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Intersection type discipline

I Introduced by M. Coppo and M.
Dezani-Ciancaglini. [CDC78, CDC80]

I It incorporates type polymorphism in a finitary way:

λx .x : (int→ int) ∧ (bool→bool)

I IT called after realisability semantics interpretation of types

I Characterisation of the SN terms of the λ-calculus. [Pot80]

I Some problems arise such as the necessity for a practical treatment
of principal typings.
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Principal typings

Let Γ ` M : τ be a type judgement in some type system S

I 〈Γ ` τ〉 is a typing of M in S , written as M :〈Γ `S τ〉.

I 〈Γ ` τ〉 is a principal typing (PT) of M if M :〈Γ `S τ〉 and it
“represents” any other possible typing of M.

I PT property allows compositional type inference
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λ-calculus with de Bruijn indices

I Invented by N.G. de Bruijn [dB72].

I Own the same properties as the λ-calculus with names.

I Each α-classe of λ-terms corresponds to a unique term.

I Plays an important role in the implementation of programming
languages and theorem provers. [Kam03]

I A variety of IT systems has been studied, usually with variable
names and rarely with de Bruijn indices.
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Syntax of λdB

Definition (Set ΛdB)
The set of λdB-terms

Terms M ::= n | (M M) |λ.M for n ∈ N∗= Nr{0}

Examples

λ.(λ.(1 4 2 ) 1 )

λ.1 ' λx .x ' λy .y

Remark: β and η are defined updating indices accordingly.
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Syntax of λdB

Definition (Free indices & closed terms)

1. FI (M) is the set of free indices of M, defined by

FI ( n) = { n}
FI (λ.M) = { n−1,∀ n ∈ FI (M), n > 1}

FI (M1 M2) = FI (M1) ∪ FI (M2)

2. M is closed if FI (M) = ∅.

3. sup(M) is the greatest value of a free index in M.
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Syntax of λdB

Definition (i -lift)
M+i is defined inductively as

1 . (M1 M2)+i = (M+i
1 M+i

2 ) 3 . n+i =

{
n + 1 , if n > i
n , if n ≤ i .

2 . (λ.M1)+i = λ.M
+(i+1)
1

The lift M+ of M is its 0-lift.
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β-contraction in λdB

Definition (β-substitution)
The β-substitution {n /N}M is defined inductively by

1 . {n /N}(M1 M2) = ({n /N}M1 {n /N}M2)

2 . {n /N}λ.M1 = λ.{n + 1 /N+}M1

3 . {n /N}m =

8<:
m − 1 , if m > n
N, if m = n
m , if m < n

Definition (β-contraction in λdB)
β-contraction in λdB is defined by

(λ.M N)�β{1 /N}M
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Restricted Intersection types in λdB

Definition (Restricted intersection types and contexts)

1. The restricted intersection types are defined by:

T ::= A |U→T
U ::= ω | U ∧ U | T

∧ is commutative, associative and has ω as neutral element.

2. The contexts are sequences of objects in U , defined by:

Γ ::= nil | u.Γ, for u ∈ U

Our system is a de Bruijn version of a system by Sayag and Mauny
in [SM96a, SM96b]

10 / 26



Restricted Intersection types in λdB

Definition (Restricted intersection types and contexts)

1. The restricted intersection types are defined by:

T ::= A |U→T
U ::= ω | U ∧ U | T

∧ is commutative, associative and has ω as neutral element.

2. The contexts are sequences of objects in U , defined by:

Γ ::= nil | u.Γ, for u ∈ U

Our system is a de Bruijn version of a system by Sayag and Mauny
in [SM96a, SM96b]

10 / 26



Restricted intersection types in λdB

Definition

1. ω n := ω.ω. · · · .ω.nil such that |ω n| = n.

2. The extension of ∧ for contexts:

- nil ∧ Γ = Γ ∧ nil = Γ

- (u1.Γ) ∧ (u2.∆) = (u1 ∧ u2).(Γ ∧∆)

3. Type substitutions s : A → T such that:

- s(u→τ) = s(u)→s(τ)

- s(ω) = ω and s(u ∧ v) = s(u) ∧ s(v)

- s(nil) = nil and s(u.Γ) = s(u).s(Γ)

Recall: M :〈Γ ` τ〉 is used instead of Γ ` M : τ
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Definition (Typing Rules)

1. System SM is defined by:

τ ∈T
1:〈τ.nil ` τ〉 var

M :〈nil ` τ〉
λ.M :〈nil ` ω→τ〉 →

′
i

n :〈Γ ` τ〉
n+1:〈ω.Γ ` τ〉 varn

M :〈u.Γ ` τ〉
λ.M :〈Γ ` u→τ〉 →i

M1 :〈Γ ` ω→τ〉 M2 :〈∆ ` σ〉
M1 M2 :〈Γ ∧∆ ` τ〉 →′e

M1 :〈Γ ` ∧n
i=1σi→τ〉 M2 :〈∆1 ` σ1〉 . . . M2 :〈∆n ` σn〉
M1 M2 :〈Γ ∧∆1 ∧ · · · ∧∆n ` τ〉 →e

2. System SMr is obtained from SM, taking τ = σ1 → · · · → σn→α in
rule var
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Type systems properties

Lemma
If M :〈Γ `SM/SMr τ〉, then |Γ|=sup(M) and ∀i , Γi 6= ω iff i ∈FI (M).

Lemma (Generation)

1. If n :〈Γ `SM/SMr τ〉, then Γn =τ .

2. If n :〈Γ `SMr τ〉, then τ = σ1 → · · · → σk→α.

3. If λ.M :〈nil `SM/SMr τ〉, then

I τ=ω→σ and M :〈nil `SM/SMr σ〉 or
I τ=∧n

i=1σi→σ and M :〈∧n
i=1σi .nil `SM/SMr σ〉.

4. If λ.M :〈Γ `SM/SMr τ〉 and |Γ| > 0, then τ =u→σ s.t.
M :〈u.Γ `SM/SMr σ〉.

5. If n M1 · · ·Mm :〈Γ `SMr τ〉,
Γ = (ω n−1 .σ1 → · · · → σm→τ.nil) ∧ Γ1∧ · · · ∧ Γm,
τ = σm+1 → · · · → σm+k→α and Mi :〈Γi `SMr σi 〉.
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SMr and β-normal forms

Theorem
Every β-nf in de Bruijn notation is typeable in system SMr .
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Type inference algorithm for β-nf

Let N be a β-nf

Infer(N) =
Case N = n

let α be a fresh type variable
return (ω n−1 .α.nil , α)

Case N = λ.N1

let (Γ1, ϕ1) = Infer(N1)
if (Γ1 = u.Γ′) then
return (Γ′, u→ϕ1)
else
return (nil , ω→ϕ1)

Case N = n N1 · · · Nm

let (Γ1, ϕ1) = Infer(N1)
...

(Γm, ϕm) = Infer(Nm)
α be a fresh type variable

return ((ω n−1 .ϕ1 → · · · → ϕm→α.nil) ∧ Γ1∧ · · · ∧ Γm, α)
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Type inference algorithm

Theorem (Soundness)
If N is a β-nf and Infer(N) = (Γ, ϕ), then N :〈Γ `SMr ϕ〉.

Theorem (Completeness)
If N :〈Γ `SMr ϕ〉, N a β-nf, then for (Γ′, ϕ′) = Infer(N) exists a type
substitution s such that s(Γ′) = Γ and s(ϕ′) = ϕ.
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Characterisation of principal typings

Definition

1. Let TC , TNF and UC be defined by:

TC ::= A | TNF→TC
TNF ::= A |UC→TNF

UC ::= ω | UC ∧ UC | TC

2. Let C be the set of contexts Γ with types in UC

Lemma
Im(Infer) ⊆ C×TNF
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Characterisation of principal typings

Definition (Γ-types)

T ::= Γ⇒ϕ |∆⇒ Γ,∆ ∈ C and ϕ ∈ TNF and |∆| > 0

Let T N be obtained from Infer(N), for any β-nf N.

Definition (Left subtypes)
The set L(T ) is defined by:

- L(Γ⇒ϕ) = L(Γ) ∪ L(ϕ)

- L(Γ) = ∪m
i=0{Γi}, for Γi 6= ω.

- L(α) = ∅
- L(ω→σ) = L(σ)

- L(∧n
i=1σi→σ) = {∧n

i=1σi} ∪ L(σ).
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Characterisation of principal typings

Definition
T is complete if:

- T is closed

- T is finally closed

- T is minimally closed.

Lemma
If N is a β-nf then T N is complete.

19 / 26



Characterisation of principal typings

Definition
T is complete if:

- T is closed

- T is finally closed

- T is minimally closed.

Lemma
If N is a β-nf then T N is complete.

19 / 26



Characterisation of principal typings

Definition (Principal)
A complete T is principal if:

- T = ω n−1 .α.nil⇒α

- T = Γ⇒α s.t. Γ = (ω n−1 .ϕ1 → · · · → ϕm→α.nil) ∧ Γ1∧ · · · ∧ Γm

and ∀i , Γi⇒ϕi is principal.

- T = nil⇒ω→ϕ1 and nil⇒ϕ1 is principal.

- T = Γ⇒u→ϕ1 s.t. either Γ 6= nil or u 6= ω and u.Γ⇒ϕ1 is
principal.

Lemma
Let P = {(Γ, ϕ) ∈ C×TNF | Γ⇒ϕ is principal}. Then

Im(Infer) ⊆ P
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Reconstruction algorithm

Recon(Γ, ϕ) =
Case (nil , α)

fail

Case (Γ, α)
let {(i1, u1), . . . , (im, um)} = FO(α, Γ)
if m = 1 and u1 = (τ1 → · · · → τn→α) ∧ u′ s.t. α /∈TypeVar(u′)

then if ∀1≤i≤n there is Γi s.t. Γ = Γi ∧ X i

and Γi⇒τi is principal
then let (N1,∆1) = Recon(Γ1, τ1)

...
(Nn,∆n) = Recon(Γn, τn)

∆′ = ω i1−1.τ1 → · · · → τn→α.nil
Γ′ = ∆′ ∧ Γ1∧ · · · ∧ Γn

Γ = (Γ′ ∧∆1∧ · · · ∧∆n) ∧∆, s.t. ∆ 6= ω j , ∀1≤j≤|Γ|
return ( i1N1 · · · Nn,∆)
else fail

else fail
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Reconstruction algorithm(cont.)

Case (Γ, u→ϕ1)
if Γ = nil and u = ω

then let (N1,∆) = Recon(Γ, ϕ1)
else let Γ′ = u.Γ

(N1,∆) = Recon(Γ′, ϕ1)
if ∆ = nil

then return (λ.N1,∆)
else fail

Lemma
If (Γ, ϕ) ∈ P then:

1. Recon(Γ, ϕ) = (N, nil) and N is a β-nf.

2. Infer(N) = (Γ, ϕ).

Corollary
P = Im(Infer)
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Reconstruction algorithm(cont.)
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Reconstruction algorithm(cont.)
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Subject reduction failure

We have that

1 :〈α.nil ` α〉
λ. 1:〈nil ` α→α〉

λ.λ. 1:〈nil ` ω→α→α〉

1:〈β.nil ` β〉
2:〈ω.β.nil ` β〉

3:〈ω.ω.β.nil ` β〉
λ.λ. 1 3:〈ω.ω.β.nil ` α→α〉

and that λ.λ. 1 3 �β λ. 1
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Conclusion, current and future works

I IT presented types all β-nf for λdB

I The inference algorithm returns principal typings for all β-nf

I Characterisation for those principal typing was given

I System SMr is a first step torwards IT systems with PT for λdB

I Extend the results for all SN terms.
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Completeness proof step

Let λ.N :〈nil ` ϕ〉
I Case ϕ = ω→ϕ1 and N :〈nil ` ϕ1〉:

By IH, Infer(N) = (Γ′, ϕ′) s.t. s(ϕ′) = ϕ1 and s(Γ′) = nil .
Therefore, Γ′ = nil , Infer(λ.N) = (nil , ω→ϕ′) and s(ω→ϕ′) = ϕ.

I Case ϕ = ∧n
j=1σj→ϕ1 and N :〈∧n

j=1σj .nil ` ϕ1〉: analogous

25 / 26



References

M. Coppo and M. Dezani-Ciancaglini.

A new type assignment for lambda-terms.
Archiv für mathematische logik, 19:139–156, 1978.

M. Coppo and M. Dezani-Ciancaglini.

An Extension of the Basic Functionality Theory for the λ-Calculus.
Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.

N.G. de Bruijn.

Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the
Church-Rosser Theorem.
Indag. Mat., 34(5):381–392, 1972.

F. Kamareddine, editor.

Thirty Five Years of Automating Mathematics.
Kluwer, 2003.

G. Pottinger.

A type assignment for the strongly normalizable λ-terms.
In J.P. Seldin and J. R. Hindley (eds), To H. B. Curry: Essays on combinatory logic, lambda calculus and formalism, pp. 561–578.
Academic Press, 1980.

E. Sayag and M. Mauny.

Characterization of principal type of normal forms in intersetion type system.
In Proc. of FSTTCS’96, LNCS, 1180:335–346. Springer, 1996.

E. Sayag and M. Mauny.

A new presentation of the intersection type discipline through principal typings of normal forms.
Tech. rep. RR-2998, INRIA, 1996.

J.B. Wells.

The essence of principal typings.

In 29th Int.Coll. on Automata, Languages and Programming, v. 2380 of LNCS, pages 913–925. 2002.

26 / 26


	Motivation
	Intersection types
	Principal typings
	-calculus with nameless dummies

	dB: the -calculus with de Bruijn indices
	Syntax of dB
	-reduction in dB

	The restricted intersection type system for dB
	Restricted intersection types in dB
	Typing systems and properties
	Type inference algorithm

	Characterisation of principal typings
	Characterising principal typings
	Reconstruction algorithm

	Conclusion, current and future work

