathit{bool})$

- IT called after realisability semantics interpretation of types
- Characterisation of the SN terms of the λ-calculus. [Pot80]
- Some problems arise such as the necessity for a practical treatment of *principal typings*.

- Introduced by M. Coppo and M. Dezani-Ciancaglini. [CDC78, CDC80]
- It incorporates type polymorphism in a finitary way:

 $\lambda_x.x:(\mathit{int} \rightarrow \mathit{int}) \land (\mathit{bool} \rightarrow \mathit{bool})$

- IT called after realisability semantics interpretation of types
- Characterisation of the SN terms of the λ-calculus. [Pot80
- Some problems arise such as the necessity for a practical treatment of *principal typings*.

- Introduced by M. Coppo and M. Dezani-Ciancaglini. [CDC78, CDC80]
- It incorporates type polymorphism in a finitary way:

 $\lambda_x.x:(int \rightarrow int) \land (bool \rightarrow bool)$

- IT called after realisability semantics interpretation of types
- Characterisation of the SN terms of the λ -calculus. [Pot80]
- Some problems arise such as the necessity for a practical treatment of *principal typings*.

- Introduced by M. Coppo and M. Dezani-Ciancaglini. [CDC78, CDC80]
- It incorporates type polymorphism in a finitary way:

 $\lambda_x.x:(int \rightarrow int) \land (bool \rightarrow bool)$

- IT called after realisability semantics interpretation of types
- Characterisation of the SN terms of the λ -calculus. [Pot80]
- Some problems arise such as the necessity for a practical treatment of *principal typings*.

Let $\Gamma \vdash M : \tau$ be a type judgement in some type system S

- $\langle \Gamma \vdash \tau \rangle$ is a typing of *M* in *S*, written as $M: \langle \Gamma \vdash_s \tau \rangle$.
- ► $\langle \Gamma \vdash \tau \rangle$ is a **principal typing** (PT) of *M* if $M: \langle \Gamma \vdash_s \tau \rangle$ and it "represents" any other possible typing of *M*.

(ロ) (部) (注) (注) (こ) (の)

4 / 26

PT property allows compositional type inference

- Invented by N.G. de Bruijn [dB72].
- Own the same properties as the λ -calculus with names.
- Each α -classe of λ -terms corresponds to a unique term.
- Plays an important role in the implementation of programming languages and theorem provers. [Kam03]
- A variety of IT systems has been studied, usually with variable names and rarely with de Bruijn indices.

Definition (Set Λ_{dB})

The set of λ_{dB} -terms

Terms $M ::= \underline{n} | (M M) | \lambda M$ for $n \in \mathbb{N}_* = \mathbb{N} \setminus \{0\}$

Examples $\lambda.(\lambda.(\underline{1} \ \underline{4} \ \underline{2}) \ \underline{1})$ $\lambda.\underline{1} \simeq \lambda x.x \simeq \lambda y.y$

Remark: β and η are defined updating indices accordingly.

6/26

Definition (Set Λ_{dB})

The set of λ_{dB} -terms

Terms $M ::= \underline{n} | (M M) | \lambda.M$ for $n \in \mathbb{N}_* = \mathbb{N} \setminus \{0\}$

Examples $\lambda.(\lambda.(\underline{1} \ \underline{4} \ \underline{2}) \ \underline{1})$ $\lambda.1 \simeq \lambda x.x \simeq \lambda y.y$

Remark: β and η are defined updating indices accordingly.

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 6/26

Definition (Free indices & closed terms)

1. FI(M) is the set of **free indices** of M, defined by

$$FI(\underline{n}) = \{\underline{n}\}$$

$$FI(\lambda.M) = \{\underline{n-1}, \forall \underline{n} \in FI(M), n > 1\}$$

$$FI(M_1 M_2) = FI(M_1) \cup FI(M_2)$$

イロト イポト イヨト イヨト 三日

- 2. *M* is closed if $FI(M) = \emptyset$.
- 3. sup(M) is the greatest value of a free index in M.

Definition (*i*-lift)

 M^{+i} is defined inductively as

1.
$$(M_1 M_2)^{+i} = (M_1^{+i} M_2^{+i})$$

2.
$$(\lambda.M_1)^{+i} = \lambda.M_1^{+(i+1)}$$

3.
$$\underline{n}^{+i} = \begin{cases} \frac{n+1}{\underline{n}}, & \text{if } n > i \\ \underline{n}, & \text{if } n \leq i. \end{cases}$$

(ロ) (部) (注) (注) (注)

8 / 26

The **lift** M^+ of M is its 0-lift.

Definition (β -substitution)

The β -substitution $\{\underline{n}/N\}M$ is defined inductively by

1.
$$\{\underline{n}/N\}(M_1 \ M_2) = (\{\underline{n}/N\}M_1 \ \{\underline{n}/N\}M_2)$$

2. $\{\underline{n}/N\}\lambda.M_1 = \lambda.\{\underline{n+1}/N^+\}M_1$
3. $\{\underline{n}/N\}\underline{m} = \begin{cases} \underline{m-1}, \text{ if } m > n \\ N, & \text{ if } m = n \\ \underline{m}, & \text{ if } m < n \end{cases}$

Definition (β -contraction in λ_{dB}) β -contraction in λ_{dB} is defined by

 $(\lambda.MN) \triangleright_{\beta} \{\underline{1}/N\}M$

イロト 不良 とうせい きゅうしゅ

9/26

Definition (Restricted intersection types and contexts)

1. The restricted intersection types are defined by:

 $\mathcal{T} ::= \mathcal{A} | \mathcal{U} \to \mathcal{T}$ $\mathcal{U} ::= \omega | \mathcal{U} \land \mathcal{U} | \mathcal{T}$

 \wedge is commutative, associative and has ω as neutral element.

2. The **contexts** are sequences of objects in \mathcal{U} , defined by:

 $\Gamma ::= nil \mid u.\Gamma, \quad \text{for } u \in \mathcal{U}$

Our system is a de Bruijn version of a system by Sayag and Mauny in [SM96a, SM96b]

Definition (Restricted intersection types and contexts)

1. The restricted intersection types are defined by:

 $\mathcal{T} ::= \mathcal{A} | \mathcal{U} \to \mathcal{T}$ $\mathcal{U} ::= \omega | \mathcal{U} \land \mathcal{U} | \mathcal{T}$

 \wedge is commutative, associative and has ω as neutral element.

2. The **contexts** are sequences of objects in \mathcal{U} , defined by:

$$\Gamma ::= nil \mid u.\Gamma, \quad \text{for } u \in \mathcal{U}$$

Our system is a de Bruijn version of a system by Sayag and Mauny in [SM96a, SM96b]

Definition

- 1. $\omega^{\underline{n}} := \omega.\omega....\omega.nil$ such that $|\omega^{\underline{n}}| = n$.
- 2. The extension of \wedge for contexts:

-
$$nil \wedge \Gamma = \Gamma \wedge nil = \Gamma$$

- $(u_1.\Gamma) \wedge (u_2.\Delta) = (u_1 \wedge u_2).(\Gamma \wedge \Delta)$

3. Type substitutions $s : \mathcal{A} \to \mathcal{T}$ such that: - $s(u \to \tau) = s(u) \to s(\tau)$ - $s(\omega) = \omega$ and $s(u \land v) = s(u) \land s(v)$ - s(nil) = nil and $s(u.\Gamma) = s(u).s(\Gamma)$

Recall: $M : \langle \Gamma \vdash \tau \rangle$ is used instead of $\Gamma \vdash M : \tau$

イロト 不良 とうせい きゅうしゅ

Definition

- 1. $\omega^{\underline{n}} := \omega.\omega.\cdots.\omega.nil$ such that $|\omega^{\underline{n}}| = n$.
- 2. The extension of \wedge for contexts:

-
$$nil \wedge \Gamma = \Gamma \wedge nil = \Gamma$$

- $(u_1.\Gamma) \wedge (u_2.\Delta) = (u_1 \wedge u_2).(\Gamma \wedge \Delta)$

3. Type substitutions
$$s : \mathcal{A} \to \mathcal{T}$$
 such that:
- $s(u \to \tau) = s(u) \to s(\tau)$
- $s(\omega) = \omega$ and $s(u \land v) = s(u) \land s(v)$
- $s(nil) = nil$ and $s(u.\Gamma) = s(u).s(\Gamma)$

Recall: $M: \langle \Gamma \vdash \tau \rangle$ is used instead of $\Gamma \vdash M: \tau$

Definition (Typing Rules)

1. System *SM* is defined by:

$$\frac{\tau \in \mathcal{T}}{\underline{1}: \langle \tau. nil \vdash \tau \rangle} \text{ var } \frac{M: \langle nil \vdash \tau \rangle}{\lambda.M: \langle nil \vdash \omega \to \tau \rangle} \to_{i}^{\prime}$$

$$\frac{\underline{n}: \langle \Gamma \vdash \tau \rangle}{\underline{n+1}: \langle \omega.\Gamma \vdash \tau \rangle} \text{ varn } \frac{M: \langle u.\Gamma \vdash \tau \rangle}{\lambda.M: \langle \Gamma \vdash u \to \tau \rangle} \to_{i}$$

$$\frac{M_{1}: \langle \Gamma \vdash \omega \to \tau \rangle}{M_{1} M_{2}: \langle \Gamma \land \Delta \vdash \tau \rangle} \to_{e}^{\prime}$$

$$\frac{M_{1}: \langle \Gamma \vdash \wedge_{i=1}^{n} \sigma_{i} \to \tau \rangle}{M_{1} M_{2}: \langle \Gamma \land \Delta^{1} \vdash \sigma_{1} \rangle \dots M_{2}: \langle \Delta^{n} \vdash \sigma_{n} \rangle} \to_{e}$$

2. System SM_r is obtained from SM, taking $\tau = \sigma_1 \rightarrow \cdots \rightarrow \sigma_n \rightarrow \alpha$ in rule var

Lemma If $M: \langle \Gamma \vdash_{sM/sM,} \tau \rangle$, then $|\Gamma| = sup(M)$ and $\forall i, \Gamma_i \neq \omega$ iff $\underline{i} \in FI(M)$. Lemma (Generation)

- 1. If $\underline{n}: \langle \Gamma \vdash_{SM/SM_r} \tau \rangle$, then $\Gamma_n = \tau$. 2. If $\underline{n}: \langle \Gamma \vdash_{SM_r} \tau \rangle$, then $\tau = \sigma_1 \rightarrow \cdots \rightarrow \sigma_k \rightarrow \alpha$ 3. If $\lambda.M: \langle nil \vdash_{SM/SM_r} \tau \rangle$, then $\blacktriangleright \tau = \omega \rightarrow \sigma$ and $M: \langle nil \vdash_{SM/SM_r} \sigma \rangle$ or $\flat \tau = \wedge_{i=1}^n \sigma_i \rightarrow \sigma$ and $M: \langle \wedge_{i=1}^n \sigma_i.nil \vdash_{SM/SM_r} \sigma \rangle$
- 4. If $\lambda.M: \langle \Gamma \vdash_{SM/SM_r} \tau \rangle$ and $|\Gamma| > 0$, then $\tau = u \rightarrow \sigma$ s.t. $M: \langle u.\Gamma \vdash_{SM/SM_r} \sigma \rangle$.

5. If $\underline{n} M_1 \cdots M_m : \langle \Gamma \vdash_{_{SM_r}} \tau \rangle$, $\Gamma = (\omega \underline{n-1} . \sigma_1 \to \cdots \to \sigma_m \to \tau.nil) \wedge \Gamma^1 \wedge \cdots \wedge \Gamma^m$, $\tau = \sigma_{m+1} \to \cdots \to \sigma_{m+k} \to \alpha \text{ and } M_i : \langle \Gamma^i \vdash_{_{SM_r}} \sigma_i \rangle$. Lemma If $M: \langle \Gamma \vdash_{SM/SM} \tau \rangle$, then $|\Gamma| = sup(M)$ and $\forall i, \Gamma_i \neq \omega$ iff $\underline{i} \in FI(M)$. Lemma (Generation) 1. If $\underline{n}: \langle \Gamma \vdash_{SM/SM_r} \tau \rangle$, then $\Gamma_n = \tau$. 2. If $n: \langle \Gamma \vdash_{SM_r} \tau \rangle$, then $\tau = \sigma_1 \to \cdots \to \sigma_k \to \alpha$. 3. If λ . $M: \langle nil \vdash_{SM/SM} \tau \rangle$, then • $\tau = \omega \rightarrow \sigma$ and $M: \langle nil \vdash_{SM/SM} \sigma \rangle$ or • $\tau = \wedge_{i=1}^{n} \sigma_{i} \rightarrow \sigma$ and $M: \langle \wedge_{i=1}^{n} \sigma_{i}.nil \vdash_{SM/SM_{r}} \sigma \rangle$. 4. If λ . $M: \langle \Gamma \vdash_{SM/SM_r} \tau \rangle$ and $|\Gamma| > 0$, then $\tau = u \rightarrow \sigma$ s.t. $M: \langle u.\Gamma \vdash_{SM/SM_r} \sigma \rangle.$ 5. If $n M_1 \cdots M_m : \langle \Gamma \vdash_{SM_n} \tau \rangle$, $\Gamma = (\omega \xrightarrow{n-1} . \sigma_1 \to \cdots \to \sigma_m \to \tau. nil) \land \Gamma^1 \land \cdots \land \Gamma^m,$ $\tau = \sigma_{m+1} \longrightarrow \cdots \longrightarrow \sigma_{m+k} \longrightarrow \alpha \text{ and } M_i : \langle \Gamma^i \vdash_{SM_*} \sigma_i \rangle.$

Theorem Every β -nf in de Bruijn notation is typeable in system SM_r .

Type inference algorithm for β -nf

Let N be a β -nf Infer(N) =Case N = nlet α be a fresh type variable return ($\omega \frac{n-1}{2} . \alpha . nil, \alpha$) Case $N = \lambda N_1$ let $(\Gamma^1, \varphi_1) = \operatorname{Infer}(N_1)$ if $(\Gamma^1 = u.\Gamma')$ then return ($\Gamma', u \rightarrow \varphi_1$) else return (*nil*, $\omega \rightarrow \varphi_1$) $N = n N_1 \cdots N_m$ Case let $(\Gamma^{\overline{1}}, \varphi_1) = \operatorname{Infer}(N_1)$ $(\Gamma^m, \varphi_m) = \operatorname{Infer}(N_m)$ α be a fresh type variable return $((\omega \xrightarrow{n-1} . \varphi_1 \to \cdots \to \varphi_m \to \alpha. nil) \land \Gamma^1 \land \cdots \land \Gamma^m, \alpha)$

Theorem (Soundness)

If N is a β -nf and $Infer(N) = (\Gamma, \varphi)$, then $N : \langle \Gamma \vdash_{_{SM_r}} \varphi \rangle$.

Theorem (Completeness)

If $N: \langle \Gamma \vdash_{SM_r} \varphi \rangle$, $N \neq \beta$ -nf, then for $(\Gamma', \varphi') = \text{Infer}(N)$ exists a type substitution s such that $s(\Gamma') = \Gamma$ and $s(\varphi') = \varphi$.

Definition

1. Let \mathcal{T}_C , \mathcal{T}_{NF} and \mathcal{U}_C be defined by:

$$\begin{array}{rcl} \mathcal{T}_{C} & ::= & \mathcal{A} \mid \mathcal{T}_{NF} \to \mathcal{T}_{C} \\ \mathcal{T}_{NF} & ::= & \mathcal{A} \mid \mathcal{U}_{C} \to \mathcal{T}_{NF} \\ \mathcal{U}_{C} & ::= & \omega \mid \mathcal{U}_{C} \land \mathcal{U}_{C} \mid \mathcal{T}_{C} \end{array}$$

2. Let \mathcal{C} be the set of contexts Γ with types in \mathcal{U}_C

 $\mathsf{Lemma} \ \mathsf{Im}(\mathtt{Infer}) \subseteq \mathcal{C} imes \mathcal{T}_{\mathsf{NF}}$

◆□ → < 部 → < 差 → < 差 → 差 < の < ペ 17/26

Definition

1. Let \mathcal{T}_C , \mathcal{T}_{NF} and \mathcal{U}_C be defined by:

$$\begin{array}{rcl} \mathcal{T}_{C} & ::= & \mathcal{A} \mid \mathcal{T}_{NF} \to \mathcal{T}_{C} \\ \mathcal{T}_{NF} & ::= & \mathcal{A} \mid \mathcal{U}_{C} \to \mathcal{T}_{NF} \\ \mathcal{U}_{C} & ::= & \omega \mid \mathcal{U}_{C} \land \mathcal{U}_{C} \mid \mathcal{T}_{C} \end{array}$$

2. Let \mathcal{C} be the set of contexts Γ with types in \mathcal{U}_C

$\begin{array}{l} \mathsf{Lemma} \\ \mathit{Im}(\texttt{Infer}) \subseteq \mathcal{C} \times \mathcal{T}_{\mathit{NF}} \end{array}$

Definition (Γ -types)

 $\mathcal{T} ::= \Gamma \!\Rightarrow\! \varphi \,|\, \Delta \!\Rightarrow \qquad \Gamma, \Delta \in \mathcal{C} \text{ and } \varphi \in \mathcal{T}_{NF} \text{ and } |\Delta| > 0$

Let T^N be obtained from Infer(N), for any β -nf N.

Definition (Left subtypes)

The set L(T) is defined by:

- $L(\Gamma \Rightarrow \varphi) = L(\Gamma) \cup L(\varphi)$
- $L(\Gamma) = \bigcup_{i=0}^{m} \{\Gamma_i\}$, for $\Gamma_i \neq \omega$.
- $L(\alpha) = \emptyset$
- $L(\omega \rightarrow \sigma) = L(\sigma)$
- $L(\wedge_{i=1}^n \sigma_i \rightarrow \sigma) = \{\wedge_{i=1}^n \sigma_i\} \cup L(\sigma).$

Definition (Γ -types)

 $\mathcal{T} ::= \Gamma \!\Rightarrow\! \varphi \,|\, \Delta \!\Rightarrow \qquad \Gamma, \Delta \in \mathcal{C} \text{ and } \varphi \in \mathcal{T}_{NF} \text{ and } |\Delta| > 0$

Let T^N be obtained from Infer(N), for any β -nf N.

Definition (Left subtypes)

The set L(T) is defined by:

- $L(\Gamma \Rightarrow \varphi) = L(\Gamma) \cup L(\varphi)$
- $L(\Gamma) = \cup_{i=0}^{m} \{\Gamma_i\}$, for $\Gamma_i \neq \omega$.
- $L(\alpha) = \emptyset$
- $L(\omega \rightarrow \sigma) = L(\sigma)$
- $L(\wedge_{i=1}^{n}\sigma_{i}\rightarrow\sigma) = \{\wedge_{i=1}^{n}\sigma_{i}\} \cup L(\sigma).$

Definition

T is complete if:

- T is closed
- T is finally closed
- T is minimally closed.

Lemma If N is a β -nf then T^N is complete.

Definition

T is complete if:

- T is closed
- T is finally closed
- T is minimally closed.

Lemma If N is a β -nf then T^N is complete.

(ロ) (部) (注) (注) (注)

19/26

Definition (Principal)

A complete T is principal if:

- $T = \omega \frac{n-1}{2} . \alpha . nil \Rightarrow \alpha$
- $T = \Gamma \Rightarrow \alpha \text{ s.t. } \Gamma = (\omega \xrightarrow{n-1} . \varphi_1 \to \cdots \to \varphi_m \to \alpha. nil) \land \Gamma^1 \land \cdots \land \Gamma^m$ and $\forall i, \Gamma^i \Rightarrow \varphi_i$ is principal.
- $T = nil \Rightarrow \omega \rightarrow \varphi_1$ and $nil \Rightarrow \varphi_1$ is principal.
- $T = \Gamma \Rightarrow u \rightarrow \varphi_1$ s.t. either $\Gamma \neq nil$ or $u \neq \omega$ and $u.\Gamma \Rightarrow \varphi_1$ is principal.

Lemma

Let $\mathcal{P} = \{(\Gamma, \varphi) \in \mathcal{C} \times \mathcal{T}_{NF} | \Gamma \Rightarrow \varphi \text{ is principal}\}.$ Then

 $\mathit{Im}(\texttt{Infer}) \subseteq \mathcal{P}$

<ロ> (四) (四) (注) (注) (三) (三)

Definition (Principal)

A complete T is principal if:

- $T = \omega \frac{n-1}{2} . \alpha . nil \Rightarrow \alpha$
- $T = \Gamma \Rightarrow \alpha \text{ s.t. } \Gamma = (\omega \xrightarrow{n-1} . \varphi_1 \to \cdots \to \varphi_m \to \alpha. nil) \land \Gamma^1 \land \cdots \land \Gamma^m$ and $\forall i, \Gamma^i \Rightarrow \varphi_i$ is principal.

-
$$T = nil \Rightarrow \omega \rightarrow \varphi_1$$
 and $nil \Rightarrow \varphi_1$ is principal.

- $T = \Gamma \Rightarrow u \rightarrow \varphi_1$ s.t. either $\Gamma \neq nil$ or $u \neq \omega$ and $u.\Gamma \Rightarrow \varphi_1$ is principal.

Lemma

Let $\mathcal{P} = \{(\Gamma, \varphi) \in \mathcal{C} \times \mathcal{T}_{NF} | \Gamma \Rightarrow \varphi \text{ is principal}\}.$ Then

 $\mathit{Im}({\tt Infer}) \subseteq \mathcal{P}$

Reconstruction algorithm

$$\begin{aligned} & \operatorname{Recon}(\Gamma,\varphi) = \\ & \operatorname{Case} \quad (nil,\alpha) \\ & \operatorname{fail} \\ & \operatorname{Case} \quad (\Gamma,\alpha) \\ & \operatorname{let} \{(i^1,u_1),\ldots,(i^m,u_m)\} = FO(\alpha,\Gamma) \\ & \operatorname{if} m = 1 \text{ and } u_1 = (\tau_1 \to \cdots \to \tau_n \to \alpha) \land u' \text{ s.t. } \alpha \notin TypeVar(u') \\ & \operatorname{then} \operatorname{if} \forall 1 \leq i \leq n \text{ there is } \Gamma^i \text{ s.t. } \Gamma = \Gamma^i \land X^i \\ & \operatorname{and} \Gamma^i \Rightarrow \tau_i \text{ is principal} \\ & \operatorname{then} \operatorname{let} (N_1,\Delta^1) = \operatorname{Recon}(\Gamma^1,\tau_1) \\ & \vdots \\ & (N_n,\Delta^n) = \operatorname{Recon}(\Gamma^n,\tau_n) \\ & \Delta' = \omega \frac{i^1 - 1}{2} \cdot \tau_1 \to \cdots \to \tau_n \to \alpha.nil \\ & \Gamma' = \Delta' \land \Gamma^1 \land \cdots \land \Gamma^n \\ & \Gamma = (\Gamma' \land \Delta^1 \land \cdots \land \Delta^n) \land \Delta, \text{ s.t. } \Delta \neq \omega^{\underline{i}}, \forall 1 \leq j \leq |\Gamma| \\ & \operatorname{return} (\underline{i}^1 N_1 \cdots N_n, \Delta) \\ & \operatorname{else} \operatorname{fail} \end{aligned}$$

else fail

Reconstruction algorithm(cont.)

$$\begin{array}{ll} \text{Case} & (\Gamma, u \rightarrow \varphi_1) \\ & \text{if } \Gamma = nil \text{ and } u = \omega \\ & \text{then let } (N_1, \Delta) = \operatorname{Recon}(\Gamma, \varphi_1) \\ & \text{else let } \Gamma' = u.\Gamma \\ & (N_1, \Delta) = \operatorname{Recon}(\Gamma', \varphi_1) \\ & \text{if } \Delta = nil \\ & \text{then return } (\lambda.N_1, \Delta) \\ & \text{else fail} \end{array}$$

Lemma If $(\Gamma, \varphi) \in \mathcal{P}$ then:

- 1. Recon $(\Gamma, arphi) = (N, nil)$ and N is a eta-nf.
- 2. Infer $(N) = (\Gamma, \varphi)$.

Corollary

 $\mathcal{P} = lm(\texttt{Infer})$

Reconstruction algorithm(cont.)

$$\begin{array}{ll} \text{Case} & (\Gamma, u \rightarrow \varphi_1) \\ & \text{if } \Gamma = nil \text{ and } u = \omega \\ & \text{then let } (N_1, \Delta) = \operatorname{Recon}(\Gamma, \varphi_1) \\ & \text{else let } \Gamma' = u.\Gamma \\ & (N_1, \Delta) = \operatorname{Recon}(\Gamma', \varphi_1) \\ & \text{if } \Delta = nil \\ & \text{then return } (\lambda.N_1, \Delta) \\ & \text{else fail} \end{array}$$

Lemma

If $(\Gamma, \varphi) \in \mathcal{P}$ then:

- 1. $\operatorname{Recon}(\Gamma, \varphi) = (N, nil)$ and N is a β -nf.
- 2. Infer(N) = (Γ, φ) .

Corollary

 $\mathcal{P} = lm(\texttt{Infer})$

Reconstruction algorithm(cont.)

$$\begin{array}{ll} \text{Case} & (\Gamma, u \rightarrow \varphi_1) \\ & \text{if } \Gamma = nil \text{ and } u = \omega \\ & \text{then let } (N_1, \Delta) = \operatorname{Recon}(\Gamma, \varphi_1) \\ & \text{else let } \Gamma' = u.\Gamma \\ & (N_1, \Delta) = \operatorname{Recon}(\Gamma', \varphi_1) \\ & \text{if } \Delta = nil \\ & \text{then return } (\lambda.N_1, \Delta) \\ & \text{else fail} \end{array}$$

Lemma

If $(\Gamma, \varphi) \in \mathcal{P}$ then:

- 1. Recon(Γ, φ) = (N, nil) and N is a β -nf.
- 2. Infer(N) = (Γ, φ) .

Corollary

 $\mathcal{P} = \mathit{Im}(\texttt{Infer})$

We have that

$$\frac{\frac{\underline{1}:\langle \alpha.nil \vdash \alpha \rangle}{\overline{\lambda.\underline{1}:\langle nil \vdash \alpha \rightarrow \alpha \rangle}}}{\underline{\lambda.\lambda.\underline{1}:\langle nil \vdash \omega \rightarrow \alpha \rightarrow \alpha \rangle}} \qquad \frac{\underline{\underline{1}:\langle \beta.nil \vdash \beta \rangle}}{\underline{\underline{2}:\langle \omega.\beta.nil \vdash \beta \rangle}}{\underline{\underline{3}:\langle \omega.\omega.\beta.nil \vdash \beta \rangle}}$$

and that $\lambda . \lambda . \underline{1} \ \underline{3} \rhd_{\beta} \lambda . \underline{1}$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 23 / 26

- ▶ IT presented types all β -nf for λ_{dB}
- The inference algorithm returns principal typings for all β -nf
- Characterisation for those principal typing was given
- System SM_r is a first step torwards IT systems with PT for λ_{dB}
- Extend the results for all SN terms.

- ▶ IT presented types all β -nf for λ_{dB}
- The inference algorithm returns principal typings for all β -nf
- Characterisation for those principal typing was given
- System SM_r is a first step torwards IT systems with PT for λ_{dB}

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

24 / 26

Extend the results for all SN terms.

Let λ .N: $\langle \textit{nil} \vdash \varphi \rangle$

► Case $\varphi = \omega \rightarrow \varphi_1$ and $N : \langle nil \vdash \varphi_1 \rangle$: By IH, Infer $(N) = (\Gamma', \varphi')$ s.t. $s(\varphi') = \varphi_1$ and $s(\Gamma') = nil$. Therefore, $\Gamma' = nil$, Infer $(\lambda.N) = (nil, \omega \rightarrow \varphi')$ and $s(\omega \rightarrow \varphi') = \varphi$.

<ロ> (四) (四) (三) (三) (三) (三)

25 / 26

► Case
$$\varphi = \wedge_{j=1}^{n} \sigma_{j} \rightarrow \varphi_{1}$$
 and $N: \langle \wedge_{j=1}^{n} \sigma_{j}.nil \vdash \varphi_{1} \rangle$: analogous

References

M. Coppo and M. Dezani-Ciancaglini.

A new type assignment for lambda-terms. Archiv für mathematische logik, 19:139–156, 1978.

M. Coppo and M. Dezani-Ciancaglini.

An Extension of the Basic Functionality Theory for the λ -Calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.

N.G. de Bruijn.

Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem.

Indag. Mat., 34(5):381-392, 1972.

F. Kamareddine, editor.

Thirty Five Years of Automating Mathematics. Kluwer, 2003.

G. Pottinger.

A type assignment for the strongly normalizable λ -terms.

In J.P. Seldin and J. R. Hindley (eds), To H. B. Curry: Essays on combinatory logic, lambda calculus and formalism, pp. 561–578. Academic Press, 1980.

E. Sayag and M. Mauny.

Characterization of principal type of normal forms in intersetion type system. In Proc. of FSTTCS'96, LNCS, 1180:335–346. Springer, 1996.

		_		

E. Sayag and M. Mauny.

A new presentation of the intersection type discipline through principal typings of normal forms. *Tech. rep.* RR-2998, INRIA, 1996.

J.B. Wells.

The essence of principal typings.

In 29th Int.Coll. on Automata, Languages and Programming, v. 2380 of LNCS, pages 913–925. 2002.